14.06.2023 Views

Mars Science City – Space Architecture Design Studio 2020

The Mars Science City design studio topic fits into the long-term vision to build a human settlement on Mars. The students were first asked to look far into the future and imagine what a city on Mars would be like. How do they think people would live in about 100 years on another planet? What would they take with them from Earth, and what would they want to see totally different? The student teams have developed a conceptual vision of this city. In parallel they researched and worked on the environmental, technical and social challenges of getting to and being on Mars. Each team was asked to identify three major challenges and / or characteristics, based on their vision. What would be needed to start the settlement in order to become the city they have imagined? This was the most challenging part for the student’s teams, and became the starting point for the individual architectural solutions of the near-term project on Mars. Design Task S. 6 Teaching Team S. 16 The Students S. 24 Projects DUNE S. 30 Moving Mars S. 42 Terra Mars S. 54 AB-ORIGO S. 66 Protocity S. 76 Dune Haranea S. 86 Lighthouse S. 94 Arcadia City S. 104 Apoikia S. 114 Adventus S. 122 Ice Age S. 138 Teaching Team: Sandra Häuplik-Meusburger (Studio Director), Alexander S., Bannova O., Bier H., Bishop S., Ciardullo C., Esfand M., Farmwald L., Frischauf N., Gourlis B., Grömer G., Kahr F., Lamborelle O., Makaya A., Nixon D., Perino M., Russ C., Schechtner K., Schwehm G., Wong D.; Students: Binder D., Brajic A., Gojkovic B., Brückler A., Hamzic E., Kaprinayova E., Stauber B., Vorraber J., Podwalski K., Adnan M., Trinca E., Ahr S., Bula M., Ivanonva M., Stoyanova S., Graf J., Kugic A., Neumerkel R., Vecerdi M., Glinac M., Ramovic A., Schneider G., Ajdari S., Mujedini X., Gündar J.

The Mars Science City design studio topic fits into the long-term vision to build a human settlement on Mars. The students were first asked to look far into the future and imagine what a city on Mars would be like. How do they think people would live in about 100 years on another planet? What would they take with them from Earth, and what would they want to see totally different? The student teams have developed a conceptual vision of this city. In parallel they researched and worked on the environmental, technical and social challenges of getting to and being on Mars. Each team was asked to identify three major challenges and / or characteristics, based on their vision. What would be needed to start the settlement in order to become the city they have imagined? This was the most challenging part for the student’s teams, and became the starting point for the individual architectural solutions of the near-term project on Mars.

Design Task S. 6
Teaching Team S. 16
The Students S. 24
Projects
DUNE S. 30
Moving Mars S. 42
Terra Mars S. 54
AB-ORIGO S. 66
Protocity S. 76
Dune Haranea S. 86
Lighthouse S. 94
Arcadia City S. 104
Apoikia S. 114
Adventus S. 122
Ice Age S. 138

Teaching Team: Sandra Häuplik-Meusburger (Studio Director), Alexander S., Bannova O., Bier H., Bishop S., Ciardullo C., Esfand M., Farmwald L., Frischauf N., Gourlis B., Grömer G., Kahr F., Lamborelle O., Makaya A., Nixon D., Perino M., Russ C., Schechtner K., Schwehm G., Wong D.;
Students: Binder D., Brajic A., Gojkovic B., Brückler A., Hamzic E., Kaprinayova E., Stauber B., Vorraber J., Podwalski K., Adnan M., Trinca E., Ahr S., Bula M., Ivanonva M., Stoyanova S., Graf J., Kugic A., Neumerkel R., Vecerdi M., Glinac M., Ramovic A., Schneider G., Ajdari S., Mujedini X., Gündar J.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

habitation

functionality + comfort

keeping it minimal, functional, yet comfortable

was one of the main goals of the design. the

isometric connectivity of the expansion concept

can also be seen within the habitat.

sanitary fittings open up towards the private

rooms. the kitchen is oriented towards a

larger area for eating, socializing and medical

treatment. research area is allocated on top of

the private rooms to make use of the verticality.

ADVENTUS

connetion to small

green unit

this way loud and quiet, social and private space

are separated. the area between the private

rooms can be used as storage, recreational

and training space. connection to the small

greenhouse in this area would enhance the

recreational environment.

semi-social

private

quiet

loud

radiation protection

the exterior layer of the enclosing membrane is

equiped with chambers that will be filled with

regolith. a 3d sinthered regolith shell will be

printed over the habitat at a later stage.

private

social

133

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!