29.10.2014 Views

The Effect of Peening on the Fatigue Life of 7050 Aluminium Alloy

The Effect of Peening on the Fatigue Life of 7050 Aluminium Alloy

The Effect of Peening on the Fatigue Life of 7050 Aluminium Alloy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Peening</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Fatigue</strong> <strong>Life</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>7050</strong><br />

<strong>Aluminium</strong> <strong>Alloy</strong><br />

P.K. Sharp and G. Clark<br />

Airframes and Engines Divisi<strong>on</strong><br />

Aer<strong>on</strong>autical and Maritime Research Laboratory<br />

DSTO-RR-0208<br />

ABSTRACT<br />

Many changes in <strong>the</strong> design and manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> high-performance military aircraft ⎯ for<br />

example, <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> highly optimised design and <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> higher-strength material ⎯ have led<br />

to an increased sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> airframe fatigue life to surface features such as corrosi<strong>on</strong> or<br />

mechanical damage. <str<strong>on</strong>g>The</str<strong>on</strong>g> peening applied to <strong>the</strong> F/A-18 represents a significant departure from<br />

traditi<strong>on</strong>al manufacture, and it is <strong>the</strong>refore important that <strong>the</strong> RAAF and AMRL have a<br />

thorough understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> peening process, <strong>the</strong> surface c<strong>on</strong>diti<strong>on</strong>s produced, and <strong>the</strong>ir<br />

effect <strong>on</strong> structural integrity.<br />

This report discusses <strong>the</strong> fatigue crack growth research at AMRL, and elsewhere, relating to<br />

peening <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium alloys, and summarises <strong>the</strong> improvements in peening which have arisen<br />

from this research. . <str<strong>on</strong>g>The</str<strong>on</strong>g> overall aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> peening research and development discussed was to<br />

establish a <strong>Life</strong>-Improvement-Factor (LIF) for <strong>the</strong> peening used <strong>on</strong> <strong>the</strong> F/A-18, as well as any<br />

future peening required by modificati<strong>on</strong>s. It also attempted to provide a means <str<strong>on</strong>g>of</str<strong>on</strong>g> measuring<br />

peening quality, to allow <strong>the</strong> full exploitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> peening to improve fatigue life. It also<br />

highlights areas where fur<strong>the</strong>r research could be beneficial in relati<strong>on</strong> to peening and <strong>the</strong><br />

structural integrity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> F/A-18 aircraft. <str<strong>on</strong>g>The</str<strong>on</strong>g> report highlights <strong>the</strong> practical problems <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

introducing changes to fatigue critical surfaces, with particular reference to <strong>the</strong> RAAF and CF<br />

fleets.<br />

Approved for public release.


Published by<br />

DSTO Aer<strong>on</strong>autical and Maritime Research Laboratory<br />

506 Lorimer St<br />

Fishermans Bend Victoria 3207<br />

Teleph<strong>on</strong>e: (03) 9626 8111<br />

Fax: (03) 9626 8999<br />

© Comm<strong>on</strong>wealth <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia 2001<br />

AR No. 011-795<br />

March 2001<br />

C<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Release and Disposal<br />

This document is <strong>the</strong> property <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Australian Government; <strong>the</strong><br />

informati<strong>on</strong> it c<strong>on</strong>tains is released for defence purposes <strong>on</strong>ly and must not be<br />

disseminated bey<strong>on</strong>d <strong>the</strong> stated distributi<strong>on</strong> without prior approval.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> document and <strong>the</strong> informati<strong>on</strong> it c<strong>on</strong>tains must be handled in<br />

accordance with security regulati<strong>on</strong>s applying in <strong>the</strong> country <str<strong>on</strong>g>of</str<strong>on</strong>g> lodgement,<br />

downgrading instructi<strong>on</strong>s must be observed and delimitati<strong>on</strong> is <strong>on</strong>ly with<br />

<strong>the</strong> specific approval <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Releasing Authority as given in <strong>the</strong> Sec<strong>on</strong>dary<br />

Distributi<strong>on</strong> statement.<br />

This informati<strong>on</strong> may be subject to privately owned rights.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>ficer in possessi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this document is resp<strong>on</strong>sible for its safe custody.<br />

When no l<strong>on</strong>ger required DSTO Reports should be returned to <strong>the</strong> DSTO<br />

Library, (Reports Secti<strong>on</strong>), Salisbury SA.


<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Peening</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Fatigue</strong> <strong>Life</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>7050</strong><br />

<strong>Aluminium</strong> <strong>Alloy</strong><br />

Executive Summary<br />

Many changes in <strong>the</strong> design and manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> high-performance military aircraft ⎯<br />

for example, <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> highly optimised design and <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> higher-strength<br />

materials ⎯ have led to an increased sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> airframe fatigue life to surface<br />

features such as corrosi<strong>on</strong> or mechanical damage. <str<strong>on</strong>g>The</str<strong>on</strong>g> peening applied to <strong>the</strong> F/A-18<br />

represents a significant departure from traditi<strong>on</strong>al manufacture, and it is <strong>the</strong>refore<br />

important that <strong>the</strong> RAAF and AMRL have a thorough understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> peening<br />

process, <strong>the</strong> surface c<strong>on</strong>diti<strong>on</strong>s produced, and <strong>the</strong>ir effect <strong>on</strong> structural integrity.<br />

To build <strong>the</strong> required level <str<strong>on</strong>g>of</str<strong>on</strong>g> understanding, AMRL has undertaken a number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

research programs, over nearly ten years, investigating <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> glass bead<br />

peening <strong>on</strong> <strong>the</strong> aluminium alloy <strong>7050</strong> used in RAAF F/A-18 aircraft. <str<strong>on</strong>g>The</str<strong>on</strong>g> overall aim <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> peening research and development discussed was to establish a <strong>Life</strong>-Improvement-<br />

Factor (LIF) for <strong>the</strong> peening used <strong>on</strong> <strong>the</strong> F/A-18, as well as any future peening required<br />

by modificati<strong>on</strong>s. It also attempted to provide a means <str<strong>on</strong>g>of</str<strong>on</strong>g> measuring peening quality,<br />

to allow <strong>the</strong> full exploitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> peening to improve fatigue life.<br />

From this research came methods <str<strong>on</strong>g>of</str<strong>on</strong>g> surface peening and methods <str<strong>on</strong>g>of</str<strong>on</strong>g> surface removal,<br />

which allowed development <str<strong>on</strong>g>of</str<strong>on</strong>g> localised life extensi<strong>on</strong> methods for <strong>the</strong> airframe. <str<strong>on</strong>g>The</str<strong>on</strong>g>se<br />

life extensi<strong>on</strong> methods are now being applied in full-scale fatigue tests (to keep tests<br />

going after initial failures) and are likely to be applied to both RAAF and CF fleet<br />

aircraft.<br />

This report discusses <strong>the</strong> fatigue crack growth research at AMRL, and elsewhere,<br />

relating to peening <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium alloys, and summarises <strong>the</strong> improvements in peening<br />

which have arisen from this research. It also highlights areas where fur<strong>the</strong>r research<br />

could be beneficial in relati<strong>on</strong> to peening and <strong>the</strong> structural integrity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> F/A-18<br />

aircraft. It highlights <strong>the</strong> practical problems <str<strong>on</strong>g>of</str<strong>on</strong>g> introducing changes to fatigue critical<br />

surfaces, with particular reference to <strong>the</strong> RAAF and CF fleets.


Authors<br />

P.K. Sharp<br />

Airframes and Engines Divisi<strong>on</strong><br />

____________________<br />

Khan Sharp, Research Scientist. Graduated from M<strong>on</strong>ash<br />

University in 1987 having obtained a Materials Engineering<br />

Degree with H<strong>on</strong>ours. In 1990 he completed a Masters <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Engineering Science degree, and commenced work in <strong>the</strong> <strong>Fatigue</strong><br />

and Fracture Detecti<strong>on</strong> and Assessment area at Fishermans Bend.<br />

Over <strong>the</strong> past 10 years he has been involved in <strong>the</strong> metallurgical<br />

investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aircraft structures and comp<strong>on</strong>ents, fractographic<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> fatigue surfaces and research into fatigue crack growth<br />

and fracture <str<strong>on</strong>g>of</str<strong>on</strong>g> aircraft materials. During that time he has<br />

published over 40 reports and papers. He has completed extensive<br />

research into novel methods <str<strong>on</strong>g>of</str<strong>on</strong>g> retarding crack growth and<br />

innovative NDI methods. He presently manages <strong>the</strong> Structural<br />

Implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Corrosi<strong>on</strong> task as well as c<strong>on</strong>ducting research <strong>on</strong><br />

fatigue and fracture.<br />

________________________________________________<br />

G. Clark<br />

Airframes and Engines Divisi<strong>on</strong><br />

Graham Clark, Principal Research Scientist. Graduated from<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cambridge in 1972 in Natural Sciences. After<br />

completing research for a PhD <strong>on</strong> <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> fatigue cracks at<br />

notches, he undertook post-doctoral research at Cambridge <strong>on</strong> <strong>the</strong><br />

detecti<strong>on</strong> and growth <str<strong>on</strong>g>of</str<strong>on</strong>g> cracks in submarine pressure vessels. In<br />

1977 he commenced work at DSTO in Maribyrn<strong>on</strong>g, leading<br />

research <strong>on</strong> cracking in thick-walled pressure vessels; which<br />

developed a comprehensive fracture c<strong>on</strong>trol plan for Australian<br />

manufactured ordnance and a capability for predicting ordnance<br />

fatigue lives. In 1984 he moved to Fishermans Bend, where he<br />

established a research program <strong>on</strong> <strong>the</strong> damage tolerance <str<strong>on</strong>g>of</str<strong>on</strong>g> thick<br />

carb<strong>on</strong>-fibre composite materials, involving modelling and<br />

experimental investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> impact damage in aircraft materials.<br />

In his present positi<strong>on</strong>, he leads tasks which support defect<br />

assessment in ADF aircraft, NDI evaluati<strong>on</strong> and fatigue crack<br />

growth research. He is also chairpers<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> AMRL Accident<br />

Investigati<strong>on</strong> Committee.<br />

____________________<br />

________________________________________________


C<strong>on</strong>tents<br />

1. INTRODUCTION ............................................................................................................... 1<br />

2. REVIEW ........................................................................................................................2<br />

2.1 General........................................................................................................................ 2<br />

1.2 F/A-18 <str<strong>on</strong>g>Peening</str<strong>on</strong>g> Processes ........................................................................................ 6<br />

3. AMRL RESULTS ............................................................................................................... 14<br />

3.1 Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Peening</str<strong>on</strong>g> Research Programs .......................................................... 14<br />

3.2 Early research - definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> potential problem .............................................. 14<br />

3.2.1 Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> RAAF aircraft................................................................. 21<br />

3.2.2 Surface roughness/residual stress measurement............................... 22<br />

1.1.3 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> AMRL <str<strong>on</strong>g>Peening</str<strong>on</strong>g> Specificati<strong>on</strong> .......................................... 26<br />

1.3 Rework <str<strong>on</strong>g>Peening</str<strong>on</strong>g> Research..................................................................................... 26<br />

1.3.1 Different rework process comparis<strong>on</strong>s................................................. 27<br />

1.1.2 F/A-18 fleet rework simulati<strong>on</strong>............................................................. 33<br />

1.1.3 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> AMRL Rework <str<strong>on</strong>g>Peening</str<strong>on</strong>g> Specificati<strong>on</strong>............................ 35<br />

1.4 <str<strong>on</strong>g>Peening</str<strong>on</strong>g> <strong>Life</strong> Improvement Factor (LIF).............................................................. 35<br />

1.5 Fleet Applicati<strong>on</strong>s Research.................................................................................. 37<br />

1.5.1 Y470 Crotch Repair Program ................................................................. 37<br />

1.5.2 Fleet Y470.5 X19 Pocket Repair program ............................................. 40<br />

1.1.3 IFOSTP <strong>Fatigue</strong> Tests .............................................................................. 45<br />

4. DISCUSSION..................................................................................................................... 46<br />

5. CONCLUSION................................................................................................................... 48<br />

6. ACKNOWLEDGMENTS ................................................................................................. 52<br />

APPENDIX A: ...................................................................................................................... 53<br />

6.1 Spectrum Details..................................................................................................... 53<br />

6.2 Almen Definiti<strong>on</strong>.................................................................................................... 53<br />

6.3 Saturati<strong>on</strong> Curve ..................................................................................................... 54<br />

7.4 Surface Roughness.................................................................................................. 56


DSTO-RR-0208<br />

1. Introducti<strong>on</strong><br />

During <strong>the</strong> early 1980’s <strong>the</strong> Royal Australian Air Force (RAAF), purchased 74 F/A-18 aircraft<br />

from <strong>the</strong> USN and <strong>the</strong> Canadian Forces (CF) purchased 124 F/A-18 aircraft from McD<strong>on</strong>nell<br />

Douglas Aerospace (MDA). <str<strong>on</strong>g>The</str<strong>on</strong>g> RAAF and CF agreed to implement a combined structural<br />

test program, <strong>the</strong> Internati<strong>on</strong>al-Follow-On-Structural Test Program (IFOSTP) to refine<br />

estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> F/A-18 service fatigue lives for <strong>the</strong> RAAF and CF. <str<strong>on</strong>g>The</str<strong>on</strong>g> F/A-18 has a<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> structural integrity features that are new to <strong>the</strong> Australian and Canadian<br />

experience. <str<strong>on</strong>g>The</str<strong>on</strong>g>se features include widespread use <str<strong>on</strong>g>of</str<strong>on</strong>g> cold working <str<strong>on</strong>g>of</str<strong>on</strong>g> fastener holes and i<strong>on</strong><br />

vapour depositi<strong>on</strong> (IVD) treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> metallic comp<strong>on</strong>ents. It also features <strong>the</strong> widespread<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> shot peening <str<strong>on</strong>g>of</str<strong>on</strong>g> large aluminium comp<strong>on</strong>ents; this process involves blasting <strong>the</strong><br />

surface with metal, glass or ceramic beads, thus deforming <strong>the</strong> surface and leaving it<br />

c<strong>on</strong>taining residual stresses. <str<strong>on</strong>g>The</str<strong>on</strong>g>se stresses are usually beneficial in that <strong>the</strong> compressive<br />

stresses near <strong>the</strong> surface retard <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> fatigue cracks which initiate at <strong>the</strong> surface. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

F/A-18 fatigue life is managed <strong>on</strong> a Safe-<strong>Life</strong> basis; its service life is based c<strong>on</strong>servatively <strong>on</strong><br />

<strong>the</strong> n<strong>on</strong>-peened surface c<strong>on</strong>diti<strong>on</strong>. However, localised areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> main structure are<br />

peened to enhance fatigue life; examples include situati<strong>on</strong>s where modificati<strong>on</strong>s are made<br />

under an ECP- (Engineering Change Program) or after repairs.<br />

Shot peening treatments are widely used in mechanical and aer<strong>on</strong>autical engineering to<br />

improve <strong>the</strong> fatigue performance <str<strong>on</strong>g>of</str<strong>on</strong>g> comp<strong>on</strong>ents. <str<strong>on</strong>g>The</str<strong>on</strong>g> process is normally associated with<br />

high-strength steels and titanium alloys, although in <strong>the</strong> F/A-18 it is now being applied<br />

widely to high-strength aluminium alloys. <str<strong>on</strong>g>The</str<strong>on</strong>g>re have however been reports <str<strong>on</strong>g>of</str<strong>on</strong>g> extensive<br />

variati<strong>on</strong>s in <strong>the</strong> fatigue life results for peened comp<strong>on</strong>ents and, in some cases (Clayt<strong>on</strong> and<br />

Clark 1988), a decrease in fatigue life has been observed. Such variability naturally raises<br />

c<strong>on</strong>cern that <strong>the</strong> peening process developed for use with steels might not always be suitable<br />

for peening high-strength aluminium alloys.<br />

Many developments in <strong>the</strong> design and manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> high-performance military aircraft ⎯<br />

for example, <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> highly optimised design and <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> higher-strength material ⎯<br />

have led to an increased sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> airframe fatigue life to surface features such as<br />

corrosi<strong>on</strong> or mechanical damage. <str<strong>on</strong>g>The</str<strong>on</strong>g> peening applied to <strong>the</strong> F/A-18 represents a major<br />

change to <strong>the</strong> aircraft’s surface c<strong>on</strong>diti<strong>on</strong>, and it is <strong>the</strong>refore important that <strong>the</strong> RAAF have a<br />

thorough understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> peening process, <strong>the</strong> surface c<strong>on</strong>diti<strong>on</strong>s produced, and <strong>the</strong>ir<br />

effect <strong>on</strong> structural integrity.<br />

To build <strong>the</strong> required level <str<strong>on</strong>g>of</str<strong>on</strong>g> understanding, AMRL has undertaken a number <str<strong>on</strong>g>of</str<strong>on</strong>g> research<br />

programs, over nearly ten years, investigating <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> glass bead peening <strong>on</strong> <strong>the</strong><br />

aluminium alloy <strong>7050</strong> used in RAAF F/A-18 aircraft. <str<strong>on</strong>g>The</str<strong>on</strong>g> overall aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> peening research<br />

and development discussed was to establish a <strong>Life</strong>-Improvement-Factor (LIF) for <strong>the</strong><br />

peening undertaken <strong>on</strong> <strong>the</strong> F/A-18 or any future peening. It also attempted to provide a<br />

means <str<strong>on</strong>g>of</str<strong>on</strong>g> measuring peening quality, and <strong>the</strong>reby to allow <strong>the</strong> full exploitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> peening to<br />

improve fatigue life.<br />

From this research came methods <str<strong>on</strong>g>of</str<strong>on</strong>g> surface peening and methods <str<strong>on</strong>g>of</str<strong>on</strong>g> surface removal, which<br />

allowed <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> a localised life extensi<strong>on</strong> procedure for <strong>the</strong> airframe. This life<br />

