14.01.2013 Views

The Arithmetic of Quaternion Algebra

The Arithmetic of Quaternion Algebra

The Arithmetic of Quaternion Algebra

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

38 CHAPTER 2. QUATERNION ALGEBRA OVER A LOCAL FIELD<br />

Lemma 2.4.4. We have<br />

�<br />

ZX(s) = N(x)<br />

B<br />

−s dx · ⎧<br />

⎪⎨ ζK(s),<br />

= ζH(s) ⎪⎩ ζK(2)<br />

if X = K<br />

·<br />

�<br />

(1 − q−1 ) −1 ,<br />

1,<br />

if X = H is a field,<br />

if X = M(2, K)<br />

.<br />

Pro<strong>of</strong>. <strong>The</strong> number <strong>of</strong> the elements <strong>of</strong> B modulo B × with norm q n , n ≥ 0 is the<br />

number <strong>of</strong> the integral ideals <strong>of</strong> B with norm q n . <strong>The</strong> integral is then equal to<br />

ζX(s)vol(B × ).<br />

<strong>The</strong> function ζX(s) is hence given by Proposition 4.2.<br />

Definition 2.17. Let dx be the Lebesque measure on R. Let X ⊂ R, and (ei)<br />

be a R-basis <strong>of</strong> X. For x = � xiei ∈ X, we denote by TX(x) the common trace<br />

<strong>of</strong> the R-endomorphisms <strong>of</strong> X given by the multiplication by x to the left and to<br />

the right. We denote by dxX the additive Haar measure on X such that<br />

We denote by dx · X<br />

dxX = |det(TX(eiej))| 1<br />

2 Πdxi.<br />

the multiplicative Haar measure ||x||−1<br />

X dxX.<br />

We can verify that the above definition is given explicitly by<br />

(1) dxC = 2dx1dx2, if x = x + ix, xi ∈ R,<br />

(2) dxH = 4dx1...dx4, if x = x1 + ix2 + jx3 + ijx4, xi � �<br />

∈ R,<br />

x x<br />

(3) dxM(2,K) = Π(dxi)K, if x = ∈ M(2, K), K = R or C.<br />

x x<br />

We denote by tx the transpose <strong>of</strong> x in a matrix algebra. By an explicit manner<br />

the real number TX( tx¯x) equals to<br />

(0)’ x2 , if X = R,<br />

(1)’ 2x¯x, if X = C,<br />

(2)’ 2n(x), if X = H,<br />

(3)’ � x2 i , if X = M(2, R),<br />

(3)” 2 � xi¯x, if X = M(2, C).<br />

We put<br />

�<br />

ZX(s) = exp(−πTX( t x¯x))Nx −s dx<br />

Lemma 2.4.5. We have<br />

X ×<br />

ZR = ∗π −s/2 Γ(s/2),<br />

ZC(s) = ∗(2π) −s Γ(s),<br />

�<br />

ZH + ∗ZK(s)ZK(s − 1) ·<br />

(s − 1)<br />

1,<br />

if H is a field<br />

if H = M(2,K)<br />

where ∗ represents a constant independent <strong>of</strong> s.<br />

Leave the pro<strong>of</strong> <strong>of</strong> the lemma as an exercise. If X = M(2, K) we shall utilize<br />

the Iwasawa’s decomposition <strong>of</strong> GL(2, K). Every element x ∈ GL(2, K) can be<br />

written by unique way as<br />

x =<br />

� �<br />

y t<br />

u, y, z ∈ R<br />

0 z<br />

+ , t ∈ K, u ∈ U

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!