14.06.2023 Views

Mars Science City – Space Architecture Design Studio 2020

The Mars Science City design studio topic fits into the long-term vision to build a human settlement on Mars. The students were first asked to look far into the future and imagine what a city on Mars would be like. How do they think people would live in about 100 years on another planet? What would they take with them from Earth, and what would they want to see totally different? The student teams have developed a conceptual vision of this city. In parallel they researched and worked on the environmental, technical and social challenges of getting to and being on Mars. Each team was asked to identify three major challenges and / or characteristics, based on their vision. What would be needed to start the settlement in order to become the city they have imagined? This was the most challenging part for the student’s teams, and became the starting point for the individual architectural solutions of the near-term project on Mars. Design Task S. 6 Teaching Team S. 16 The Students S. 24 Projects DUNE S. 30 Moving Mars S. 42 Terra Mars S. 54 AB-ORIGO S. 66 Protocity S. 76 Dune Haranea S. 86 Lighthouse S. 94 Arcadia City S. 104 Apoikia S. 114 Adventus S. 122 Ice Age S. 138 Teaching Team: Sandra Häuplik-Meusburger (Studio Director), Alexander S., Bannova O., Bier H., Bishop S., Ciardullo C., Esfand M., Farmwald L., Frischauf N., Gourlis B., Grömer G., Kahr F., Lamborelle O., Makaya A., Nixon D., Perino M., Russ C., Schechtner K., Schwehm G., Wong D.; Students: Binder D., Brajic A., Gojkovic B., Brückler A., Hamzic E., Kaprinayova E., Stauber B., Vorraber J., Podwalski K., Adnan M., Trinca E., Ahr S., Bula M., Ivanonva M., Stoyanova S., Graf J., Kugic A., Neumerkel R., Vecerdi M., Glinac M., Ramovic A., Schneider G., Ajdari S., Mujedini X., Gündar J.

The Mars Science City design studio topic fits into the long-term vision to build a human settlement on Mars. The students were first asked to look far into the future and imagine what a city on Mars would be like. How do they think people would live in about 100 years on another planet? What would they take with them from Earth, and what would they want to see totally different? The student teams have developed a conceptual vision of this city. In parallel they researched and worked on the environmental, technical and social challenges of getting to and being on Mars. Each team was asked to identify three major challenges and / or characteristics, based on their vision. What would be needed to start the settlement in order to become the city they have imagined? This was the most challenging part for the student’s teams, and became the starting point for the individual architectural solutions of the near-term project on Mars.

Design Task S. 6
Teaching Team S. 16
The Students S. 24
Projects
DUNE S. 30
Moving Mars S. 42
Terra Mars S. 54
AB-ORIGO S. 66
Protocity S. 76
Dune Haranea S. 86
Lighthouse S. 94
Arcadia City S. 104
Apoikia S. 114
Adventus S. 122
Ice Age S. 138

Teaching Team: Sandra Häuplik-Meusburger (Studio Director), Alexander S., Bannova O., Bier H., Bishop S., Ciardullo C., Esfand M., Farmwald L., Frischauf N., Gourlis B., Grömer G., Kahr F., Lamborelle O., Makaya A., Nixon D., Perino M., Russ C., Schechtner K., Schwehm G., Wong D.;
Students: Binder D., Brajic A., Gojkovic B., Brückler A., Hamzic E., Kaprinayova E., Stauber B., Vorraber J., Podwalski K., Adnan M., Trinca E., Ahr S., Bula M., Ivanonva M., Stoyanova S., Graf J., Kugic A., Neumerkel R., Vecerdi M., Glinac M., Ramovic A., Schneider G., Ajdari S., Mujedini X., Gündar J.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

HB2 | MARS SCIENCE CITY

LIFE SUPPORT SYSTEM

fuel cells

energy capacity for two days running time

in moving mode (modules attached),

about four days in travelling mode.

additional energy needed during e.g. a month long

research mission, solar panels unfold in steady mode and

charge fuel cells.

autonomous driving

rover uses newest technologies like autonomous driving,

therefore humans will not be in charge of steering the

rover.

this results in the possibility of letting the rover do cargo

missions on its own, without human presence.

S1 | rover is getting ready to attach to

the martian habitat

S2 | adjusting height, opening up wings

and deploying modules

S3 | receiving or delivering cargo from

or to the habitat

48

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!