1


DSTO-RR-0208<br />

extensi<strong>on</strong> method has now being applied in full-scale fatigue tests (to keep comp<strong>on</strong>ent tests<br />

going after initial failures) and may be applied to both RAAF and CF fleet aircraft.<br />

This report discusses <strong>the</strong> fatigue crack growth research at AMRL, and elsewhere, relating to<br />

peening <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium alloys, and summarises <strong>the</strong> improvements in peening which have<br />

arisen from this research. It also highlights areas where fur<strong>the</strong>r research could be beneficial<br />

in relati<strong>on</strong> to peening and <strong>the</strong> structural integrity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> F/A-18 aircraft. It highlights <strong>the</strong><br />

practical problems <str<strong>on</strong>g>of</str<strong>on</strong>g> introducing changes to fatigue critical surfaces, with particular<br />

reference to <strong>the</strong> RAAF and CF fleets.<br />

2.1 General<br />

2. Review<br />

This secti<strong>on</strong> provides a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> research into <strong>the</strong> peening <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium alloys and its<br />

effect <strong>on</strong> fatigue life. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is an extensive array <str<strong>on</strong>g>of</str<strong>on</strong>g> literature dating back to early this<br />

century examining <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> peening <strong>on</strong> high-strength steels and titanium alloys and this<br />

will not be discussed here.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> two manufacturing parameters which are normally defined in peening any comp<strong>on</strong>ent<br />

are, coverage (proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface area peened) and saturati<strong>on</strong> (amount <str<strong>on</strong>g>of</str<strong>on</strong>g> peening energy<br />

applied to each area). <str<strong>on</strong>g>The</str<strong>on</strong>g>se factors act toge<strong>the</strong>r with <strong>the</strong> applied stress to determine <strong>the</strong><br />

effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> peening as a method <str<strong>on</strong>g>of</str<strong>on</strong>g> improving fatigue life. <str<strong>on</strong>g>The</str<strong>on</strong>g> process is calibrated in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> “Almen Intensity” and Appendix 1 provides a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Almen Intensity,<br />

Coverage and Saturati<strong>on</strong>).<br />

<str<strong>on</strong>g>Peening</str<strong>on</strong>g> attempts to spread material near <strong>the</strong> impact point against <strong>the</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

neighboring material, thus introducing a complex sub-surface residual stress distributi<strong>on</strong> in<br />

which generally, <strong>the</strong> surface is in elastic compressi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a rapid transiti<strong>on</strong> to elastic<br />

tensi<strong>on</strong> at a deeper level, produced by <strong>the</strong> “enlarged” surface layer. This tensi<strong>on</strong> decays in<br />

deeper regi<strong>on</strong>s towards zero, Figure 1. <str<strong>on</strong>g>The</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se stresses acting across <strong>the</strong> plane <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

any growing crack arises principally from <strong>the</strong> compressive stress, which acts to close <strong>the</strong><br />

crack, retarding its growth. <str<strong>on</strong>g>The</str<strong>on</strong>g> retardati<strong>on</strong> caused by <strong>the</strong>se compressive stresses still<br />

operates when <strong>the</strong> crack tip has grown into <strong>the</strong> tensile stress field in <strong>the</strong> core, and is <strong>on</strong>ly<br />

gradually reduced by <strong>the</strong> tensile stress comp<strong>on</strong>ent, as <strong>the</strong> crack grows deeper into <strong>the</strong> core.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> stresses is always to retard <strong>the</strong> crack growth.<br />

2


DSTO-RR-0208<br />

Peened surface<br />

+ve<br />

-ve<br />

Residual stress field<br />

after peening<br />

Figure 1: Schematic <str<strong>on</strong>g>of</str<strong>on</strong>g> residual stress distributi<strong>on</strong> below a peened surface. With traditi<strong>on</strong>al bead<br />

peening techniques this compressive layer generally extends 200-400µm below <strong>the</strong> surface.<br />

When peening steel comp<strong>on</strong>ents, <strong>the</strong> fatigue life is influenced principally by <strong>the</strong> distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> residual stress (depth and peak <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> residual compressive stress). Similarly, in<br />

aluminium alloys <strong>the</strong> depth and peak <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> residual compressive stress are also major<br />

factors in determining fatigue life; but because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> greater damage to <strong>the</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>ter material,<br />

<strong>the</strong> surface finish (roughness and defects) is also recognised as a critical influence <strong>on</strong> fatigue<br />

life. In additi<strong>on</strong> to <strong>the</strong> research discussed later in this report, <strong>the</strong>re are a number <str<strong>on</strong>g>of</str<strong>on</strong>g> papers<br />

examining this effect, perhaps best summarised in ESDU, 1992. Figure 2 clearly shows <strong>the</strong><br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Almen intensity <strong>on</strong> endurance limit for aluminium alloys. In this example, curve 4,<br />

which has <strong>the</strong> highest peening intensity, while showing improved endurance at high<br />

alternating stresses has a lower endurance at lower stresses compared to <strong>the</strong> lower intensity<br />

peening.<br />

A significant effect <str<strong>on</strong>g>of</str<strong>on</strong>g> peening intensity <strong>on</strong> fatigue life has also been noted; <strong>the</strong>re appears to<br />

be an optimum peening intensity to achieve <strong>the</strong> l<strong>on</strong>gest improvement in fatigue life, Figure<br />

3. This intensity varies with <strong>the</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium and heat treatment (Luo et al., 1986 and<br />

Luo et al., 1987).<br />

3


DSTO-RR-0208<br />

Figure 2: A graph illustrating <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> surface finish <strong>on</strong> <strong>the</strong> endurance <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium material<br />

(ESDU, 1992). Cross - unpeened (curve 1), Open circle - peened [12-16A] (curve 2),<br />

Solid triangle - peened [16-20A] (curve 3), Open triangle - peened [8-10C] (curve 4).<br />

Note a “C” Almen strip is almost twice as thick as an “A” Almen strip, see Appendix 1.<br />

4


DSTO-RR-0208<br />

Figure 3: <str<strong>on</strong>g>The</str<strong>on</strong>g> effect <strong>on</strong> fatigue endurance <str<strong>on</strong>g>of</str<strong>on</strong>g> Almen peening intensity for 7075-T73 and 7075-T6<br />

(ESDU, 1992).<br />

Mutoh et. al (1987) performed research which showed that crack initiati<strong>on</strong> lives <str<strong>on</strong>g>of</str<strong>on</strong>g> peened<br />

aluminium alloys (7010 and <strong>7050</strong>) were shorter than those <str<strong>on</strong>g>of</str<strong>on</strong>g> unpeened specimens, though<br />

5


DSTO-RR-0208<br />

<strong>the</strong> total life is l<strong>on</strong>ger. <str<strong>on</strong>g>The</str<strong>on</strong>g> difference in fatigue lives between <strong>the</strong> peened and unpeened<br />

specimens was observed to increase as <strong>the</strong> stress amplitude decreased.<br />

Meguid (1991) also performed research examining <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> partial peening coverage. He<br />

c<strong>on</strong>cluded that, in s<str<strong>on</strong>g>of</str<strong>on</strong>g>t material like aluminium alloys, <strong>the</strong> plastic z<strong>on</strong>e associated with <strong>the</strong><br />

peening dent is several times greater than <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> dent. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, even a partially<br />

peened surface can show an improved fatigue life over a n<strong>on</strong>-peened surface. In c<strong>on</strong>trast,<br />

however, this is not <strong>the</strong> case with partially peened high strength steel specimens where <strong>the</strong><br />

plastic z<strong>on</strong>e is <str<strong>on</strong>g>of</str<strong>on</strong>g> a similar size to <strong>the</strong> peening indentati<strong>on</strong>.<br />

In <strong>the</strong> early 1980’s, during an overhaul <str<strong>on</strong>g>of</str<strong>on</strong>g> an USAF C-141 aircraft, an investigati<strong>on</strong> was made<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> peened surfaces. It was observed that at <strong>the</strong> intensity levels within those prescribed by<br />

MIL-STD-852 <strong>the</strong> 7075-T6 peened surfaces exhibited peened surface extrusi<strong>on</strong> folds (PSEF)<br />

and numerous laps. Simps<strong>on</strong> (1985) noted that <strong>the</strong> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se laps was a high percentage<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> total plastic deformati<strong>on</strong> depth and drew <strong>the</strong> following c<strong>on</strong>clusi<strong>on</strong>s from a parallel<br />

coup<strong>on</strong> test program.<br />

1) multiples <str<strong>on</strong>g>of</str<strong>on</strong>g> 100% saturati<strong>on</strong> comm<strong>on</strong>ly specified in Aerospace peening specificati<strong>on</strong>s<br />

may be deleterious to fatigue life in some materials, and<br />

2) fatigue life and peening intensity had a positive correlati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> results outlined above are representative <str<strong>on</strong>g>of</str<strong>on</strong>g> research worldwide which indicates <strong>the</strong><br />

importance <str<strong>on</strong>g>of</str<strong>on</strong>g> process quality c<strong>on</strong>trol in peening aluminium alloys in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> achieving <strong>the</strong><br />

optimum improvement in fatigue life. This is not a simple problem and a number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parameters have to be carefully c<strong>on</strong>trolled to maximise fatigue life. <str<strong>on</strong>g>The</str<strong>on</strong>g>se include media<br />

quality, Almen intensity, and coverage. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cerns about <strong>the</strong> sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fatigue life <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium alloys to surface c<strong>on</strong>diti<strong>on</strong>, AMRL initiated research into peening,<br />

to enable <strong>the</strong> RAAF and its c<strong>on</strong>tractors to optimise peening c<strong>on</strong>diti<strong>on</strong>s to achieve <strong>the</strong> best<br />

possible fatigue life improvement.<br />

2.2 F/A-18 <str<strong>on</strong>g>Peening</str<strong>on</strong>g> Processes<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> research into peening <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium alloys c<strong>on</strong>ducted by AMRL relates to<br />

<strong>the</strong> lifing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> FS488 and FS470.5 wing carry-through bulkheads. <str<strong>on</strong>g>The</str<strong>on</strong>g> research, however, is<br />

sufficiently generic as to be useable elsewhere for localised peened aluminium areas <strong>on</strong> <strong>the</strong><br />

aircraft. <str<strong>on</strong>g>The</str<strong>on</strong>g> areas peened <strong>on</strong> <strong>the</strong> FS488 bulkhead are highlighted in Figure 4. Various<br />

publicati<strong>on</strong>s, Graham (1986), Ward (Jan 1991, July 1991), describe <strong>the</strong> process used in<br />

peening <strong>the</strong> original FS488 bulkhead. A c<strong>on</strong>tractor to Northrop performed all peening <strong>on</strong> an<br />

as-required basis.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> procedure is outlined as follows and is based <strong>on</strong> Process Specificati<strong>on</strong> 14023 (PS14023).<br />

1. <str<strong>on</strong>g>The</str<strong>on</strong>g> vendor shot peened <strong>the</strong> outer surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> flange from <strong>the</strong> Z101.50 line to <strong>the</strong> lower<br />

edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> l<strong>on</strong>ger<strong>on</strong> recess radius using steel shot (PS-14023) or flapper wheel (PS-<br />

14023.1), Figure 5. This <strong>on</strong>ly occurred <strong>on</strong> <strong>the</strong> pre-6 inch radius bulkheads. PS-14023 says,<br />

“shot peen at 6-10A intensity using 230 or 280 size steel shot”. <str<strong>on</strong>g>The</str<strong>on</strong>g> same intensity is<br />

required if using <strong>the</strong> flapper wheel process.<br />

6


DSTO-RR-0208<br />

2. <str<strong>on</strong>g>The</str<strong>on</strong>g> bulkheads were <strong>the</strong>n IVD coated and painted.<br />

3. <str<strong>on</strong>g>The</str<strong>on</strong>g> outer flange area, flange fillet radius and inner surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> flange were <strong>the</strong>n glass<br />

bead peened down to <strong>the</strong> Z101.50 line. PS-14023 states “shot peen at 6-10A using size 4<br />

glass beads” . Note: prior to peening <strong>the</strong> IVD and paint was to be removed. However,<br />

<strong>the</strong>re is some c<strong>on</strong>fusi<strong>on</strong> over whe<strong>the</strong>r this is <strong>the</strong> case. In some cases <strong>the</strong> paint is<br />

chemically stripped leaving <strong>the</strong> IVD before final peening and in o<strong>the</strong>r cases, <strong>the</strong> paint and<br />

IVD are removed by low intensity (4A) glass bead peening before <strong>the</strong> final peening.<br />

4. <str<strong>on</strong>g>The</str<strong>on</strong>g> area covered by <strong>the</strong> glass bead peening is slightly different from <strong>the</strong> original peened<br />

area, Figure 6.<br />

5. <str<strong>on</strong>g>The</str<strong>on</strong>g> process specificati<strong>on</strong> is PS 14023.<br />

7


DSTO-RR-0208<br />

Figure 4: This figure shows a schematic <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> FS488 bulkhead wing attachment area. <str<strong>on</strong>g>The</str<strong>on</strong>g> original<br />

flapper wheel or steel bead peened area is shown by <strong>the</strong> hash marks. From drawing<br />

74A324205 Sh 3 Revisi<strong>on</strong> L.<br />

8


DSTO-RR-0208<br />

Figure 5: <str<strong>on</strong>g>The</str<strong>on</strong>g> flapper wheel peening specificati<strong>on</strong>s from MDA PS14023.1. This process was used <strong>on</strong><br />

all <strong>the</strong> early F/A-18 aircraft.<br />

9


DSTO-RR-0208<br />

Figure 6: <str<strong>on</strong>g>The</str<strong>on</strong>g> glass bead peened area from drawing 74A32405 Sh 3 Revisi<strong>on</strong> U is shown by <strong>the</strong><br />

hatching marks. <str<strong>on</strong>g>The</str<strong>on</strong>g> original peening area is <strong>the</strong> cross-hatched markings. This figure<br />

when compared with figure 4 (revisi<strong>on</strong> L) shows <strong>the</strong> increased peened area <strong>on</strong> <strong>the</strong> FS488<br />

bulkhead as F/A-18 producti<strong>on</strong> increased.<br />

10


DSTO-RR-0208<br />

RAAF F/A-18 aircraft A21-1 through to A21-18 and A21-101 through to A21-114 were<br />

manufactured with a 143-pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile flange bulkhead. This 143-pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile flange was reworked to 6<br />

inch pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile flange during Engineering Change Program 45 (ECP45), al<strong>on</strong>g with <strong>the</strong> l<strong>on</strong>ger<strong>on</strong><br />

recess area, Figure 7. <str<strong>on</strong>g>The</str<strong>on</strong>g> RAAF c<strong>on</strong>tractor, with RAAF agreement, and acting <strong>on</strong> advice<br />

from AMRL derived from early research (Clayt<strong>on</strong> and Clark 1988), used a procedure which<br />

differed from <strong>the</strong> Original Equipment Manufacturer (OEM) specificati<strong>on</strong> (Anders<strong>on</strong>, 1990;<br />

Barter, 1990 and Stanier, 1990). <str<strong>on</strong>g>The</str<strong>on</strong>g> OEM process calls for <strong>the</strong> rework peening to be<br />

performed over <strong>the</strong> original vendor peening.<br />

6"radius pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

F143 pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

Shaded areas indicate <strong>the</strong> F143<br />

flange pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile segments removed<br />

during <strong>the</strong> 6" radius pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

modificati<strong>on</strong>.<br />

Figure 7: A schematic showing <strong>the</strong> locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fcuts from ECP45 delivered to AMRL from 32<br />

aircraft.<br />

In 32 RAAF F/A-18 aircraft which went through ECP 45, <strong>the</strong> whole area originally peened<br />

by <strong>the</strong> vendor was polished before re-peening. <str<strong>on</strong>g>The</str<strong>on</strong>g> critical area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bulkhead was to be<br />

polished to a surface roughness <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2 micrometres (8 microinches) as defined by ASME B46-<br />

