31.12.2014 Views

Identification du dual topologique de C[a, b] Louis ... - CQFD - EPFL

Identification du dual topologique de C[a, b] Louis ... - CQFD - EPFL

Identification du dual topologique de C[a, b] Louis ... - CQFD - EPFL

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4. IDENTIFICATION DE C[a, b] ′ 21<br />

et tel que le pas <strong>de</strong> la subdivision {y o , y 1 , . . . , y n−1 , y n } soit < δ, où on a<br />

posé y 0 := a et y n := b<br />

Ainsi,<br />

∫ b<br />

∫ b<br />

∣ f(x)dp(x) − f(x)dp ∗ (x)<br />

∣ =<br />

a<br />

a<br />

∫ b<br />

n−1<br />

∑<br />

n−1<br />

∑<br />

∫ b<br />

f(x)dp(x) + f(ξ<br />

∣<br />

k )(p(y k+1 ) − p(y k )) − f(ξ k )(p(y k+1 ) − p(y k )) − f(x)dp ∗ (x)<br />

a<br />

k=0<br />

k=0<br />

a<br />

∣ ≤<br />

∫ ∣<br />

b<br />

n−1<br />

∑<br />

∣∣∣∣ ∫ b<br />

n−1<br />

f(x)dp(x) − f(ξ<br />

∣<br />

k )(p(y k+1 ) − p(y k ))<br />

∣ + ∑<br />

f(x)dp ∗ (x) − f(ξ k )(p(y k+1 ) − p(y k ))<br />

∣<br />

a<br />

k=0<br />

Comme le pas <strong>de</strong> {y 0 , . . . , y n } est < δ, on sait que<br />

∫ b<br />

n−1<br />

∑<br />

f(x)dp(x) − f(ξ<br />

∣<br />

k ) ( p(y k+1 ) − p(y k ) )∣ ∣ ∣∣∣<br />

< ɛ 3<br />

De plus,<br />

Or<br />

a<br />

∣ ∣∣∣∣ ∫ b<br />

a<br />

k=0<br />

n−1<br />

∑<br />

f(x)dp ∗ (x) − f(ξ k ) ( p(y k+1 ) − p(y k ) )∣ ∣ ∣∣∣<br />

≤<br />

k=0<br />

n−1<br />

a<br />

k=0<br />

∫ b<br />

∑<br />

f(x)dp ∗ (x) − f(ξ<br />

∣<br />

k ) ( p ∗ (x k+1 ) − p ∗ (x k ) )∣ ∣ ∣∣∣<br />

+<br />

a<br />

k=0<br />

n−1<br />

∑<br />

f(ξ<br />

∣ k ) ( p ∗ (x k+1 ) − p ∗ (x k ) ) n−1<br />

∑<br />

− f(ξ k ) ( p(y k+1 ) − p(y k ) )∣ ∣ ∣∣∣<br />

≤<br />

k=0<br />

∣ ∣∣∣∣ ∫ b<br />

a<br />

k=0<br />

n−1<br />

∑<br />

f(x)dp ∗ (x) − f(ξ k ) ( p ∗ (x k+1 ) − p ∗ (x k ) )∣ ∣ ∣∣∣<br />

< ɛ 3<br />

k=0<br />

Par conséquent,<br />

n−1<br />

∑<br />

f(ξ<br />

∣ k ) ( p ∗ (x k+1 ) − p ∗ (x k ) ) n−1<br />

∑<br />

− f(ξ k ) ( p(y k+1 ) − p(y k ) )∣ ∣ ∣∣∣<br />

=<br />

k=0<br />

k=0<br />

n−1<br />

∑<br />

f(ξ<br />

∣ k ) ( p ∗ (x k+1 ) − p ∗ (x k ) − p(y k+1 ) + p(y k ) )∣ ∣ ∣∣∣<br />

=<br />

k=0<br />

n−1<br />

∑<br />

f(ξ<br />

∣ k ) ( (p ∗ (x k+1 ) − p(y k+1 )) − (p(y k ) − p ∗ (x k )) )∣ ∣ ∣∣∣<br />

≤<br />

k=0<br />

n−1<br />

∑<br />

|f(ξ k )| { |p ∗ (x k+1 ) − p(y k+1 )| + |p(y k ) − p ∗ (x k )| } ≤<br />

k=0<br />

n−1<br />

∑ {<br />

ɛ<br />

|f(ξ k )|<br />

6n · (1 + max{f(ξ k ) : 1 ≤ k ≤ n}) +<br />

ɛ<br />

}<br />

≤ ɛ 6n · (1 + max{f(ξ k ) : 1 ≤ k ≤ n}) 3<br />

k=0<br />

Par conséquent<br />

∫ b<br />

∣ f(x) dp(x) −<br />

a<br />

∫ b<br />

a<br />

f(x) dp ∗ (x)<br />

∣ < ɛ 3 + ɛ 3 + ɛ 3 = ɛ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!