14.01.2013 Views

The Arithmetic of Quaternion Algebra

The Arithmetic of Quaternion Algebra

The Arithmetic of Quaternion Algebra

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2.1. CLASSIFICATION 27<br />

F ⊗ Lnr is the unramified quadratic extension <strong>of</strong> F in Ks. <strong>The</strong>refore HF is a<br />

quaternion field over F . <strong>The</strong> <strong>The</strong>orem 1.2 is proved completely.<br />

For the use latter we make a remark here.<br />

Corollary 2.1.9. Every quadratic extension <strong>of</strong> K is isomorphic to a subfield<br />

<strong>of</strong> H. For an order <strong>of</strong> a maximal commutative subfield <strong>of</strong> H can be embedded<br />

maximally in H, if and only if it is maximal.<br />

<strong>The</strong> computation <strong>of</strong> Hilbert symbol<br />

Lemma 2.1.10. If the characteristic <strong>of</strong> k is different from 2, and if e is a unit <strong>of</strong><br />

R which is not a square, then the set {1, e, π, πe} form a group <strong>of</strong> representations<br />

in K × <strong>of</strong> K × /K ×2 . Moreover Lnr is isomorphic to K( √ e).<br />

Pro<strong>of</strong>. Consider the diagram<br />

1 → R × 1 → R× → K × → 1<br />

↓ 2 ↓ 2 ↓ 2<br />

R × 1 → R× → K ×<br />

<strong>The</strong> vertical arrows represent the homomorphism h → h2 , and R × 1<br />

1 + πa, a ∈ R}. We have [k × : k ×2 ] = 2, and R × 1 = R×2 1 because <strong>of</strong><br />

(1 + πa) 1<br />

2 = 1 + πa/2 + ... + C 1<br />

2<br />

n + ...<br />

= {h =<br />

converges in K. Thus [R × : R ×2 = 2, and [K × : K ×2 ] = 4. If e ∈ R × − R ×2 ,<br />

R × ⊂ n(K( √ e)), and this characterize Lnr = K( √ e).<br />

Set ε = 1 if −1 is a square in K, and ε = −1 otherwise.<br />

Table <strong>of</strong> Hilbert symbol:<br />

a\b 1 e π πe<br />

1 1 1 1 1<br />

e 1 1 −1 −1<br />

π 1 −1 ε −ε<br />

πe 1 −1 −ε ε<br />

Definition 2.5. Let p be an odd prime number, and a be an integer prime to<br />

p. <strong>The</strong> Legendre symbol ( a<br />

p ) is defined by<br />

( a<br />

) =<br />

p<br />

�<br />

1, if a is a square mod p<br />

.<br />

−1, otherwise<br />

We see immediately that the Hilbert symbol (a, p)p <strong>of</strong> a, p in Qp equals<br />

Legendre symbol ( a<br />

p ). It is easy to compute Hilbert symbol (a, b)p <strong>of</strong> two integers<br />

a, b in Qp if p �= 2. We use the the computation rule <strong>of</strong> Hilbert symbol (Corollary<br />

2.2) and<br />

�<br />

(a, b)p =<br />

1,<br />

(<br />

if p ∤ a, p ∤ b<br />

a<br />

p ), if p ∤ a, p�b

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!