1985. This involved an initial dry polish with 250# <strong>Aluminium</strong> oxide abrasive paper, <strong>the</strong>n a<br />

final polish with P400 (360#) <strong>Aluminium</strong> oxide abrasive paper, Figure 8. A total loss glass<br />

bead system was also used instead <str<strong>on</strong>g>of</str<strong>on</strong>g> a recycled and filtered glass bead system, Figure8.<br />

Summarising:<br />

1. AMRL rework process: OEM peen → polish → total loss glass bead re-peen.<br />

2. OEM rework process: OEM peen → OEM peen (peen directly over original peen)<br />

11


DSTO-RR-0208<br />

Figure 8:<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> polished FS488 bulkhead before peening (left) showing <strong>the</strong> polished surface and <strong>the</strong><br />

finished product (right) after peening during ECP45.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> reas<strong>on</strong> for this change <str<strong>on</strong>g>of</str<strong>on</strong>g> process was AMRL c<strong>on</strong>cern that peening over a damaged<br />

surface would probably do nothing to improve fatigue life and might in fact degrade <strong>the</strong><br />

comp<strong>on</strong>ent fatigue life. <str<strong>on</strong>g>The</str<strong>on</strong>g> recommendati<strong>on</strong> from AMRL was;<br />

“Given that when shot peening is ineffective it is because <str<strong>on</strong>g>of</str<strong>on</strong>g> a poor surface finish from<br />

<strong>the</strong> peening, and that <strong>the</strong> original machined pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (143 pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile) will c<strong>on</strong>tribute to this<br />

effect, it is recommended that <strong>the</strong> critical flange regi<strong>on</strong>s be polished <strong>the</strong>n shot peened.<br />

This recommendati<strong>on</strong> does not guarantee any life improvement, but is made <strong>on</strong> <strong>the</strong> basis<br />

that it is more likely to give an improvement than <strong>the</strong> alternative.”<br />

Sharp et al. (1996), later examined in detail <strong>the</strong> OEM peened surface finish quality from FS488<br />

bulkheads <str<strong>on</strong>g>of</str<strong>on</strong>g>f-cuts provided during ECP45 (machining 143 pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile to 6 inch pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

results indicated that <strong>the</strong> surface finish was very poor, with lots <str<strong>on</strong>g>of</str<strong>on</strong>g> embedded glass<br />

fragments, and some areas showing no indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> peening.<br />

<str<strong>on</strong>g>Peening</str<strong>on</strong>g> is now a standard localised rework treatment <strong>on</strong> <strong>the</strong> F/A-18 and is used <strong>on</strong><br />

numerous structural comp<strong>on</strong>ents. Since <strong>the</strong> FS488 bulkhead rework process was developed,<br />

<strong>the</strong> biggest change has been <strong>the</strong> progressi<strong>on</strong> to ceramic bead peening. Ceramic beads are<br />

denser than glass and do not fracture as readily, though it is noteworthy that <strong>the</strong> peening<br />

c<strong>on</strong>diti<strong>on</strong>s ie. Almen intensity have not changed. Northrop has c<strong>on</strong>ducted research into this<br />

area (Lambase (1990), Gallardo (1991) and Brenashan et al. (1990 and 1991)). <str<strong>on</strong>g>The</str<strong>on</strong>g> results<br />

indicate an improvement in fatigue life using ceramic beads compared with glass bead<br />

12


DSTO-RR-0208<br />

peening, due to <strong>the</strong> reducti<strong>on</strong> in surface defects which are caused by glass bead fragments<br />

embedding into <strong>the</strong> surface. Northrop also determined from experiments that a peening<br />

intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> 8A provided optimum life improvement for <strong>7050</strong> material. Ceramic bead<br />

peening is now used <strong>on</strong> all RAAF aircraft where localised peening is performed. To ensure<br />

complete coverage, a layout ink is used <strong>on</strong> <strong>the</strong> area to be peened; this ink allows improved<br />

assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> area coverage. <str<strong>on</strong>g>The</str<strong>on</strong>g> area is peened twice to ensure saturati<strong>on</strong> and coverage.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se extra variables (a change in peening media and changed intensity)<br />

<strong>on</strong> <strong>the</strong> fleet aircraft also complicates <strong>the</strong> matter <str<strong>on</strong>g>of</str<strong>on</strong>g> determining a life improvement factor (ie<br />

fatigue life as a multiple <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> un-peened fatigue life).<br />

Using a specimen that replicated <strong>the</strong> FS488 bulkhead lug area and a test surface fatigue stress<br />

defined by k t s=69ksi 1 in <strong>the</strong> critical area <strong>the</strong> results listed in Table 1were obtained by MDA.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> specimens were peened using a shot b<strong>on</strong>ded flapper wheel to an Almen intensity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

between 0.006-0.010A.<br />

Table 1:<br />

Results supplied by McD<strong>on</strong>nell Douglas Aircraft Company for a peened specimen<br />

simulating <strong>the</strong> FS488 wing attachment lug regi<strong>on</strong>.<br />

Peened <strong>Life</strong> (hours) Average <strong>Life</strong> (hours)<br />

No 16960<br />

15030 15995<br />

Yes, initially 21460 21460<br />

Yes, initially and every 6300 hrs 36630 36630<br />

From <strong>the</strong>se results MCAIR arrived at a single shot peening average life improvement factor<br />

(LIF) <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.34 and a multiple shot peening average LIF <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.29, although very few coup<strong>on</strong>s<br />

were tested. This was <strong>the</strong>n used to support fatigue life estimati<strong>on</strong> for <strong>the</strong> F/A-18 aircraft.<br />

In ano<strong>the</strong>r series <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments, examining a number <str<strong>on</strong>g>of</str<strong>on</strong>g> variables (pre-cycle [ie. fatigue<br />

cracking before treatment] and bead type) Smith (1990) made <strong>the</strong> following observati<strong>on</strong>s in<br />

relati<strong>on</strong> to pre-cycling and glass and ceramic bead peening;<br />

• For specimens pre-cycled to 2800 Simulated Flying Hours (SFH), shot peening <strong>on</strong>ly is<br />

required to yield more than 12000SFH <str<strong>on</strong>g>of</str<strong>on</strong>g> crack initiati<strong>on</strong> life (life for a crack to reach<br />

0.01inch),<br />

• For specimens pre-cycled to 4200SFH both shot peening and a “b<strong>on</strong>ded doubler” are<br />

required to yield more than 12000SFH <str<strong>on</strong>g>of</str<strong>on</strong>g> crack initiati<strong>on</strong> life,<br />

• Regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> stress level <strong>the</strong> shot peening LIF is 3.0 (average) for <strong>the</strong>se experiments.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> load spectrum used was <strong>the</strong> USN ST-16. What was particularly interesting about this<br />

result is <strong>the</strong> large improvement in average LIF from 1.34 for flapper wheel to a value <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.0<br />

for glass and ceramic bead peening. It was also interesting that while numerous glass beads<br />

fragments were found embedded in <strong>the</strong> surface, in <strong>on</strong>ly two cases (out <str<strong>on</strong>g>of</str<strong>on</strong>g> 6) did <strong>the</strong> fatigue<br />

1 At all times during <strong>the</strong> report <strong>the</strong> specimen k t s stress will be quoted. Appendix 1 has <strong>the</strong><br />

c<strong>on</strong>versi<strong>on</strong> factors for determining applied stress.<br />

13


DSTO-RR-0208<br />

crack initiate from an embedded fractured glass bead. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> original F/A-18 aircraft<br />

had flapper wheel peening, this was changed in <strong>the</strong> process specificati<strong>on</strong> to glass/ceramic<br />

bead peening in <strong>the</strong> early eighties.<br />

MDA claim an average LIF <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.39 for shot peening for <strong>the</strong> F/A-18 aircraft. However,<br />

NAVAIR, who bought <strong>the</strong> aircraft now operated by RAAF, do not allow any fatigue “credit”<br />

for shot peening because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> high load and assumed process variability. It is this process<br />

variability that needs to be examined in detail to fully justify <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> a specific life<br />

improvement factor. This report will discuss <strong>the</strong> results achieved in AMRL research in <strong>the</strong><br />

examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> peening variability and will outline areas that still need to be researched.<br />

3. AMRL Results<br />

3.1 Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Peening</str<strong>on</strong>g> Research Programs<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> program (Clayt<strong>on</strong> and Clark (1988)), discussed in more detail later,<br />

focussed <strong>on</strong> evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> peened and unpeened specimens which were subsequently fatigue<br />

tested under c<strong>on</strong>stant-load amplitude c<strong>on</strong>diti<strong>on</strong>s; fur<strong>the</strong>r tests (Clark and Clayt<strong>on</strong> (1991))<br />

extended <strong>the</strong> results to spectrum loading. This research identified <strong>the</strong> significant role played<br />

by <strong>the</strong> surface damage caused during peening <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium alloys, and <strong>the</strong> fact that such<br />

damage can markedly reduce (or even reverse) <strong>the</strong> benefits provided by <strong>the</strong> sub-surface<br />

residual stress distributi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>se early tests did not involve large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> replicate<br />

testing, and so were not useful for statistical determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> LIF factors. <str<strong>on</strong>g>The</str<strong>on</strong>g>y did,<br />

however, identify <strong>the</strong> critical metallurgical surface features, and led directly to <strong>the</strong> decisi<strong>on</strong><br />

to polish <str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong> original (OEM) peening when a rework was performed <strong>on</strong> some RAAF<br />

aircraft, <strong>the</strong> intenti<strong>on</strong> being to re-apply peening without <strong>the</strong> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> simply hammering<br />

existing defects fur<strong>the</strong>r into <strong>the</strong> surface.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> program involved an examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> RAAF<br />

fleet aircraft. <str<strong>on</strong>g>The</str<strong>on</strong>g> rework <str<strong>on</strong>g>of</str<strong>on</strong>g> several aircraft led to small slivers <str<strong>on</strong>g>of</str<strong>on</strong>g> material being available<br />

from those bulkheads.<br />

A third phase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> program involved attempts to find a quantitative relati<strong>on</strong>ship between<br />

surface roughness c<strong>on</strong>diti<strong>on</strong> and post-peening life, and investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> possible correlati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sub-surface residual stress measurements with fatigue crack growth.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> most recent research has focussed <strong>on</strong> developing <strong>the</strong> early approach <str<strong>on</strong>g>of</str<strong>on</strong>g> surface removal<br />

and re-peening into a defined mid-life rework peening method, defining <strong>the</strong> LIF achievable<br />

for RAAF F/A-18 aircraft, and <strong>on</strong> examining several critical geometrical arrangements which<br />

could c<strong>on</strong>ceivably lead to anomalous results.<br />

3.2 Early research - definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> potential problem<br />

It is well known that steel shot bead peening is beneficial to <strong>the</strong> fatigue life <str<strong>on</strong>g>of</str<strong>on</strong>g> ferrous<br />

materials, particularly <strong>the</strong> high strength steels. <str<strong>on</strong>g>The</str<strong>on</strong>g> benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> steel shot bead peening <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

14


DSTO-RR-0208<br />

aluminium alloys has been assumed, but is far less well defined. Clayt<strong>on</strong> and Clark (1988)<br />

obtained results which indicate that steel shot bead peening <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium alloys degraded<br />

<strong>the</strong> fatigue initiati<strong>on</strong> and early growth performance, compared with a polished surface,<br />

Figure 9. <str<strong>on</strong>g>The</str<strong>on</strong>g>y also observed <strong>the</strong> benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> peening aluminium alloys with glass beads,<br />

Figure 9, and what appeared to be a broad correlati<strong>on</strong> between surface roughness and<br />

fatigue life, although at that time <strong>the</strong> surface roughness could not be accurately quantified,<br />

Figure 10.<br />

Unpeened tests Glass bead peen Steel Bead peen #110<br />

Steel Bead peen #280 Poly. (Unpeened tests ) Poly. (Glass bead peen )<br />

Poly. (Steel Bead peen #110 )<br />

500<br />

450<br />

400<br />

Cyclic Stress (MPa)<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

3 3.5 4 4.5 5 5.5 6 6.5<br />

Log Cycles (C<strong>on</strong>stant amplitude)<br />

Figure 9: C<strong>on</strong>stant amplitude fatigue life results comparing, a) steel shot peened specimens with a<br />

polished surface, b) glass bead peening under c<strong>on</strong>stant amplitude loading and c) a<br />

summati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all <strong>the</strong> results showing reduced lives for steel bead peening tested compared<br />

to glass bead peening (Clayt<strong>on</strong> and Clark (1988).<br />

15


DSTO-RR-0208<br />

Figure 10: SEM photographs <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> peened surface after, Top- steel shot bead peening and Bottomglass<br />

shot bead peening, Clayt<strong>on</strong> and Clark (1988).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> this work highlighted <strong>the</strong> potential for surface damage from peening to<br />

accelerate <strong>the</strong> early development <str<strong>on</strong>g>of</str<strong>on</strong>g> fatigue cracks; fatigue life was <strong>the</strong>refore <strong>the</strong> result <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

competiti<strong>on</strong> between this additi<strong>on</strong>al damage and <strong>the</strong> beneficial effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sub-surface<br />

residual stresses.<br />

From <strong>the</strong> early research programs, AMRL was able to determine which peening process<br />

variable caused different types <str<strong>on</strong>g>of</str<strong>on</strong>g> surface damage to <strong>the</strong> specimen. A poor glass bead<br />

filtering process caused <strong>the</strong> surface to become “chopped-up” and “pock-marked” due to<br />

impact from broken beads, Figure 11. Microstructural grains start to lift away from <strong>the</strong><br />

specimen surface when an over-pressure peen or excessive-time peen is part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> process.<br />

If <strong>the</strong> peening nozzle is not held near-vertical to <strong>the</strong> surface, smearing is caused <strong>on</strong> <strong>the</strong><br />

specimen surface. Specimens peened with steel shot obtain a “reddish” tinge from <strong>the</strong> ir<strong>on</strong><br />

oxide debris that is left <strong>on</strong> <strong>the</strong> surface. Generally with glass beads <strong>the</strong>re is significant debris<br />

trapped in <strong>the</strong> surface, while <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> ceramic beads leads to <strong>on</strong>ly small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

trapped debris.<br />

16


DSTO-RR-0208<br />

Figure 11: <str<strong>on</strong>g>The</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> different peening variables <strong>on</strong> surface finish, Top- over-pressure or excessive<br />

time, Bottom left- nozzle angle and Bottom right- even indentati<strong>on</strong>s but numerous surface<br />

cuts from debris.<br />

Aircraft are subject to spectrum loading and <strong>the</strong>re is <strong>the</strong> potential (a) for a high spectrum<br />

loads to change <strong>the</strong> beneficial residual stresses in <strong>the</strong> comp<strong>on</strong>ent and (b) for different fatigue<br />

lives as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> a changed balance between crack initiati<strong>on</strong> and crack growth. Clark and<br />

Clayt<strong>on</strong> (1991) examined <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stant amplitude and spectrum loading <strong>on</strong> <strong>the</strong><br />

fatigue life <str<strong>on</strong>g>of</str<strong>on</strong>g> peened comp<strong>on</strong>ents, using small numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> specimens, at different overall<br />

stress levels. A more detailed test program examining <strong>the</strong> effect <strong>on</strong> fatigue life <str<strong>on</strong>g>of</str<strong>on</strong>g> peening<br />

treatment under spectrum loading was carried out at AMRL (Sharp, Clayt<strong>on</strong> and Clark,<br />

1993). <str<strong>on</strong>g>The</str<strong>on</strong>g> test results, Figure 12, clearly show that at <strong>the</strong> high stress (low cycle) end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

fatigue curve, shot peening can be detrimental to fatigue life. At <strong>the</strong> low stress (high cycle)<br />

end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fatigue curve, shot peening is beneficial to fatigue life but <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> benefit is<br />

c<strong>on</strong>trolled by <strong>the</strong> peening process quality.<br />

17


DSTO-RR-0208<br />

550<br />

USN Spectrum (ST-16)<br />

Peak Spectrum Stress (MPa)<br />

500<br />

450<br />

400<br />

350<br />

Intersecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tractor peen<br />

specimens and polished specimens<br />

800# Hand Polish<br />

C<strong>on</strong>tractor Peen<br />

AMRL Laboratory Peen<br />

AMRL OEM Simulati<strong>on</strong> Peen<br />

Intersecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> AMRL laboratory peen<br />

specimens and polished specimens<br />

300<br />

1 10 100 1000<br />

<strong>Fatigue</strong> <strong>Life</strong> (Blocks)<br />

Figure 12: Test results comparing a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> peening processes under spectrum loading (Sharp,<br />

Clayt<strong>on</strong> and Clark, 1993). <str<strong>on</strong>g>The</str<strong>on</strong>g> figure illustrates <strong>the</strong> potential for peening to reduce <strong>the</strong><br />

fatigue life at all stresses. <str<strong>on</strong>g>The</str<strong>on</strong>g> spectrum used was ST-16, a US Navy spectrum developed<br />

for <strong>the</strong> F/A-18.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> F/A-18 aircraft was not designed to fly with this spectrum at <strong>the</strong> high stresses<br />

