14.01.2013 Views

The Arithmetic of Quaternion Algebra

The Arithmetic of Quaternion Algebra

The Arithmetic of Quaternion Algebra

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3.5. ORDERS AND IDEALS 71<br />

is equivalent to<br />

tA = t ′ A, l ′ A = g ′ AlAl, g ′ A ∈ t −1<br />

A GAtA ∩ LA = B ′ A,<br />

from (1). <strong>The</strong> second evaluation uses the disjoint union:<br />

and the adele objects O (i)<br />

A<br />

H ×<br />

A =<br />

t�<br />

i=1<br />

N(OA)xiH ×<br />

K<br />

= x−1 i OAxi, G (i)<br />

A = x−1 i GAxi correspond globally to a<br />

system <strong>of</strong> representatives <strong>of</strong> the type <strong>of</strong> Eichler orders <strong>of</strong> level N ,O (〉) = H ∩O (i)<br />

A<br />

and to the groups G (i) = H ∩ G (i)<br />

A . We shall prove :<br />

(2) Card(GA\TA/L × ) =<br />

t�<br />

i=1<br />

Card(G (i)<br />

A \N(O(i)<br />

A /H(i) )Card(G (i) \T (i) /L × )<br />

where H (i) = N(O (i)<br />

A ∩H× , T (i) = TA ∩O (i) . Remark that Card(G (i) \T (i) /L × )<br />

is the number <strong>of</strong> the maximal inclusions <strong>of</strong> B in O (i) modulo G (i) . we have the<br />

disjoint union<br />

TA =<br />

t�<br />

N(O)xiTi/L × disjoint union.<br />

i=1<br />

On other hand, Card(GA\N(OA)xiTi/L × ) = Card(G (i)<br />

A \N(O(i) A /L× )<br />

= Card(G (i)<br />

A \N(O(i) A /H(i) Card(G (i) \Ti/L × ). We denote H ′(i)<br />

G = Card(G(i) A \N(O(i)<br />

and hG(B) = Card(B ′ A \LA/L × ). When G = O × the numbers are respectively<br />

the class number <strong>of</strong> two-sided ideals <strong>of</strong> O (i) and the class number <strong>of</strong><br />

the ideals <strong>of</strong> B. <strong>The</strong> expressions (1) and (2) gives the <strong>The</strong>orem(bis). Let<br />

mp = mp(D, N, B, G) the number <strong>of</strong> the maximal inclusion <strong>of</strong> Bp in Op modulo<br />

Gp, if p /∈ S. Let O (i) , 1 ≤ i ≤ t be a system <strong>of</strong> the representatives <strong>of</strong> the type<br />

<strong>of</strong> Eichler order <strong>of</strong> level N, and m (i)<br />

G be the number <strong>of</strong> the maximal inclusion <strong>of</strong><br />

B in O (i) modulo Gi. We have by the precedent definition:<br />

<strong>The</strong> theorem is proved.<br />

t�<br />

i=1<br />

H ′ (i) m (i)<br />

G<br />

�<br />

= hG(B) mp.<br />

Definition 3.21. Let L/K be a separable quadratic extension. If p is a prime<br />

ideal <strong>of</strong> K, we define Artin symbol ( L<br />

p by<br />

⎧<br />

( L<br />

) =<br />

p<br />

p/∈S<br />

⎪⎨ 1, if p can be decomposed in L (Lp is not a field)<br />

−1,<br />

⎪⎩<br />

0,<br />

if p is inertia in L (Lp/Kp is an unramified extension) .<br />

if p is ramified in L (Lp/Kp is a ramified extension)<br />

Definition 3.22. Let B be a R-order <strong>of</strong> a separable quadratic extension L/K.<br />

We define Eichler symbol ( B<br />

p ) to be equal to Artin symbol if p ∈ S or Bp is<br />

a maximal order, and equal to 1 otherwise. <strong>The</strong> conductor f(B) <strong>of</strong> B is the<br />

integral ideal f(B) <strong>of</strong> R satisfying f(B)p = f(Bp), ∀p /∈ S.<br />

A /Hi)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!