17.01.2013 Views

for the sqfe use of lqsers - LIGO

for the sqfe use of lqsers - LIGO

for the sqfe use of lqsers - LIGO

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

APPENDIX<br />

NOTE 3: For rectangular or elliptical beams see 84.7.<br />

Example I7'. Find <strong>the</strong> radiant exposure at I km<br />

(105 cm) from a O.lJ Q switched ruby laser (pulse<br />

length = 20 ns) which has a beam div€rgence <strong>of</strong><br />

I mrad (lfr rad) and an emergent beam diameter <strong>of</strong><br />

0.7 cm. Using !t = l0-7 cm-r to provide a worst case<br />

estimate,<br />

"<br />

'J =<br />

, ,rrn , ,,_fl0 ' )rtd )<br />

jj:j-:::j=-<br />

(0.7 + 1t05;116-111:<br />

_ (1.27) (0.1) (0.ee)<br />

(0.7 + 100)2<br />

= 1.25 x l0-5 J . cm-2<br />

84.2.1 Norninal Ocular Hazrrd Distance<br />

(NOHD).<br />

If <strong>the</strong> atmospheric attenuation coefficient is<br />

neglected, a worst case estimate <strong>of</strong> <strong>the</strong> NOHD<br />

(rM<strong>of</strong>lD) <strong>for</strong> Example l7 can be calculated from:<br />

1<br />

rNoHD =<br />

6<br />

o [,_ I<br />

=# h/+*P -.'J<br />

( 5.M km<br />

84,2.2 Range Nomogram, Fig, 86.<br />

The range nomogram in Fig. 86 (which includes <strong>the</strong><br />

attenuation coefficient) can also be <strong>use</strong>d to determine<br />

rNoHD. For <strong>the</strong> values given in Example 17, draw a<br />

line between l00mJ and l.0mrad. This line intercepts<br />

<strong>the</strong> "lntegrated Radiant lntensity" scale at<br />

approximately 0.13 MJ ' s.'. A line is <strong>the</strong>n drawn<br />

from <strong>the</strong> above point to 0.5 lrJ.cm-z on <strong>the</strong> "Radiant<br />

Exposure" scale, intercepting <strong>the</strong> "Range" scale<br />

at 4.9 km <strong>for</strong> a clear day and 4 km <strong>for</strong> a hazy day.<br />

84,3 Bearn Diameter.<br />

The minimum beam diameter. <strong>for</strong> a small 0 at range<br />

r, is given by F4 84:<br />

Dt=a +Qr<br />

Example 18: Find <strong>the</strong> diameter <strong>of</strong> a laser beam at<br />

l km where <strong>the</strong> emergent beam diameter is lOcm<br />

and <strong>the</strong> beam divergence is 0.1 mrad.<br />

66<br />

Dr = l0 cm + (l0r rad) (105 cm)<br />

P1<br />

E=<br />

tD cosO"<br />

or<br />

H=<br />

and<br />

= l0+ l0=20cm<br />

84,4 Diff<strong>use</strong> Refl ections.<br />

The reflected irradiance or radiant exposure <strong>for</strong> a dif.<br />

f<strong>use</strong> reflector (<strong>for</strong> rl :> D.) is given by<br />

--;4-<br />

pr O cos0"<br />

--;i-<br />

{@=,,.,".<br />

'(rr)(10-")<br />

(Eqs Bl0<br />

Example 19: Find <strong>the</strong> maximum rcflected mdiad<br />

exposure at a point along <strong>the</strong> beam axis <strong>of</strong> a 0.1 I<br />

laser, lOm from a diff<strong>use</strong> matte <strong>of</strong> reflectance 0.6 .<br />

(cos 0l = 1).<br />

H_<br />

(0.1J)(9.6),<br />

= 1.9t x tga J.cm-2<br />

(3.14) (10' cm)'<br />

Example 20: Find <strong>the</strong> minimum safe viewing distane<br />

<strong>for</strong> looking at a diff<strong>use</strong> target having a rcflectivity<br />

P;, = 0.9 from a laboratory Ar laser with O = 2W and<br />

d = 2 mm (assume a l0 s exposure duration). (fhis is<br />

also <strong>the</strong> border <strong>of</strong> <strong>the</strong> NHZ, see Fig. B4). The emergent<br />

beam irradiance is 6^3.7 W.cm-2 which ir<br />

greater than <strong>the</strong> 6,8 W 'cm-' maximum permissible<br />

irradiance incident on a 100 percent diff<strong>use</strong>ly<br />

reflecting surface <strong>for</strong> a lOs exposure duration (s€e<br />

TableBl). It is <strong>the</strong>re<strong>for</strong>e concluded that 4vflz must<br />

be greater than Dllohin and intmbeam MPEs apply.<br />

Hence, <strong>the</strong> l0 s MPE is I x l0-3 w'cm-2 (Table 5<br />

or Fig. 4) and <strong>the</strong> expression <strong>for</strong> rpsT can be found by<br />

reananging Eq Bl0. Hence<br />

(Eq BI0a)<br />

Figure 86 may also be <strong>use</strong>d to determine this distance<br />

graphically.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!