(>450MPa) and is lifed <strong>on</strong> <strong>the</strong> 350MPa to 420MPa range. A possible fatigue life problem<br />

arises due to <strong>the</strong> “cross-overs” observed in Figure 11; what is <strong>the</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> any benefit? <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

AMRL peen (laboratory peening) is very good and provides significant improvement in<br />

fatigue life compared to a good polish (800#) over <strong>the</strong> 350-450MPa stress range. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

commercial peen (peening by a commercial operator) is no better than a good polish above<br />

410MPa and but shows an improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> original peening simulati<strong>on</strong> below 460MPa.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> AMRL abusive peen (an attempt to simulate original OEM peening) would never be<br />

better than a good polish over <strong>the</strong> complete range <str<strong>on</strong>g>of</str<strong>on</strong>g> testing stresses. Clearly, <strong>the</strong> benefits<br />

from peening are linked to <strong>the</strong> applied stress; at high stresses <strong>the</strong>re is <strong>on</strong>ly a slight<br />

improvement (if any) whereas at low stresses <strong>the</strong>re can be a significant improvement in<br />

fatigue life. This accords with normal fatigue observati<strong>on</strong>s in that, at low stresses, fatigue life<br />

is particularly sensitive to surface c<strong>on</strong>diti<strong>on</strong> (i.e. <strong>the</strong> “lead” crack nature defines <strong>the</strong> life), and<br />

in peening, <strong>the</strong> crack retardati<strong>on</strong> process caused by <strong>the</strong> surface residual stresses can play a<br />

major role. At higher stresses, however, many cracks initiate rapidly, and life is c<strong>on</strong>trolled<br />

by crack growth.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> specimens were examined metallographically to determine <strong>the</strong> fatigue initiati<strong>on</strong> point,<br />

Figure 13, and <strong>the</strong> surface roughness (see later).<br />

18


DSTO-RR-0208<br />

Figure 13: Typical fatigue crack initiating defects from different peening processes. <str<strong>on</strong>g>The</str<strong>on</strong>g> majority <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fatigue cracks initiate at embedded fractured glass beads, surface laps and folds and<br />

fractured sub-surface intermetallics.<br />

Experiments c<strong>on</strong>ducted by a number <str<strong>on</strong>g>of</str<strong>on</strong>g> researchers (Butz and Lyst 1961, Fuchs 1956 and<br />

Almen 1947) have suggested <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> “dimple diameters” to estimate depth <str<strong>on</strong>g>of</str<strong>on</strong>g> peening<br />

effect. <str<strong>on</strong>g>The</str<strong>on</strong>g> results show essentially a 1-to-1 relati<strong>on</strong>ship between dimple diameter and depth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> compressed layer, with <strong>the</strong> residual stresses dropping away rapidly after this point. In<br />

more recent research (Al-Hassani 1984) it has been shown that in high strength steels this 1-<br />

to-1 ratio applies but in aluminium alloys ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> 1-to-2 have been obtained.<br />

A research program was also c<strong>on</strong>ducted at AMRL to obtain a better understanding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

peening parameters and <strong>the</strong>ir effect <strong>on</strong> fatigue life. In particular gas pressure, irradiati<strong>on</strong><br />

time, bead flux and bead type were examined. <str<strong>on</strong>g>The</str<strong>on</strong>g> tests were c<strong>on</strong>ducted <strong>on</strong> small 4-point<br />

bend specimens (100mm l<strong>on</strong>g, 5mm wide and 3mm thick). Each specimen was polished to<br />

#800 grade finish before treating. All testing was d<strong>on</strong>e at 10Hz and R=0.05 and a test stress<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 186MPa. Seven treatments, Table 2, were compared to a polished finish.<br />

19


DSTO-RR-0208<br />

Table 2: Four point bend tests to determine effect <str<strong>on</strong>g>of</str<strong>on</strong>g> a range a peening parameters quickly.<br />

Treatment No. Gas Pressure Irradiati<strong>on</strong> Bead Flux Bead Type<br />

(Psi) Time (sec<strong>on</strong>ds) (m 2 /sec<strong>on</strong>d)<br />

1 74 40 1.2x10 7 Used glass<br />

2 74 40 1.2x10 7 Fresh glass<br />

3 74 19 1.2x10 7 Fresh glass<br />

4 74 58 1.2x10 7 Fresh glass<br />

5 95 40 1.2x10 7 Fresh glass<br />

6 50 40 1.2x10 7 Fresh glass<br />

7 30 40 1.2x10 7 Fresh glass<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se experiments are shown in figure 14.<br />

Unpeened Treatment 1 Treatment2 Treatment3 Treatment4 Treatment5 Treatment6 Treatment7<br />

7<br />

6<br />

5<br />

4<br />

Treatment<br />

3<br />

2<br />

1<br />

Unpeened<br />

0 20000 40000 60000 80000 100000 120000 140000 160000<br />

<strong>Fatigue</strong> life (Cycles)<br />

Figure 14: Comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> hand-polish with various peening treatments looking at <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

peening process variables.<br />

Treatment 2 is <strong>the</strong> standard treatment proposed for <strong>the</strong> RAAF aircraft, <strong>the</strong>re is clearly a<br />

significant life improvement over polished specimens and over used glass beads (treatment<br />

1). <str<strong>on</strong>g>The</str<strong>on</strong>g> fatigue life improvement is <strong>the</strong> same for treatment 2 and 3, despite treatment 3<br />

having 100% coverage compared to 200% coverage. An increase in coverage (300%)<br />

treatment 4 shows a reducti<strong>on</strong> in life compared to treatment 2 and 3. This is <strong>the</strong> “over-peen”<br />

case. Gas pressure seems to have little effect <strong>on</strong> mean fatigue life except in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

increasing <strong>the</strong> fatigue life scatter for <strong>the</strong> lower pressures.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se simple tests showed that <strong>the</strong> peening parameters DSTO needed to examine in detail to<br />

provide a LIF for <strong>the</strong> RAAF fleet were Almen Intensity and coverage.<br />

20


DSTO-RR-0208<br />

3.2.1 Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> RAAF aircraft<br />

Twenty-four <str<strong>on</strong>g>of</str<strong>on</strong>g>f-cuts were examined in a SEM for surface roughness (Sharp et al. (1996 &<br />

1997)) and a selecti<strong>on</strong> is shown in Figure 15a. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> original peen surface<br />

quality with a replica <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> RAAF rework surface quality, Figure 15b, clearly reveals a<br />

dramatic reducti<strong>on</strong> in cuts and o<strong>the</strong>r surface damage, and well-formed peening dents in <strong>the</strong><br />

rework surface.<br />

A fur<strong>the</strong>r observati<strong>on</strong> was <strong>the</strong> wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> peened surface c<strong>on</strong>diti<strong>on</strong>s observed <strong>on</strong> <strong>the</strong><br />

service aircraft, indicating a high level <str<strong>on</strong>g>of</str<strong>on</strong>g> process variability, Figure 15.<br />

Aircraft A21-101 Aircraft A21-103<br />

Figure 15a: Scanning electr<strong>on</strong> microscope images <str<strong>on</strong>g>of</str<strong>on</strong>g> a typical RAAF F/A-18 fleet surface finish after<br />

OEM peening, (Sharp et al., 1997). Figure 15b overleaf.<br />

21


DSTO-RR-0208<br />

Figure 15b: Scanning electr<strong>on</strong> microscope pictures <str<strong>on</strong>g>of</str<strong>on</strong>g> a replica from a RAAF reworked surface,<br />

Aircraft A21-110 (left) and Aircraft A21-15 (right) (Sharp et al. 1997).<br />

3.2.2 Surface roughness/residual stress measurement<br />

Since a smoo<strong>the</strong>r surface appeared to provide substantial improvements in fatigue life, it was<br />

desirable to explore <strong>the</strong> possibility that a correlati<strong>on</strong> could be found between surface<br />

roughness c<strong>on</strong>diti<strong>on</strong> and fatigue life.<br />

AMRL purchased a laser surface pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iler, which allowed very accurate n<strong>on</strong>-c<strong>on</strong>tact<br />

measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface roughness. <str<strong>on</strong>g>The</str<strong>on</strong>g> laser surface pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iler is accurate to 0.1µm over<br />

a range <str<strong>on</strong>g>of</str<strong>on</strong>g> 500µm. While this level <str<strong>on</strong>g>of</str<strong>on</strong>g> accuracy is not required in this case, many “stylus” type<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> surface roughness measuring systems grind through <strong>the</strong> surface due to <strong>the</strong> complex<br />

surface roughness. <str<strong>on</strong>g>The</str<strong>on</strong>g> AMRL instrument is now computerised to allow a 3-D surface<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile to be built up.<br />

For <strong>the</strong> RAAF aircraft <str<strong>on</strong>g>of</str<strong>on</strong>g>f-cuts, <strong>the</strong> wide difference in surface quality is very evident in <strong>the</strong><br />

measured surface roughness, Table 3, where R max is <strong>the</strong> max roughness depth, R z is <strong>the</strong> mean<br />

roughness depth and R a is <strong>the</strong> arithmetical mean deviati<strong>on</strong> (See Appendix 1).<br />

Table 3: Some Typical F/A-18 FS488 Bulkhead Off-cut Surface Roughness Measurements (Sharp et al<br />

1997).<br />

Tail No. R max (µm) R z (µm) R a (µm)<br />

A21-13 63.96 30.95 3.66<br />

A21-18 73.12 41.36 5.03<br />

A21-109 103.1 35.43 3.72<br />

A21-112 124.6 55.53 6.23<br />

Table 4 compares coup<strong>on</strong> surface roughness with <strong>the</strong> coup<strong>on</strong> fatigue life at 410MPa (F/A-18<br />

peak applied stress under a USN ST-16 load spectrum, which gives a k t s=432MPa).<br />

22


DSTO-RR-0208<br />

Table 4: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fatigue life and surface roughness for a number <str<strong>on</strong>g>of</str<strong>on</strong>g> peening processes. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

specimens were tested using <strong>the</strong> ST-16 load spectrum with a peak stress <str<strong>on</strong>g>of</str<strong>on</strong>g> 432MPa.<br />

Surface Process R max (µm) R z (µm) X-ray Residual<br />

Stress (MPa)<br />

<strong>Fatigue</strong><br />

<strong>Life</strong><br />

(Programs)<br />

AMRL Glass Bead 19.7 14.5 -230±30 150<br />

Peen<br />

Commercial Glass 28.2 21.5 -230±30 65<br />

Bead Peen<br />

AMRL Steel Shot 50.3 40.5 -230±30 55<br />

Peen<br />

AMRL Polish #800 3.4 2.9 -20±30 63<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> results appear to show a direct correlati<strong>on</strong> between surface roughness and fatigue life <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

peened aluminium alloys; as roughness increases, life decreases,Figure16. It was <strong>the</strong>refore<br />

c<strong>on</strong>sidered that it might be possible to quantify <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> F/A-18 fleet peening <strong>on</strong> fatigue<br />

life by measuring surface roughness from replicas obtained from peened areas. However,<br />

fur<strong>the</strong>r results (discussed below) obtained using a more aggressive peening method<br />

indicated that <strong>the</strong> apparent relati<strong>on</strong>ship broke down, <strong>the</strong> problem being that excessive or<br />

aggressive peening leads to defects being buried sub-surface and to very deep laps, which do<br />

not influence <strong>the</strong> surface roughness measurement, while greatly reducing fatigue life. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

c<strong>on</strong>clusi<strong>on</strong> at this stage is that some correlati<strong>on</strong> exists between roughness and life, but where<br />

<strong>the</strong> history <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> part may have included some aggressive peening, this relati<strong>on</strong>ship is<br />

unreliable.<br />

Roughness vs <strong>Fatigue</strong> <strong>Life</strong><br />

Roughness (micrometre)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Roughness Rmax<br />

Roughness Rz<br />

0 50 100 150 200<br />

<strong>Fatigue</strong> <strong>Life</strong> (Blocks)<br />

RAAF<br />

Aircraft<br />

Figure 16: <str<strong>on</strong>g>The</str<strong>on</strong>g> relati<strong>on</strong>ship between measured surface roughness and fatigue life for three different<br />

peening c<strong>on</strong>diti<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> surface roughness <strong>on</strong> RAAF aircraft samples was R max =64-125µm<br />

and R z =30-60µm as marked, indicating a possible shorter fatigue life than <strong>the</strong> laboratory<br />

c<strong>on</strong>diti<strong>on</strong>s indicated.<br />

23


DSTO-RR-0208<br />

Research by Fair et al., (1984), indicated that service loading <str<strong>on</strong>g>of</str<strong>on</strong>g> a comp<strong>on</strong>ent can diminish or<br />

completely remove <strong>the</strong> residual compressive stresses thus reducing any fatigue life benefits.<br />

This reducti<strong>on</strong> is particularly likely to happen if <strong>the</strong> comp<strong>on</strong>ent is subjected to large<br />

compressive loads. However, work by Hamm<strong>on</strong>d and Meguid, (1990) <strong>on</strong> 7075-T7351 showed<br />

no relaxati<strong>on</strong> in residual stress near <strong>the</strong> surface as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> used life. Oshida and Daly<br />

(1990), in tests <strong>on</strong> <strong>7050</strong>-T74651 showed a distinct relaxati<strong>on</strong> in both surface and interior stress<br />

with fatigue life. In both research programs, <strong>the</strong> peened specimens showed an improved<br />

fatigue life over a range <str<strong>on</strong>g>of</str<strong>on</strong>g> stresses, <strong>the</strong>y both used 4-point rotating bending specimens and<br />

yet <strong>the</strong>y achieved different results. Figure 17, is typical <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> change in residual stress with<br />

depth due to spectrum loading observed by a number <str<strong>on</strong>g>of</str<strong>on</strong>g> researchers. <str<strong>on</strong>g>The</str<strong>on</strong>g> exact cause <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

“shake down” effect has yet to be determined, mainly due to <strong>the</strong> large variati<strong>on</strong> in <strong>the</strong><br />

results.<br />

300<br />

O flights 800 flights 10000 flights<br />

200<br />

Residual Stress (MPa)<br />

100<br />

0<br />

0 0.5 1 1.5 2 2.5<br />

-100<br />

-200<br />

-300<br />

-400<br />

Residual Stress Depth (mm)<br />

Figure 17: X-ray residual stress result, showing <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> spectrum loading <strong>on</strong> <strong>the</strong> residual<br />

compressive stress caused by peening an aluminium alloy (Fair et. al, 1984). <str<strong>on</strong>g>The</str<strong>on</strong>g>re<br />

appears to be a distinct shakedown effect as <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> flights increases.<br />

Clark and Clayt<strong>on</strong> (1991) also undertook residual stress analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir peened specimens.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> results are shown in Figure 18. Figure 18a shows <strong>the</strong> x-ray residual stress pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

peened specimen. Figure 18b and Figure 18c show <strong>the</strong> effect <strong>on</strong> <strong>the</strong> residual stress pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fatigue loading. <str<strong>on</strong>g>The</str<strong>on</strong>g> variability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> residual stress measurements adds to <strong>the</strong> uncertainty<br />

as to whe<strong>the</strong>r <strong>the</strong> apparent reducti<strong>on</strong> at greater depths was real, although <strong>the</strong> change in<br />

surface stress appeared to be significant. <str<strong>on</strong>g>The</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> loading <strong>on</strong> reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> residual<br />

stresses in aluminium alloys is still an area requiring fur<strong>the</strong>r research.<br />

A detailed analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> peened surface residual stress measurements methods was made at<br />

AMRL using a number <str<strong>on</strong>g>of</str<strong>on</strong>g> different techniques, ie. x-ray diffracti<strong>on</strong>, neutr<strong>on</strong> diffracti<strong>on</strong>, hole<br />

24


DSTO-RR-0208<br />

drilling etc (Olss<strong>on</strong>-Jacques 1999). A recent paper by (Nobre, Kornmeier, Dias and Scholtes,<br />

2000) also compares incremental hole-drilling (IHD) with XRD. <str<strong>on</strong>g>The</str<strong>on</strong>g>y indicate that IHD can<br />

be correctly used to measure <strong>the</strong> residual stress <str<strong>on</strong>g>of</str<strong>on</strong>g> peened comp<strong>on</strong>ents, but supported <strong>the</strong><br />

AMRL c<strong>on</strong>clusi<strong>on</strong> that care must be taken due to <strong>the</strong> str<strong>on</strong>g stress gradients.<br />

50<br />

No applied stress 400MPa/10000cycles 315MPa/40000cycles<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2<br />

Residual Stress (MPa)<br />

-50<br />

-100<br />

-150<br />

-200<br />

-250<br />

-300<br />

Depth (mm)<br />

No applied stress 400MPa Peak Stress 475MPa Peak Stress<br />

50<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2<br />

Residual Stress (MPa)<br />

-50<br />

-100<br />

-150<br />

-200<br />

-250<br />

-300<br />

Depth (mm)<br />

Figure 18: Residual stress (x-ray diffracti<strong>on</strong>) pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile for peened aluminium alloy, Clark and Clayt<strong>on</strong><br />

