20.01.2021 Views

V 35 N 85.

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ANÁLISIS DINÁMICO DEL GENERADOR SÍNCRONO VIRTUAL

siguiendo en todo momento los valores de referencia # % y

8 % y participando activamente en la regulación de

frecuencia y voltaje en la proporción determinada por 4 / y

4 : respectivamente. Con base a los resultados obtenidos al

analizar el comportamiento dinámico del GSV se puede

concluir que la estrategia de control Generador Síncrono

Virtual es una alternativa viable para reducir el impacto de la

incorporación de las fuentes renovables en la red eléctrica, y

cumple con algunas de las características descritas en el IEEE

1547-2018 para inversores inteligentes.

Figura 14. a) Voltaje de la red. b) Potencia reactiva del inversor, ' ( > ' .

Figura 15. Frecuencia de la red y del inversor

REFERENCIAS BIBLIOGRÁFICAS

[1] A. Mullane, M. O'Malley, “The inertial response of

induction-machine-based wind turbines”, IEEE

Transactions on Power Systems, Vol. 20, Issue: 3, pp.

1496 – 1503, Aug. 2005.

[2] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V.

Timbus, “Overview of control and grid synchronization

for distributed power generation systems,” IEEE

Transactions. on Industrial. Electronics, vol. 53, no. 5, pp.

1398–1409, Oct. 2006.

[3] C. P. Negrón Pérez, “Propuesta para el Análisis de

Regulación Primaria de Frecuencia por Medio de

Centrales Fotovoltaicas Interconectadas al Sistema

Eléctrico Nacional”, V Escuela de Verano de Potencia

INERGIA, Salamanca, México, Sep. 2018.

[4] A. Hoke, J. Giraldez, B. Palmintier, E. Ifuku, M. Asano,

R. Ueda “Setting the Smart Solar Standard:

Collaborations Between Hawaiian Electric and the

National Renewable Energy Laboratory”, IEEE Power

and Energy Magazine, vol.16, Issue: 6. pp. 19-29, 2018.

[5] “IEEE Standard for Interconnection and Interoperability

of Distributed Energy Resources with Associated Electric

Power Systems Interfaces”, IEEE Std 1547-2018

(Revision of IEEE Std 1547-2003), 2018.

[6] B. Kroposki, B. Johnson, Y. Zhang, V. Gevorgian, P.

Denholm, B. M. Hodge, B. Hannegan, “Achieving a

100% Renewable Grid: Operating Electric Power

Systems with Extremely High Levels of Variable” IEEE

Power and Energy Magazine, Vol.15, Issue: 2, pp. 61-73,

March-April 2017

[7] T. Vandoorn, J. Vásquez, J. De Kooning, J.M. Guerrero,

L. Vandevelde, “Microgrids: Hierarchical Control and an

Overview of the Control and Reserve Management

Strategies”, IEEE Industrial Electronics Magazine, Vol. 7

, Issue: 4 ,pp. 42-55, Dec. 2013.

[8] J. Liu, Y. Miura, T. Ise, Comparison of Dynamic

Characteristics between Virtual Synchronous Generator

and Droop Control in Inverter-Based Distributed

Generators”, IEEE Transactions on Power Electronics,

Vol. 31, no. 5, pp. 3600-36011, May 2016.

[9] M. C. Chandorkar, D. M. Divan, and R. Adapa, “Control

of parallel connected inverters in standalone ac supply

systems,” IEEE Transactions on Industrial Applications,

Vol.29, no.1, pp. 136–143, Jan./Feb. 1993.

[10] K. Debrabandere, B. Bolsens, J. Van Den Keybus, A.

Woyte, J. Driesen, and R. Belmans, “A voltage and

frequency droop control method for parallel inverters,”

IEEE Transactions on Power Electronics, vol. 22, no. 4,

pp. 1107–1115, Jul. 2007.

[11] J. Driesen, K. Visscher, “Virtual synchronous

generators”, in Proc. IEEE Power Energy Soc. Gen.

Meeting–Conversion and Delivery of Electrical Energy

in the 21st Century, pp. 1–3, Jul. 2008.

[12] K. Visscher, S. W. H. De Haan, “Virtual synchronous

machines (VSG’s) for frequency stabilisation in future

grids with a significant share of decentralized

REVISTA DEL CENTRO DE GRADUADOS E INVESTIGACIÓN. INSTITUTO TECNOLÓGICO MÉRIDA Vol. 35 NÚM. 84 7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!