(1991) –top) – n<strong>on</strong>-loaded pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile compared with c<strong>on</strong>stant amplitude pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, 10000cycles<br />

at 400MPa and 40000 cycles at 315MPa and bottom) n<strong>on</strong>-loaded pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile compared with<br />

variable amplitude loaded specimen pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, 30 blocks at 475MPa and 30 blocks at 400MPa<br />

peak stress.<br />

25


DSTO-RR-0208<br />

3.2.3 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> AMRL <str<strong>on</strong>g>Peening</str<strong>on</strong>g> Specificati<strong>on</strong><br />

AMRL specified a repair procedure, which was used <strong>on</strong> approximately 32 aircraft during<br />

ECP45. <str<strong>on</strong>g>The</str<strong>on</strong>g> AMRL recommendati<strong>on</strong> was that any future rework peening be d<strong>on</strong>e to<br />

PS14023 with <strong>the</strong> following changes;<br />

1) ALMEN intensity 6-8A,<br />

2) 200% coverage,<br />

3) Nozzle perpendicular to <strong>the</strong> surface,<br />

4) Total loss glass bead system or recycled (filtered) ceramic beads,<br />

5) Start peening in corners and work to flat regi<strong>on</strong> to reduce laps and folds.<br />

This new specificati<strong>on</strong> is a refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> original MDA PS14023 and was published in<br />

early 1994 (Sharp et.al, 1994). At <strong>the</strong> time it was also c<strong>on</strong>sidered important to remove any<br />

previous peening “damaged material” from <strong>the</strong> surface, though no experiments at that time<br />

had been undertaken to c<strong>on</strong>firm this approach. This aspect has been pursued to provide a<br />

more broadly applicable rework method, and has been focussed <strong>on</strong> a repair for <strong>the</strong> FS470.5<br />

X19 regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> F/A-18 aircraft (Sharp et. al, 2000). This particular applicati<strong>on</strong> has been<br />

discussed in detail elsewhere.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> a full rework approach, including surface removal, is described in <strong>the</strong><br />

following secti<strong>on</strong>.<br />

3.3 Rework <str<strong>on</strong>g>Peening</str<strong>on</strong>g> Research<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> a surface removal process prior to re-peening a reworked area <strong>on</strong> some RAAF<br />

aircraft prompted research aimed at determining whe<strong>the</strong>r this method could be developed<br />

into a general procedure for reworking local areas <str<strong>on</strong>g>of</str<strong>on</strong>g> an airframe part-way through life to<br />

allow <strong>the</strong> fatigue life <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> aircraft to be maximised. Such a method would have to be<br />

reliable and sufficiently risk-free to allow applicati<strong>on</strong> to critical airframe comp<strong>on</strong>ents.<br />

Reworks <strong>on</strong> real aircraft fleets are a competiti<strong>on</strong> between “cost” and “benefit” in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> life<br />

improvement. AMRL has always stated that any damaged layer must be removed to<br />

maximise <strong>the</strong> LIF after rework no matter whe<strong>the</strong>r <strong>the</strong> surface is left polished or peened.<br />

26


DSTO-RR-0208<br />

50<br />

Total <strong>Fatigue</strong> <strong>Life</strong>, Programs<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 20 40 60 80 100<br />

Percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Fatigue</strong> <strong>Life</strong> Expended before <str<strong>on</strong>g>Peening</str<strong>on</strong>g>, %<br />

Figure 19: <str<strong>on</strong>g>The</str<strong>on</strong>g> fatigue life <str<strong>on</strong>g>of</str<strong>on</strong>g> specimens peened after various periods <str<strong>on</strong>g>of</str<strong>on</strong>g> service. <str<strong>on</strong>g>The</str<strong>on</strong>g> specimens were<br />

fatigue tested to a percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> total life <strong>the</strong>n peened before c<strong>on</strong>tinuing <strong>the</strong> test until<br />

failure. (Note: <strong>the</strong>re was no surface removal between fatigue testing and peening).<br />

Figure 19 clearly shows <strong>the</strong> benefit in removing <strong>the</strong> damage layer to restore maximum life.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is a significant drop in LIF if <strong>the</strong> damaged layer is not removed after <strong>the</strong> comp<strong>on</strong>ent<br />

had reached 40-50% <str<strong>on</strong>g>of</str<strong>on</strong>g> its full life. In fact, <strong>the</strong> peening has almost no LIF effect, because <strong>the</strong><br />

damage is now deeper than <strong>the</strong> beneficial compressive residual stresses. Secti<strong>on</strong> 3.3 shows<br />

that even greater care must be taken to remove a peened damage layer, o<strong>the</strong>rwise not <strong>on</strong>ly<br />

can no LIF can be associated with <strong>the</strong> repair process but in fact a reduced life may occur at<br />

some stresses.<br />

3.3.1 Different rework process comparis<strong>on</strong>s<br />

In many localised regi<strong>on</strong>s, <strong>the</strong> F/A-18 has been peened or re-peened, usually by c<strong>on</strong>tractors.<br />

AMRL <strong>the</strong>refore examined <strong>the</strong> peening rework processes performed <strong>on</strong> <strong>the</strong> F/A-18 by <strong>the</strong>se<br />

c<strong>on</strong>tractors. Due to <strong>the</strong> repair requirements for <strong>the</strong> full-scale fatigue test articles in <strong>the</strong><br />

Internati<strong>on</strong>al Follow On Structural Test Program (IFOSTP) run by <strong>the</strong> RAAF and Canadian<br />

Forces (CF) several <str<strong>on</strong>g>of</str<strong>on</strong>g> rework processes had to be examined. AMRL recommendati<strong>on</strong> was<br />

that <strong>the</strong> OEM original peening be removed by polishing before any re-peen, and that a total<br />

loss bead system be used; in c<strong>on</strong>trast <strong>the</strong> CF had adopted <strong>the</strong> OEM rework procedure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

peening directly over <strong>the</strong> original peening without polishing. In view <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> potential for this<br />

approach to bury damage in <strong>the</strong> surface, and cause excessive peening damage, this process<br />

clearly had to be <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> those examined. Sharp, Clayt<strong>on</strong> and Clark (1994), compared <strong>the</strong><br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> different rework processes <strong>on</strong> fatigue life (Figure 20, summarised in Table 5).<br />

27


DSTO-RR-0208<br />

Peak Spectrum Stress (MPa)<br />

420<br />

415<br />

410<br />

405<br />

400<br />

395<br />

390<br />

385<br />

Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Fatigue</strong> Lives between<br />

Ceramic Bead <str<strong>on</strong>g>Peening</str<strong>on</strong>g> and Glass Bead <str<strong>on</strong>g>Peening</str<strong>on</strong>g>.<br />

Hand Polish<br />

Aircraft glass bead peen simulati<strong>on</strong><br />

Rework peen directly over original peen<br />

Rework peen over polished surface<br />

Ceramic bead rework peen over polished surface<br />

380<br />

6000 8000 10000 30000<br />

<strong>Fatigue</strong> <strong>Life</strong> (Simulated Flight Hours)<br />

Figure 20: Experimental results comparing <strong>the</strong> fatigue lives <str<strong>on</strong>g>of</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> different localised rework<br />

peening processes. <str<strong>on</strong>g>The</str<strong>on</strong>g> ceramic beads where manufactured from aluminium oxide. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

beads were very spherical, had a small variati<strong>on</strong> in diameter compared to glass and very<br />

hard and heavy.<br />

Table 5 also displays <strong>the</strong> surface roughness results and <strong>the</strong> residual stress results for each <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> different peening rework processes. <str<strong>on</strong>g>The</str<strong>on</strong>g> residual compressive stress is a factor in <strong>the</strong><br />

improved fatigue life due to peening, and AMRL and M<strong>on</strong>ash University (Victoria), built a<br />

rig which could hold <strong>the</strong> test specimens for x-ray residual stress testing. This rig simplified<br />

<strong>the</strong> process immensely, meaning that residual stress results could be obtained easily and<br />

with improved accuracy.<br />

28


DSTO-RR-0208<br />

Table 5:<br />

Results from local peening rework processes. <str<strong>on</strong>g>The</str<strong>on</strong>g> OEM rework – peen over OEM original<br />

peen, AMRL rework – remove OEM original peen by polishing <strong>the</strong>n peen. Specimens<br />

(Sharp, Clayt<strong>on</strong> and Clark (1994)) were tested with a RAAF post-LEX spectrum Spec 16 -<br />

21010 turning points 302.9 hrs per block at a peak stress 410 MPa. Material was 5 inch<br />

plate,<br />

Rework Process Log Av. <strong>Fatigue</strong> Surface Roughness Surface Roughness Residual Stress<br />

<strong>Life</strong> (SFH)<br />

R max (µm)<br />

R z (µm)<br />

MPa<br />

Hand polish (#800) 9287 3.4 2.9 -35±20<br />

Simulated original 19079 63.9 46.5 -270±40<br />

aircraft peen<br />

“Overpeen” rework 15073 51.7 38.0 -230±40<br />

AMRL rework<br />

specificati<strong>on</strong><br />

22895 28.2 21.4 -260±40<br />

Table 5 shows that <strong>the</strong> residual compressive stress is very similar no matter which treatment<br />

is used - in o<strong>the</strong>r words <strong>the</strong>y all have reached saturati<strong>on</strong>. Interestingly, in all <strong>the</strong> x-ray<br />

residual stress analyses completed, <strong>the</strong> residual compressive stress range is between -<br />

230MPa and -270MPa. <str<strong>on</strong>g>The</str<strong>on</strong>g> ranking order is very similar to <strong>the</strong> order presented in Table 4,<br />

which were fatigue tests, c<strong>on</strong>ducted using a different spectrum ST-16.<br />

Figure 21 shows typical surface finishes achieved with each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> peening rework processes<br />

trialled. <str<strong>on</strong>g>The</str<strong>on</strong>g> AMRL rework process (polish/peen) provides <strong>the</strong> best surface finish and also<br />

<strong>the</strong> l<strong>on</strong>gest fatigue life.<br />

Figure 21a: A typical OEM peen simulati<strong>on</strong> surface. Note that because glass beads were used in <strong>the</strong><br />

simulati<strong>on</strong>, <strong>the</strong> damage to <strong>the</strong> surface could not be made to fully match <strong>the</strong> damage seen <strong>on</strong><br />

some aircraft where a flapper wheel (Figure 50 was used. <str<strong>on</strong>g>The</str<strong>on</strong>g> arrow indicates lifting grains<br />

typical <str<strong>on</strong>g>of</str<strong>on</strong>g> over-pressure or excessive peening time.<br />

29


DSTO-RR-0208<br />

Figure 21b: A typical surface finish, resulting from a re-peening over <strong>the</strong> OEM original peening. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

arrow indicates “chopped” up surface due to glass bead fragments impacting <strong>the</strong> surface.<br />

Figure 21c: A typical surface finish, resulting from removing <strong>the</strong> original OEM peening and <strong>the</strong>n repeening.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> arrow indicates a small gap in <strong>the</strong> surface due to <strong>the</strong> peening process.<br />

Despite this <strong>the</strong> surface has regular even indentati<strong>on</strong>s seen <strong>on</strong> a good peened surface.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> newer results indicated that <strong>the</strong>re are some c<strong>on</strong>diti<strong>on</strong>s where surface roughness could<br />

not be directly correlated to fatigue life; <strong>the</strong> OEM specified rework (peening directly over <strong>the</strong><br />

original peened surface) was a particular problem in that <strong>the</strong> over-peening reduces <strong>the</strong><br />

surface roughness but also reduces fatigue life. <str<strong>on</strong>g>The</str<strong>on</strong>g> reas<strong>on</strong> for this result is clearly visible in<br />

Figure 22; <strong>the</strong> original peened surface (Figure 22a), is very rough compared to <strong>the</strong> AMRL<br />

rework polish/peen (Figure 22c), and this can be related to <strong>the</strong>ir fatigue lives. However, in<br />

<strong>the</strong> over-peening rework case, Figure 22b, <strong>the</strong> original surface defects are smeared into <strong>the</strong><br />

surface and become sub-surface defects, which cannot be measured by surface roughness.<br />

30


DSTO-RR-0208<br />

Figure 22a: A typical surface pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile from <strong>the</strong> OEM peen simulati<strong>on</strong>.<br />

Figure 22b: A typical surface pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile from re-peening directly over <strong>the</strong> original OEM peen.<br />

Figure 22c: A typical surface pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile from <strong>the</strong> AMRL rework. <str<strong>on</strong>g>The</str<strong>on</strong>g> original OEM peening damage has<br />

been removed and <strong>the</strong> surface re-peened.<br />

This observati<strong>on</strong> indicates that if <strong>the</strong> comp<strong>on</strong>ent has been peened directly over <strong>the</strong> original<br />

peening <strong>the</strong>n surface roughness cannot be correlated with fatigue life. This n<strong>on</strong>-correlati<strong>on</strong><br />

causes a major problem because, without a very c<strong>on</strong>fident knowledge about <strong>the</strong> peening<br />

history and c<strong>on</strong>diti<strong>on</strong>s, <strong>the</strong> peening quality and fatigue life can no l<strong>on</strong>ger be simply<br />

quantified from <strong>the</strong> surface roughness.<br />

To show more directly <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> peening <strong>on</strong> fatigue crack growth rate, fractographic<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> striati<strong>on</strong> marks left <strong>on</strong> <strong>the</strong> fracture surface was undertaken. <str<strong>on</strong>g>The</str<strong>on</strong>g> results are<br />

shown in Figure 23 and Figure 24.<br />

It can be seen clearly that in <strong>the</strong> two peened specimens <strong>the</strong> initial crack growth rate is much<br />

lower while <strong>the</strong> crack is c<strong>on</strong>tained in <strong>the</strong> first 200-300µm. After this depth, <strong>the</strong> crack growth<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> peened specimens increases, approaching that <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> unpeened specimens,<br />

becoming very similar by a crack depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 600µm. Note that <strong>the</strong> specimens were all tested at<br />

a peak applied stress <str<strong>on</strong>g>of</str<strong>on</strong>g> 410MPa and not at <strong>the</strong> high stresses (>450MPa) shown earlier where<br />

peening had <strong>the</strong> potential to reduce specimen fatigue life compared to polished specimens.<br />

31


DSTO-RR-0208<br />

10<br />

Crack Depth (mm)<br />

1<br />

0.1<br />

Polished<br />

Peened<br />

0.01<br />

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85<br />

Program Number<br />

Figure 23: Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> fatigue crack depth (mm) versus program number. <str<strong>on</strong>g>The</str<strong>on</strong>g> figure indicates<br />

that <strong>the</strong> initial defect is larger in <strong>the</strong> peened specimens, but that <strong>the</strong> crack growth<br />

increment per program is very low in <strong>the</strong> early stages, illustrating <strong>the</strong> two competing<br />

processes which determine <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fatigue life extensi<strong>on</strong>.<br />

1<br />

Reducti<strong>on</strong> in growth rate<br />

Crack Growth Rate, da/dN<br />

0.1<br />

0.01<br />

1E-3<br />

Peened specimens<br />

1E-4<br />

0.01 0.1 1<br />

Crack Length, a (mm)<br />

Figure 24: Measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crack growth rate (da/dn) versus crack length showing clearly <strong>the</strong><br />

effect peening has <strong>on</strong> retarding <strong>the</strong> fatigue crack growth (Sharp and Byrnes (1996).<br />

32


DSTO-RR-0208<br />

A fur<strong>the</strong>r important point from <strong>the</strong>se results is that <strong>the</strong> crack growth rate is always lower (or<br />

similar) in <strong>the</strong> peened specimens than in <strong>the</strong> c<strong>on</strong>trol (n<strong>on</strong>-peened) specimen i.e. <strong>the</strong> “tensi<strong>on</strong>”<br />

residual stresses deeper below <strong>the</strong> surface do not (as popularly believed) accelerate crack<br />

growth rates significantly.<br />

3.3.2 F/A-18 fleet rework simulati<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> next stage <str<strong>on</strong>g>of</str<strong>on</strong>g> examining <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> rework peening process <strong>on</strong> fatigue life was to<br />

simulate <strong>the</strong> fleet c<strong>on</strong>diti<strong>on</strong> in more detail, particularly <strong>the</strong> fact that many RAAF aircraft<br />

were subjected to a rework program part-way through life. This comparis<strong>on</strong> was d<strong>on</strong>e by<br />

cycling <strong>the</strong> peened specimen for some period before reworking <strong>the</strong> specimen and <strong>the</strong>n<br />

cycling to failure. Table 6 lists <strong>the</strong> different fleet simulati<strong>on</strong>s tested in this part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

program. <str<strong>on</strong>g>The</str<strong>on</strong>g> RAAF loading spectrum “Spec 16” was applied to <strong>the</strong> specimens, with a peak<br />

stress <str<strong>on</strong>g>of</str<strong>on</strong>g> 410MPa. <str<strong>on</strong>g>The</str<strong>on</strong>g> specimens were similar to those used throughout <strong>the</strong> complete testing<br />

program.<br />

Table 6: Fleet simulati<strong>on</strong>s tested in <strong>the</strong> program.<br />

Simulati<strong>on</strong> Label<br />

C2<br />

F1<br />

F2<br />

F3<br />

F4<br />

Simulati<strong>on</strong> Specificati<strong>on</strong><br />

AMRL Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> original aircraft (OEM) peen<br />

AMRL Sim OEM peen → fatigue for 3000SFH → glass bead rework → test to failure<br />

AMRL Sim OEM peen → fatigue for 3000SFH → glass bead rework → fatigue for<br />

3000SFH → glass bead rework → test to failure<br />

AMRL Sim OEM peen → fatigue for 6000SFH → glass bead rework → test to failure<br />

AMRL Sim OEM peen → fatigue for 3000SFH → glass bead rework → fatigue for<br />

3000SFH → ceramic bead rework → test to failure<br />

Simulati<strong>on</strong> C2 represents <strong>the</strong> AMRL laboratory simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> original OEM aircraft peen.<br />

Simulati<strong>on</strong> F1 represents <strong>the</strong> 32 RAAF aircraft that went through ECP45 (a bulkhead radius<br />

rework) after some period <str<strong>on</strong>g>of</str<strong>on</strong>g> flying (<strong>the</strong> lead RAAF aircraft went through ECP45 at<br />

approximately 1500 hours). <str<strong>on</strong>g>The</str<strong>on</strong>g> original OEM peen was removed after 3000SFH and <strong>the</strong><br />

specimen peened with a total loss glass bead system. Simulati<strong>on</strong> F2 represents <strong>the</strong> case<br />

where areas from simulati<strong>on</strong> F1 might need to be reworked again during <strong>the</strong> life <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

aircraft. Simulati<strong>on</strong> F3 represents <strong>the</strong> o<strong>the</strong>r 42 aircraft that did not go through ECP45 and<br />

might need to be reworked some time during <strong>the</strong> aircraft life. Simulati<strong>on</strong> F4 represents <strong>the</strong><br />

latest F/A-18 peening process, which uses ceramic beads instead <str<strong>on</strong>g>of</str<strong>on</strong>g> glass beads. <str<strong>on</strong>g>The</str<strong>on</strong>g> fatigue<br />

life results are listed in Table 7.<br />

Based <strong>on</strong> earlier crack growth work (Barter, July 1990), 200-300µm <str<strong>on</strong>g>of</str<strong>on</strong>g> material had to be<br />

removed from each face during a polish rework, to ensure that no cracks would be present<br />

before re-peening <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface. <str<strong>on</strong>g>The</str<strong>on</strong>g> first column in Table 6 is <strong>the</strong> rework process, <strong>the</strong><br />

sec<strong>on</strong>d column is <strong>the</strong> fatigue life from <strong>the</strong> last rework until failure, and <strong>the</strong> third column is<br />

<strong>the</strong> total specimen fatigue life.<br />

33


DSTO-RR-0208<br />

Table 7: <str<strong>on</strong>g>The</str<strong>on</strong>g> average log fatigue life results for each peening/rework simulati<strong>on</strong>.<br />

Simulati<strong>on</strong> Process<br />

Av. <strong>Fatigue</strong> life after<br />

last rework (SFH)<br />

Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fatigue life<br />

between reworks (SFH)<br />

Total Av. <strong>Fatigue</strong> <strong>Life</strong><br />

(SFH)<br />

C1 9287 0 9287<br />

C2 16550 0 16550<br />

F1 16026 3000 19026<br />

F2 17624 3000+3000 23624<br />

F3 20327 6000 26327<br />

F4 17865 3000+3000 23865<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> results are also shown in Figure 25. For comparis<strong>on</strong> a polished specimen (C1) fatigue<br />

life is 9287SFH. Column 2 in Table 7 shows that all peening gives an improvement in<br />

subsequent fatigue life at <strong>the</strong> test stress k t s= 410MPa. All o<strong>the</strong>r tests were completed <strong>on</strong> new<br />

coup<strong>on</strong>s, which is why C2 (OEM simulated original peening) average fatigue life is slightly<br />

lower than <strong>the</strong> results presented in Table 5 for <strong>the</strong> same c<strong>on</strong>diti<strong>on</strong>.<br />

30000<br />

Polish<br />

Peen<br />

<strong>Fatigue</strong> 3000hrs-rework-fatigue<br />

<strong>Fatigue</strong> 3000hrs-rework-fatigue 3000hrs-rework-fatigue<br />

<strong>Fatigue</strong> 6000hrs-rework-fatigue<br />

<strong>Fatigue</strong> 3000hrs-rework-fatigue 3000hrs-ceramic rework-fatigue<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Cycles<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

Cycles to failure from last rework<br />

Total Cycles (rework+failure)<br />

Figure 25: Left –Average number <str<strong>on</strong>g>of</str<strong>on</strong>g> cycles to failure after <strong>the</strong> last rework , <strong>on</strong> <strong>the</strong> Right-Total number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cycles to failure. As can be seen <strong>the</strong>re is little variati<strong>on</strong> in <strong>the</strong> cycles to failure after <strong>the</strong><br />

last rework, indicating that sufficient material has been removed before final peening to<br />

restore complete life.<br />

A significant result in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> aircraft lifing is <strong>the</strong> reducti<strong>on</strong> in fatigue life scatter when<br />

using ceramic beads compared to glass beads. This reducti<strong>on</strong> can be attributed directly to <strong>the</strong><br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> beads and <strong>the</strong> reducti<strong>on</strong> in <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> broken beads embedding in <strong>the</strong><br />

specimen surface. It is also interesting that ceramic beads provide a similar fatigue life to<br />

glass beads. This result was observed by MCAIR but not by earlier AMRL testing that<br />

34


DSTO-RR-0208<br />

showed a significant improvement in fatigue life using ceramic beads compared to glass<br />

beads. <str<strong>on</strong>g>The</str<strong>on</strong>g> reas<strong>on</strong> for <strong>the</strong> different results is not clear, but may be due <strong>the</strong> different testing<br />

c<strong>on</strong>diti<strong>on</strong>s or process details. Figure 25 indicates that an operator can rework a local area a<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> times and each time <strong>the</strong> original peened fatigue life is restored to that area. On<br />

an aircraft <str<strong>on</strong>g>of</str<strong>on</strong>g> course, <strong>the</strong> reducti<strong>on</strong> in thickness (increased stress) with each polish would<br />

have to be taken into account.<br />

3.3.3 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> AMRL Rework <str<strong>on</strong>g>Peening</str<strong>on</strong>g> Specificati<strong>on</strong><br />

AMRL recommendati<strong>on</strong> was that any future rework peening be d<strong>on</strong>e to PS14023 with <strong>the</strong><br />

following changes;<br />

1) Remove original peening surface damage (or o<strong>the</strong>r damage) before peening,<br />

2) Polish surface prior to peening,<br />

3) ALMEN intensity 6-8A,<br />

4) 200% coverage in main area,<br />

5) Nozzle perpendicular to <strong>the</strong> surface,<br />

6) Total loss glass bead system or recycled (filtered) ceramic beads,<br />

7) Start peening in corners and work to flat regi<strong>on</strong> to reduce laps and folds,<br />

8) Ensure peening runout regi<strong>on</strong> ie 100% coverage.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> improvement over <strong>the</strong> specificati<strong>on</strong> set out in secti<strong>on</strong> 3.2.3 is <strong>the</strong> verificati<strong>on</strong> that <strong>the</strong><br />

removal <str<strong>on</strong>g>of</str<strong>on</strong>g> “damage layer” is critical to <strong>the</strong> process and <strong>the</strong> life improvement factor derived<br />

from any peening process.<br />

This complete process was published and distributed in late 1996 (Sharp and Byrnes, 1996)<br />

and has been used <strong>on</strong> both fleet aircraft and structural test articles (Secti<strong>on</strong> 3.5). CF adopted<br />

this process for any peening repairs to <strong>the</strong> FT55 test article. To enhance c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> material to be removed AMRL developed a spring punch process for c<strong>on</strong>trolled<br />

surface removal (Barter and Houst<strong>on</strong>, 1997). <str<strong>on</strong>g>The</str<strong>on</strong>g> process essentially places a large dent into<br />

<strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>trolled depth. Once <strong>the</strong> dents have been polished away a c<strong>on</strong>trolled<br />

depth <str<strong>on</strong>g>of</str<strong>on</strong>g> material has been removed.<br />

3.4 <str<strong>on</strong>g>Peening</str<strong>on</strong>g> <strong>Life</strong> Improvement Factor (LIF)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> any repair is <strong>the</strong> LIF that can be derived from that repair. For <strong>the</strong> F/A-18 while<br />

many comp<strong>on</strong>ents are peened no LIF is taken account <str<strong>on</strong>g>of</str<strong>on</strong>g> in <strong>the</strong> lifing. <str<strong>on</strong>g>The</str<strong>on</strong>g> main reas<strong>on</strong> for<br />

this has been <strong>the</strong> unreliability with <strong>the</strong> peening process. Figure 26 shows how <strong>the</strong> coup<strong>on</strong><br />

fatigue life varies with <strong>the</strong> peening parameters ALMEN intensity and peen coverage. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

variability in life is an indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> why robotic or automated peening is far better than<br />

human operator peening.<br />

Figure 26 also shows that using 6-8A ALMEN intensity at 200% coverage provides<br />

maximum LIF for <strong>7050</strong>-T7451 aluminium alloy coup<strong>on</strong>s.<br />

35


DSTO-RR-0208<br />

200<br />

180<br />

160<br />

8A ALMEN<br />

6A ALMEN<br />

No peening<br />

<strong>Fatigue</strong> life-programs<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Mil Spec<br />

0<br />

-100 0 100 200 300 400 500<br />

Coverage (%)<br />

Figure 26: <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> coverage and ALMEN intensity <strong>on</strong> fatigue life using RAAF Spec16 spectrum at<br />

an applied load <str<strong>on</strong>g>of</str<strong>on</strong>g> 394MPa.<br />

More recent tests have shown a relati<strong>on</strong>ship between mean LIF and maximum applied<br />

spectrum stress, as shown in Figure 27.<br />

7<br />

<strong>Life</strong> Improvement Factor<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

LIF=6*10 15 x -5.8749 R 2 =0.9791<br />

0<br />

300 350 400 450 500 550<br />

Max applied Stress (MPa)<br />

Figure 27: Results from Y470.5 X19 pocket test program using <strong>the</strong> IARP03a+marker spectrum at a<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> stresses (Sharp et. al, 2000).<br />

36


DSTO-RR-0208<br />

Figure 27 shows a rapidly increasing mean LIF with lower stress, but detailed results<br />

showed <strong>the</strong> lower bound LIF value increases a lot more slowly. At <strong>the</strong> stresses (400-420MPa)<br />

examined in many <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> research programs a LIF=1.5 is c<strong>on</strong>servative and appropriate. A<br />

more detailed explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> work d<strong>on</strong>e <strong>on</strong> <strong>the</strong> Y470.5 X-19 pocket can be found in<br />

(Sharp et. al, 2000).<br />

3.5 Fleet Applicati<strong>on</strong>s Research<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> peening process specified in Secti<strong>on</strong> 3.2 and Secti<strong>on</strong> 3.3 has been <strong>the</strong> basis for a number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> experimental test programs directly related to repairs <strong>on</strong> <strong>the</strong> F/A-18 aircraft fleet.<br />

3.5.1 Y470 Crotch Repair Program<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Y470 crotch regi<strong>on</strong> is a highly stressed regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> wing carry through bulkheads.<br />

MDA released ECP365 to repair this area and <strong>the</strong> X19 regi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> repair called for metallic<br />

doublers <strong>on</strong> <strong>the</strong> crotch regi<strong>on</strong>. Based <strong>on</strong> previous research DSTO devised a composite patch<br />

repair to replace <strong>the</strong> metallic patch. Due to <strong>the</strong> severe curvature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> regi<strong>on</strong> <strong>the</strong> patch<br />

design al<strong>on</strong>e was a very complex process. However to maximise <strong>the</strong> benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

composite patch a high temperature curing adhesive is needed. <str<strong>on</strong>g>The</str<strong>on</strong>g> MDA <str<strong>on</strong>g>Peening</str<strong>on</strong>g><br />

specificati<strong>on</strong> PS14023 RevH indicates that <strong>the</strong> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> peened aluminium areas<br />

should not exceed 250 0 F (121 0 C) but does not state any time period. <str<strong>on</strong>g>The</str<strong>on</strong>g> objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> test<br />

program is to see what effect time and temperature (typical <str<strong>on</strong>g>of</str<strong>on</strong>g> patch applicati<strong>on</strong>) would have<br />

<strong>on</strong> <strong>the</strong> underlying residual compressive stress due to peening.<br />

Interestingly <strong>the</strong> Boeing process specificati<strong>on</strong> BAC 5730 (1988) for peening specifies a<br />

maximum temperature for peened aluminium regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 200 0 F (93 0 C) above which <strong>the</strong> area<br />

has to be repeened.<br />

37


DSTO-RR-0208<br />

Figure 28: A schematic showing <strong>the</strong> locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Y470 bulkhead crotch regi<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> following steps were followed for to <strong>the</strong> test coup<strong>on</strong>s to simulate <strong>the</strong> repair process<br />

surface treatment. Step 7 simulates <strong>the</strong> actual heating <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> adhesive FM73.<br />

a) Ceramic bead peen to MDA specificati<strong>on</strong>s PS14023 RevH<br />

b) solvent degrease to waterbreak standard,<br />

c) mild scotchbrite abrade,<br />

d) alumina grit-blast<br />

4) 1% aqueous silane for 15 minutes (A187),<br />

5) dry at 110 0 C for 1 hour,<br />

6) BR127 primer applied, dried in air for 30 minutes and at 110 0 C for 30 minutes,<br />

7) cure 120 0 C for 1 hour to simulate FM 73 adhesive cure.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> coup<strong>on</strong> testing are shown in Table 8 and Figure 29.<br />

38


DSTO-RR-0208<br />

Table 8: Coup<strong>on</strong> fatigue life results. Five coup<strong>on</strong>s were tested per c<strong>on</strong>diti<strong>on</strong>.<br />

Base Line Peen Peen + Patch Repair<br />

Process<br />

Coup<strong>on</strong> 1 60.85 80.19<br />

Coup<strong>on</strong> 2 71.19 70.54<br />

Coup<strong>on</strong> 3 108.54 55.02<br />

Coup<strong>on</strong> 4 62.58 58.98<br />

Coup<strong>on</strong> 5 63.58 66.87<br />

Log Average 71.1 66.1<br />

A statistical comparis<strong>on</strong> was made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two process sets, which showed that <strong>the</strong>re was a<br />

97.5% probability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>m being from a single populati<strong>on</strong>. To fur<strong>the</strong>r c<strong>on</strong>firm this result,<br />

surface residual stress analysis was performed <strong>on</strong> <strong>the</strong> coup<strong>on</strong>s. Table 9 compares <strong>the</strong> base<br />

line residual stress with <strong>the</strong> residual stress from just <strong>the</strong> surface treatment (ie missing step 7<br />

adhesive cure) and <strong>the</strong> residual stress for <strong>the</strong> complete process.<br />

<strong>Fatigue</strong> <strong>Life</strong> (programs)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

max<br />

min<br />

BL<br />

RRP<br />

Figure 29: Column graph comparing <strong>the</strong> base line test results with <strong>the</strong> repair process. Note how <strong>the</strong><br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> repaired process coup<strong>on</strong>s falls in <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> baseline coup<strong>on</strong> failures<br />

39


DSTO-RR-0208<br />

Table 9: Residual Stress Results from X-ray Diffracti<strong>on</strong> Technique.<br />

Vertical<br />

Directi<strong>on</strong><br />

Base Line Peen<br />

+ Surface<br />

Treatment<br />

+Surface<br />

treatment+Heati<br />

ng Treatment<br />

-231 MPa -220 MPa -187 MPa<br />

Horiz<strong>on</strong>tal -260 MPa -254 MPa -182 MPa<br />

Directi<strong>on</strong><br />

Average -246 MPa -237 MPa -185 MPa<br />

Note: Specimens heated for 1 hour at 110 0 C, cooled to room temperature and <strong>the</strong>n 2 hours at<br />

120 0 C.<br />

A slight drop was observed in mean surface residual stress readings. However, since <strong>the</strong><br />

fatigue are apparently not affected it is unlikely that a significant change in <strong>the</strong> residual<br />

stress depth pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile has occurred. A recent test program c<strong>on</strong>ducted by QETE in Canada<br />

(Roth and Yanishevsky 1999) supports <strong>the</strong>se results.<br />

3.5.2 Fleet Y470.5 X19 Pocket Repair program<br />

AMRL proposed to <strong>the</strong> RAAF a fleet lifing policy for <strong>the</strong> X19 regi<strong>on</strong> based <strong>on</strong> its peening<br />

specificati<strong>on</strong> and research into surface finish. <str<strong>on</strong>g>The</str<strong>on</strong>g> Y470.5 X19 pocket is a highly stressed<br />

regi<strong>on</strong> (approx 420MPa) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> wing-carry through bulkheads. <str<strong>on</strong>g>The</str<strong>on</strong>g> X19 pocket failed during<br />

<strong>the</strong> US Navy fatigue test ST16 and is regarded as a possible life limiting area in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

extending <strong>the</strong> operati<strong>on</strong>al life <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> F/A-18.<br />

40


DSTO-RR-0208<br />

Figure 30: Locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> X-19 area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Y470 bulkhead wheel well flange.<br />

Failure<br />

<strong>Fatigue</strong> initiati<strong>on</strong> sites in<br />

web fillet tangency and<br />

under flange.<br />

X19 from<br />

centreline<br />

Figure 31: Failure locati<strong>on</strong> at <strong>the</strong> X19 stiffener <strong>on</strong> ST16 after approximately 12000 SFH cycling.<br />

Failure was LH side. Looking forward.<br />

Based <strong>on</strong> <strong>the</strong> ST16 fatigue test and FE analysis MDA proposed ECP365 to improve <strong>the</strong><br />

fatigue life <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> X19 and <strong>the</strong> crotch area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Y470.5 bulkhead. <str<strong>on</strong>g>The</str<strong>on</strong>g> US Navy released <strong>the</strong><br />

X19 repair as AFC No. 174. Based <strong>on</strong> this AMRL proposed a modified repair for <strong>the</strong> X19<br />

pocket and a subsequent RAAF fleet lifing policy. <str<strong>on</strong>g>The</str<strong>on</strong>g> CF have completed ECP365<br />

modificati<strong>on</strong> process.<br />

41


DSTO-RR-0208<br />

Like all <strong>the</strong> structural aluminium parts <strong>the</strong> Y470.5 bulkhead has been IVD coated for<br />

corrosi<strong>on</strong> protecti<strong>on</strong>. As part <str<strong>on</strong>g>of</str<strong>on</strong>g> this IVD producti<strong>on</strong> process <strong>the</strong> fresh aluminium surface is<br />

etched. This etching has a detrimental effect <strong>on</strong> <strong>the</strong> fatigue life <str<strong>on</strong>g>of</str<strong>on</strong>g> coup<strong>on</strong>s made from a<br />

similar material <strong>7050</strong>-T7451 (Barter 1999). A comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> peened fatigue life versus etch<br />

fatigue life, Figure 32, shows <strong>the</strong> benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> peening compared to an etched surface over a<br />

large range <str<strong>on</strong>g>of</str<strong>on</strong>g> stresses.<br />

Etched <strong>Fatigue</strong> <strong>Life</strong><br />

Peened <strong>Fatigue</strong> <strong>Life</strong><br />

500<br />

450<br />

Max Stress (MPa)<br />

400<br />

350<br />

300<br />

250<br />

0 50 100 150 200 250 300 350 400<br />

IARP03a programs<br />

Figure 32: <strong>Fatigue</strong> test results using IARP03a+marker spectrum comparing an etched surface finish<br />

with a peened surface finish. <str<strong>on</strong>g>The</str<strong>on</strong>g> peening was d<strong>on</strong>e as per AMRL standards.<br />

All testing was d<strong>on</strong>e under spectrum loading using a fighter aircraft representative spectrum<br />

(IARPO3a), which equates to approximately <strong>on</strong>e year <str<strong>on</strong>g>of</str<strong>on</strong>g> flying. This is <strong>the</strong> spectrum applied<br />

to <strong>the</strong> FT55 fatigue test and FT488/2 bulkhead fatigue test.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> crack growth rate and initial disc<strong>on</strong>tinuity size were measured for each specimen. This<br />

provided a distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fatigue initiati<strong>on</strong> starter sizes (“y” intercept in Figure 33) and crack<br />

growth rates (slopes in Figure 33). For a particular stress <strong>the</strong> fatigue crack growth rate<br />

showed very little variati<strong>on</strong>, <strong>the</strong>refore <strong>on</strong>ly <strong>the</strong> mean slope was used for all subsequent<br />

analysis. By using <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fatigue starters and <strong>the</strong> mean crack growth rate, Figure<br />

33, it is possible to determine <strong>the</strong> status <str<strong>on</strong>g>of</str<strong>on</strong>g> each aircraft and <strong>the</strong> repair procedure needed.<br />

42


DSTO-RR-0208<br />

420MPa 390MPa 330MPa<br />

Depth <str<strong>on</strong>g>of</str<strong>on</strong>g> Material to be Removed<br />

(mm)<br />

10.00<br />

1.00<br />

0.10<br />

0.01<br />

0 2000 4000 6000 8000 10000<br />

Simulated Flight Hours (SFH)<br />

Figure 33: A typical plot showing how much material needs to be removed from an un-peened regi<strong>on</strong><br />

to ensure a 1/1000 chance <str<strong>on</strong>g>of</str<strong>on</strong>g> a crack being present. <str<strong>on</strong>g>The</str<strong>on</strong>g> curve is a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 3σ<br />

fatigue starter and mean crack growth slopes for each stress.<br />

A similar plot for <strong>the</strong> peened specimens has a higher 3σ initial flaw size but slower fatigue<br />

crack growth rates (ie lower slopes).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se plots form <strong>the</strong> basis for <strong>the</strong> repair procedure as <strong>the</strong>y indicate how much material must<br />

be removed from <strong>the</strong> surface, at a given stress, before <strong>the</strong> peening process should be<br />

performed. To take full account <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> peening LIF any “damaged surface material” must be<br />

removed. This ensures that no cracks are present in <strong>the</strong> surface which would reduce <strong>the</strong><br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> repair peening. <str<strong>on</strong>g>The</str<strong>on</strong>g> LIF varies with stress, but at <strong>the</strong> stresses representing this<br />

regi<strong>on</strong> (420MPa) a minimum LIF=1.5 can be expected.<br />

Based <strong>on</strong> <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> material that could be removed (definite limits based <strong>on</strong> FE analysis)<br />

and <strong>the</strong> NDI limits an individual aircraft can be lifed as a safe-life aircraft or a safety-byinspecti<strong>on</strong><br />

aircraft. <str<strong>on</strong>g>The</str<strong>on</strong>g> approach is shown in Figure 34.<br />

43


DSTO-RR-0208<br />

Y470 X19 pocket<br />

Peened<br />

Previously<br />

N<strong>on</strong>-peened<br />

regi<strong>on</strong><br />

Repair as per<br />

documentati<strong>on</strong>.<br />

Maintain <strong>on</strong> Safe <strong>Life</strong><br />

Determine depth <str<strong>on</strong>g>of</str<strong>on</strong>g> material<br />

to be removed to ensure c<strong>on</strong>fident<br />

removal <str<strong>on</strong>g>of</str<strong>on</strong>g> cracks, Figure 33<br />

Based <strong>on</strong> NDI threshold<br />

and FE analysis.<br />

Requiring less than<br />

500micr<strong>on</strong>s for Safe <strong>Life</strong><br />

Requiring greater than<br />

500micr<strong>on</strong>s for Safe <strong>Life</strong><br />

Repair (full cut) as<br />

per documentati<strong>on</strong>.<br />

Maintain <strong>on</strong> Safe <strong>Life</strong><br />

Repair (full cut) as<br />

per documentati<strong>on</strong>.<br />

Maintain <strong>on</strong> Safe <strong>Life</strong><br />

Repair (cut to NDI<br />

limit) Maintain <strong>on</strong><br />

Safety-by-Inspecti<strong>on</strong><br />

Figure 34: Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> proposed DSTO Y470 X19 pocket repair process. In <strong>the</strong> RAAF fleet <strong>the</strong><br />

X-19 pocket has not previously been peened. <str<strong>on</strong>g>The</str<strong>on</strong>g> 500µm (0.02 inch) LPI limit is based <strong>on</strong><br />

current AAP NDI limitati<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> complete details <str<strong>on</strong>g>of</str<strong>on</strong>g> this repair specificati<strong>on</strong> are present in a report by (Sharp, Barter and<br />

Clark, 2000). <str<strong>on</strong>g>The</str<strong>on</strong>g> report allows <strong>the</strong> RAAF to assess <strong>the</strong> status <str<strong>on</strong>g>of</str<strong>on</strong>g> each aircraft and determine<br />

future repair times or replacement times.<br />

44


DSTO-RR-0208<br />

3.5.3 IFOSTP <strong>Fatigue</strong> Tests<br />

In additi<strong>on</strong> to <strong>the</strong> X-19 repair opti<strong>on</strong> described above, <strong>the</strong> peening process developed by<br />

DSTO and summarised in secti<strong>on</strong> 3.3.3 has been used <strong>on</strong> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> IFOSTP structural test<br />

articles, including FT55, FT46 and FT488/2 bulkhead test. In each case a comp<strong>on</strong>ent/regi<strong>on</strong><br />

was repaired by peening to extend its local fatigue life and allow <strong>the</strong> full-scale fatigue tests to<br />

c<strong>on</strong>tinue.<br />

Typical examples <str<strong>on</strong>g>of</str<strong>on</strong>g> structural repairs with <strong>the</strong> DSTO repair process used <strong>on</strong> IFOSTP are;<br />

1. FT55 Y470 crotch regi<strong>on</strong> repair<br />

2. FT46 stub frame regi<strong>on</strong> repair<br />

3. FT488/2 6inch radius repair<br />

Each repair had its own complicati<strong>on</strong>s but in all cases <strong>the</strong> damaged material was removed<br />

<strong>the</strong> surface polished and <strong>the</strong>n <strong>the</strong> surface peened using <strong>the</strong> specificati<strong>on</strong>s set out in secti<strong>on</strong><br />

3.2.3. <str<strong>on</strong>g>The</str<strong>on</strong>g> peening process has now become a primary opti<strong>on</strong> for repair <strong>on</strong> all IFOSTP tests<br />

for localised life extensi<strong>on</strong>.<br />

45


DSTO-RR-0208<br />

4. Discussi<strong>on</strong><br />

<str<strong>on</strong>g>Peening</str<strong>on</strong>g> research around <strong>the</strong> world and at AMRL has shown that a higher level <str<strong>on</strong>g>of</str<strong>on</strong>g> quality<br />

c<strong>on</strong>trol is needed for peening aluminium alloys than for high strength steels. This arises<br />

because in both materials, fatigue life is c<strong>on</strong>trolled by <strong>the</strong> residual compressive stress, but for<br />

aluminium alloys <strong>the</strong> surface damage caused by peening is a major competing effect, tending<br />

to reduce fatigue life. In steels, <strong>the</strong> residual compressive stress c<strong>on</strong>trols fatigue life because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> limited surface damage which can be imparted by <strong>the</strong> glass beads, and <strong>the</strong> higher<br />

compressive stresses generated At low fatigue stresses, <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> small surface flaws is<br />

a dominant factor in fatigue life, so large life extensi<strong>on</strong> can be achieved by appropriate<br />

peening methods, which will reduce <strong>the</strong> propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se small flaws.<br />

This effect is highlighted in early AMRL experiments, Figure 11, which show that a crossover<br />

point exists above which peening can reduce fatigue life depending <strong>on</strong> <strong>the</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

peening treatment (ie surface finish). C<strong>on</strong>sidering this informati<strong>on</strong>, AMRL postulated a<br />

correlati<strong>on</strong> between surface finish (ie roughness) and fatigue life. Fur<strong>the</strong>r experiments <strong>on</strong> a<br />

reworked surface supported this correlati<strong>on</strong> except where extensive re-peening <str<strong>on</strong>g>of</str<strong>on</strong>g> damaged<br />

surfaces had occurred. In such cases <strong>the</strong> surface roughness was low but <strong>the</strong> fatigue life was<br />

short. Visual examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cross-secti<strong>on</strong>s revealed that any debris that was present in <strong>the</strong><br />

surface after <strong>the</strong> original peen, had been hammered deeper into <strong>the</strong> surface al<strong>on</strong>g with <strong>the</strong><br />

flattening <str<strong>on</strong>g>of</str<strong>on</strong>g> many laps and folds. This result means that surface roughness does not<br />

necessarily correlate with fatigue life for specimens which have peening directly over<br />

previous peening. High-saturati<strong>on</strong> peening will suffer <strong>the</strong> same limitati<strong>on</strong>s in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

surface finish/ fatigue life correlati<strong>on</strong> when subjected to <strong>the</strong>se high stresses.<br />

AMRL experiments have clearly dem<strong>on</strong>strated <strong>the</strong> competing processes involved in<br />

aluminium alloy fatigue life extensi<strong>on</strong> due to peening and have been instrumental in<br />

developing an AMRL rework procedure which can be used to extend <strong>the</strong> fatigue life <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

critical areas by repeated polishing and re-peening.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re appears to be very little variati<strong>on</strong> in <strong>the</strong> residual compressive stresses achieved by<br />

different peening processes. At this stage, <strong>on</strong>ly x-ray residual stress measurements have<br />

been made, although a number <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r residual stress methods are currently being<br />

examined. <str<strong>on</strong>g>The</str<strong>on</strong>g>se include “hole drilling”, neutr<strong>on</strong> radiography and a method developed in<br />

Canada by Marchand. <str<strong>on</strong>g>The</str<strong>on</strong>g> residual stress (240±40MPa) appears to be approximately half <strong>the</strong><br />

yield stress (480MPa) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>7050</strong> aluminium alloy.<br />

At <strong>the</strong> stresses tested (410MPa) using load spectrum Spec 16 (RAAF-22010 turning points),<br />

peening is always a benefit to fatigue life compared to a polished finish. However, at higher<br />

stresses poor peening can be detrimental to fatigue life. Early AMRL test results show a<br />

mean LIF <str<strong>on</strong>g>of</str<strong>on</strong>g> between 1.6 to 2.1 due to AMRL rework peening, though this mean life increase<br />

did not fully address <strong>the</strong> scatter in <strong>the</strong> peened fatigue life results. If <strong>the</strong> worst scatter case<br />

were to be used <strong>the</strong>n <strong>the</strong> LIF would be 1.2. This is significantly lower than <strong>the</strong> LIF <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.39<br />

suggested by MDA for peening.<br />

46


DSTO-RR-0208<br />

More recent research with <strong>the</strong> IARPO3a spectrum and normalizing o<strong>the</strong>r test results (various<br />

o<strong>the</strong>r spectrums) has shown, that for a stress around 400MPa, a LIF=1.5 could be used for <strong>the</strong><br />

AMRL rework peening process. This LIF=1.5 accounts for <strong>the</strong> scatter in <strong>the</strong> process and<br />

provides <strong>the</strong> appropriate safety factors needed for DEF-STAN 970 ie. 1/1000 likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

failure.<br />

It is also clear from <strong>the</strong> results that, providing any original peening is removed, a comp<strong>on</strong>ent<br />

can be reworked a number <str<strong>on</strong>g>of</str<strong>on</strong>g> times, restoring <strong>the</strong> original peened fatigue life each time. Any<br />

reducti<strong>on</strong> in thickness that would occur with each removal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> peened surface material<br />

would be course need to be evaluated. One possible limit to this procedure, however, might<br />

be provided by <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> sub-surface cracks to failure; current research is examining this<br />

possibility.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re appear to be a number <str<strong>on</strong>g>of</str<strong>on</strong>g> different peening process combinati<strong>on</strong>s in <strong>the</strong> RAAF and CF<br />

fleet. <str<strong>on</strong>g>The</str<strong>on</strong>g> FS488 bulkhead (or o<strong>the</strong>r two wing carry through bulkheads) were delivered in<br />

two c<strong>on</strong>diti<strong>on</strong>s.<br />

1. OEM flapper wheel peening or steel bead peening – believed to be <strong>on</strong> early aircraft.<br />

2. OEM glass bead peening - later aircraft.<br />

As yet AMRL has not been able to determine which bulkheads have experienced which<br />

peening process. Early experiments indicate that steel bead peening process provides severe<br />

surface damage. As yet, AMRL and Canada have c<strong>on</strong>ducted no experiments <strong>on</strong> flapper<br />

wheel peening, which appears to be <strong>the</strong> process used <strong>on</strong> all <strong>the</strong> early bulkheads. To add to<br />

this <strong>the</strong>re have been a number <str<strong>on</strong>g>of</str<strong>on</strong>g> localised rework treatments.<br />

1. ECP45 aircraft -RAAF, polish all original OEM peen finish <strong>the</strong>n re-peen to AMRL<br />

process.<br />

-CF, peen directly over OEM peen.<br />

2. Ceramic Bead Peen - this process is for peening localised areas that generally have not<br />

been previously peened.<br />

This variati<strong>on</strong> in procedures means that <strong>the</strong> RAAF and CF F/A-18 fleets could have a range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> LIF’s depending <strong>on</strong> <strong>the</strong> peening process. Clearly, before any allowance for a LIF is used, a<br />

through examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> how each peening process variable affects fatigue life is needed.<br />

Additi<strong>on</strong>al areas <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern are <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> peening into and around radii, leaving unpeened<br />

areas and over-peening. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is also research being performed in Canada<br />

examining a robotic peening system to minimise <strong>the</strong>se variables.<br />

All this work has to date assumed that <strong>the</strong>re is no interacti<strong>on</strong> between microstructure and<br />

peening <strong>on</strong> fatigue life. AMRL has already shown (Sharp et al. 1996), that <strong>the</strong>re is significant<br />

variati<strong>on</strong> in <strong>the</strong> microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>7050</strong> bulkheads depending <strong>on</strong> <strong>the</strong> date and<br />

manufacturer. As yet, however, no evidence has been seen <str<strong>on</strong>g>of</str<strong>on</strong>g> this having a major influence<br />

<strong>on</strong> peened fatigue life.<br />

47


DSTO-RR-0208<br />

5. C<strong>on</strong>clusi<strong>on</strong><br />

1. <str<strong>on</strong>g>The</str<strong>on</strong>g> benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> peening in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> fatigue life extensi<strong>on</strong> are dependent <strong>on</strong> <strong>the</strong> applied<br />

stress - <strong>the</strong> higher <strong>the</strong> applied stress <strong>the</strong> lower <strong>the</strong> benefit. For <strong>the</strong> test stresses described<br />

in this report, <strong>the</strong> fatigue life improvement factor for peening ranges from 1.2 to 6 when<br />

using <strong>the</strong> AMRL proposed rework specificati<strong>on</strong>. For a peak stress between 400-420MPa,<br />

comm<strong>on</strong> for highly stressed regi<strong>on</strong>s <strong>on</strong> F/A-18 bulkheads, a LIF=1.5 is applicable, which<br />

is slightly higher than <strong>the</strong> 1.39 LIF declared by <strong>the</strong> OEM for peening.<br />

2. <str<strong>on</strong>g>The</str<strong>on</strong>g> research undertaken has provided a good understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> competing effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

residual stress and surface damage in c<strong>on</strong>trolling fatigue life in peened comp<strong>on</strong>ents.<br />

3. <str<strong>on</strong>g>The</str<strong>on</strong>g> AMRL research program has developed a rework process which <str<strong>on</strong>g>of</str<strong>on</strong>g>fers <strong>the</strong> potential<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> repeatedly restoring <strong>the</strong> fatigue life <str<strong>on</strong>g>of</str<strong>on</strong>g> critical locati<strong>on</strong>s <strong>on</strong> <strong>the</strong> F/A-18 aircraft.<br />

4. <str<strong>on</strong>g>The</str<strong>on</strong>g> progressive change in peening media (steel shot to glass bead to ceramic bead) has<br />

caused significant improvements in fatigue life. <str<strong>on</strong>g>The</str<strong>on</strong>g>se changes, combined with a total<br />

loss system or better filtering, has reduced <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> broken beads (glass and<br />

ceramic) and odd-shaped beads (steel) that impact <strong>the</strong> surface. Broadly, this has reduced<br />

<strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> defects embedded into <strong>the</strong> surface.<br />

5. Surface roughness (related to peening quality) can be correlated to fatigue life <strong>on</strong>ly if <strong>the</strong><br />

peening is performed <strong>on</strong> a clean polished surface - <strong>the</strong> smoo<strong>the</strong>r <strong>the</strong> peened surface finish<br />

<strong>the</strong> better <strong>the</strong> fatigue life. Where peening has occurred directly over earlier peening,<br />

surface roughness cannot be correlated with fatigue life.<br />

6. <str<strong>on</strong>g>The</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> residual compressive stress appears to vary little under <strong>the</strong> different<br />

c<strong>on</strong>diti<strong>on</strong>s examined in this report, although in all cases peening saturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface<br />

was ensured. In <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium alloys, <strong>the</strong> plastically deformed regi<strong>on</strong> is many<br />

times larger than <strong>the</strong> bead size used - this is not <strong>the</strong> case when peening steel, in which <strong>the</strong><br />

deformed regi<strong>on</strong> is comparable to <strong>the</strong> bead size.<br />

7. <str<strong>on</strong>g>The</str<strong>on</strong>g> OEM peening specificati<strong>on</strong> does not give <strong>the</strong> optimal peening c<strong>on</strong>diti<strong>on</strong>s for<br />

obtaining <strong>the</strong> maximum life improvement factor for aluminium alloys. <str<strong>on</strong>g>The</str<strong>on</strong>g> main problem<br />

arises because <strong>the</strong> peening operati<strong>on</strong> is not mechanised, but relies <strong>on</strong> human operators,<br />

and <strong>the</strong> envir<strong>on</strong>ment is far from ideal in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> making detailed quality c<strong>on</strong>trol<br />

assessments “<strong>on</strong> <strong>the</strong> fly”.<br />

8. Fur<strong>the</strong>r research is underway and planned to establish a more through statistical basis for<br />

implementing peening methods.<br />

48


DSTO-RR-0208<br />

6. Bibliography<br />

Al-Hassani S.T.S., An Engineering Approach to Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g> Mechanics, Proc. 2 nd Int. C<strong>on</strong>f.<br />

On Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g>, ICSP-2 1984, Editor Fuchs A.O., Paramus, N.J., pp275-282<br />

Al-Hassani S.T.S, Mechanical Aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> Residual Stress Development in Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g>, 1 st<br />

Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g>, 14-17 September, Paris, Editor Niku-Lari A.,<br />

Pergam<strong>on</strong> Press, pp 583-602, 1981<br />

Almen J.O, <strong>Fatigue</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Metals as Influenced by Design and Internal Stresses, Surface Stressing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Metals, AM. Soc. Metals, 1947, pp 33-84<br />

Anders<strong>on</strong> I., Polishing/Glass Bead <str<strong>on</strong>g>Peening</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FS488 Bulkhead Rework Area, DSTO minute,<br />

June 1990<br />

Athiniotis N., F/A-18 Fleet 488 Bulkhead <str<strong>on</strong>g>Peening</str<strong>on</strong>g> Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile Depths and Microstructural<br />

Deformati<strong>on</strong>, AMRL DAFA Report M40/93, April 1993<br />

Barter S.A. and Houst<strong>on</strong> M.I., Examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Methods to C<strong>on</strong>trol <strong>the</strong> Depth <str<strong>on</strong>g>of</str<strong>on</strong>g> Surface<br />

Removal <strong>on</strong> <strong>the</strong> F/A-18 488 Bulkhead, DSTO-DDP-0192, 1997<br />

Barter S.A., FS488 Bulkhead Fracture Surface Preliminary Fractographic Examinati<strong>on</strong>, Defect<br />

Assessment and Failure Analysis Report M45/90, July 1990<br />

Barter S.A., Polishing/Glass Bead <str<strong>on</strong>g>Peening</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> FS488 Bulkhead Rework Area, A/C Mat’s Ref<br />

M59/90/SAB, June 1990<br />

Barter S.A., <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Prior Etching <strong>on</strong> <strong>Fatigue</strong> <strong>Life</strong>, Presentati<strong>on</strong> IFOSTP TRM, Canada,<br />

November 1999<br />

Berry W.R., <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g> with <strong>Aluminium</strong> <strong>Alloy</strong> Shot <strong>on</strong> <strong>the</strong> <strong>Fatigue</strong> <strong>Life</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Extruded L65 <strong>Aluminium</strong> <strong>Alloy</strong>, S. and T. Memo 1/60, Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Aviati<strong>on</strong>, 1960<br />

Boeing Process Specificati<strong>on</strong> BAC5730 RevK, Specificati<strong>on</strong> for peening metal parts, 1988<br />

Bresnahan K. and Park J.H., Vertical Stabilizer Stub Frame <strong>Life</strong> Improvement Testing and<br />

Analysis - Glass Bead Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g>, Northrop Memo 3881-90-100, 20/6/1990<br />

Bresnahan K. and Park J.H., Vertical Stabilizer Stub Frame <strong>Life</strong> Improvement Testing and<br />

Analysis - Ceramic Bead Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g>, Northrop Memo 3881-91-026, 20/6/1990<br />

Butz G.A. and Lyst J.O., Improvement in <strong>Fatigue</strong> Resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Aluminium</strong> <strong>Alloy</strong>s by Surface<br />

Cold-Working, Materials Research and Standards, ALCOA, December 1961<br />

49


DSTO-RR-0208<br />

Clayt<strong>on</strong> J.Q. and Clark G., <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Steel Shot and Glass Bead <str<strong>on</strong>g>Peening</str<strong>on</strong>g> Treatments <strong>on</strong> <strong>the</strong><br />

<strong>Fatigue</strong> Resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>7050</strong>-T76351 <strong>Aluminium</strong> <strong>Alloy</strong>, Proc. Aust. Fract. Group, “Fracture<br />

Mechanics in Engineering Practice”, Melbourne 1988, pp44-51<br />

Clark G. and Clayt<strong>on</strong> J.Q., <str<strong>on</strong>g>Effect</str<strong>on</strong>g>iveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Peening</str<strong>on</strong>g> Treatments in Improving <strong>Fatigue</strong><br />

Resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>7050</strong> <strong>Aluminium</strong> <strong>Alloy</strong> under C<strong>on</strong>stant Amplitude and Spectrum Loading,<br />

Aust. Surface Engng C<strong>on</strong>f., University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sth Australia, 1991<br />

Engineering Sciences Data Unit, Guide to <strong>the</strong> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g> <strong>on</strong> <strong>Fatigue</strong> Strength,<br />

92015, ESDU, May 1992<br />

Fair G, Noble B and Waterhouse R.B., <str<strong>on</strong>g>The</str<strong>on</strong>g> Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Compressive Stresses Induced by Shot<br />

<str<strong>on</strong>g>Peening</str<strong>on</strong>g> under C<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fatigue and Fretting <strong>Fatigue</strong>, Advances in Surface Treatments,<br />

Vol 1, Pergam<strong>on</strong> Press, UK, 1984<br />

Fuchs H.O., Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s and Specificati<strong>on</strong>s, ASTM STP 196, Am. Soc. Testing Mats.,<br />

1956, pp22<br />

Gallardo J.L., Optimum Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g> Intensity using Ceramic Shot <strong>on</strong> <strong>7050</strong>-T7451 5.675-inch<br />

thick <strong>Aluminium</strong>, Northrop Memo N3881-91-021, 26/2/1991<br />

Graham D., Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> FS488 Bulkhead, ARLENGSTL Report F1/49, January 1986<br />

Hamm<strong>on</strong>d D.W. and Meguid S.A., <strong>Fatigue</strong> Fracture and Residual Stress Relaxati<strong>on</strong> in Shot-<br />

Peened Comp<strong>on</strong>ents, Surface Engineering, Elsevier Science Pty Ltd, 1990, pp386-392<br />

Iida K., Dent and Affected Layer produced by Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g>, ICSP-2 1984, Paramus, N.J.,<br />

pp283-293<br />

Jaenss<strong>on</strong> B., <str<strong>on</strong>g>The</str<strong>on</strong>g> Influence <strong>on</strong> <strong>the</strong> <strong>Fatigue</strong> Strength <str<strong>on</strong>g>of</str<strong>on</strong>g> Al <strong>Alloy</strong> parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> relati<strong>on</strong>ship<br />

between <strong>the</strong> Surface Residual Stress State and <strong>the</strong> Load-Induced Stress State, 1 st Internati<strong>on</strong>al<br />

C<strong>on</strong>ference <strong>on</strong> Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g>, 14-17 September, Paris, Editor Niku-Lari A., Pergam<strong>on</strong> Press,<br />

pp 435-444, 1981<br />

Lambase J., Y488 Bulkhead <strong>Fatigue</strong> Specimen Failure Analysis, Northrop Memo 3881-90-021,<br />

19/2/1990<br />

Luo W., Noble B and Waterhouse R.B., <str<strong>on</strong>g>The</str<strong>on</strong>g> Interacti<strong>on</strong> between Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g> and Heat<br />

Treatment <strong>on</strong> <strong>the</strong> <strong>Fatigue</strong> and Fretting <strong>Fatigue</strong> Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> High Strength <strong>Aluminium</strong><br />

<strong>Alloy</strong> 7075, Proc 2 nd Int. C<strong>on</strong>f. <strong>on</strong> Impact Treatment Procedure, Editor Meguid S.A., Elsevier<br />

Applied Science Publicati<strong>on</strong>s, Cranfield, September 1986<br />

Luo W., Noble B and Waterhouse R.B, <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g> Intensity <strong>on</strong> <strong>the</strong> <strong>Fatigue</strong><br />

and Fretting <strong>Fatigue</strong> Behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> an <strong>Aluminium</strong> <strong>Alloy</strong>, Advances in Surface Treatments and<br />

Surface Finishing, Vol 5, Pergam<strong>on</strong> Press, UK, 1987, pp 145-153<br />

50


DSTO-RR-0208<br />

Meguid S.A., <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Partial Coverage up<strong>on</strong> <strong>the</strong> <strong>Fatigue</strong> Fracture Behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> Peened<br />

Comp<strong>on</strong>ents, Fat. Fract. Engng Mater. Struct., Vol 14, No. 5, pp 515-530, 1991<br />

McD<strong>on</strong>nell Douglas Process Specificati<strong>on</strong>, <str<strong>on</strong>g>Peening</str<strong>on</strong>g>, PS 14023 Revisi<strong>on</strong> H,<br />

MIL-STD-852, Glass Bead <str<strong>on</strong>g>Peening</str<strong>on</strong>g> Procedures, 18 April 1988<br />

MIL-S-13165C, Shot peening <str<strong>on</strong>g>of</str<strong>on</strong>g> metal Parts, 27 November 1991<br />

Mutoh Y., Fair G.H., Noble B. and Waterhouse R.B., <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Residual Stresses Induced<br />

by Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g> <strong>on</strong> <strong>Fatigue</strong> Crack Propagati<strong>on</strong> in Two High-Strength <strong>Aluminium</strong> <strong>Alloy</strong>s,<br />

<strong>Fatigue</strong> Fract. Engng Mater. Struct., Vol 10, No. 4, 1987, pp261-272<br />

Nobre J.P., Kornmeier M., Dias A.M. and Scholtes B., Use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Hole-drilling Method for<br />

Measuring Residual Stresses in Highly Shot-peened Surfaces, Experimental Mechanics, Vol<br />

40, No. 3, 2000, pg 289<br />

Olso<strong>on</strong>-Jacques C., Residual Stress Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <strong>on</strong> Shot Peened F/A-18 aluminium <strong>Alloy</strong><br />

Surfaces” DSTO-TN-0230, 1999<br />

Oshida Y. and Daly J., <strong>Fatigue</strong> Damage Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Shot Peened High Strength <strong>Aluminium</strong><br />

<strong>Alloy</strong>, Surface Engineering, Elsevier Science Pty Ltd, 1990, pp404-416<br />

Roth M and Yanishevsky M, Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Heat Cycles <strong>on</strong> <strong>the</strong> Residual<br />

Stresses and <strong>Fatigue</strong> <strong>Life</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Shot Peened <strong>7050</strong>-T7451 Al <strong>Alloy</strong>, Presentati<strong>on</strong> 21 st IFOSTP<br />

Technical Review meeting, November 1999<br />

Schutz W., <strong>Fatigue</strong> <strong>Life</strong> Improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> High Strength Materials by Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g>, 1 st<br />

Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g>, 14-17 September, Paris, Editor Niku-Lari A.,<br />

Pergam<strong>on</strong> Press, pp 423-433, 1981<br />

Simps<strong>on</strong> R.S., Development <str<strong>on</strong>g>of</str<strong>on</strong>g>f a Ma<strong>the</strong>matical Model for Predicting <strong>the</strong> Percentage <strong>Fatigue</strong><br />

<strong>Life</strong> Increase Resulting from Shot Peened Comp<strong>on</strong>ents, Phase 1, AFWAL-TR-84-3116, April<br />

1985<br />

Sharp P.K. and Clayt<strong>on</strong> J.Q., <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Peening</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Fatigue</strong> <strong>Life</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Aluminium</strong> <strong>Alloy</strong>s,<br />

Technical Presentati<strong>on</strong> DSTO, Melbourne, 1993<br />

Sharp P.K., Clayt<strong>on</strong> J.Q. and Clark G., <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>Fatigue</strong> Resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> Peened <strong>7050</strong>-T7451<br />

<strong>Aluminium</strong> <strong>Alloy</strong> - Repair and Re-Treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> a Comp<strong>on</strong>ent Surface, <strong>Fatigue</strong> Fract. Engng<br />

Mater. Struct. Vol 17, No. 3, 1994, pp243-252<br />

Sharp P.K. and Byrnes R., <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mid-<strong>Life</strong> <str<strong>on</strong>g>Peening</str<strong>on</strong>g> and Rework <strong>on</strong> <strong>Fatigue</strong> <strong>Life</strong>,<br />

DSTO-DDP-164, July 1996<br />

Sharp P.K. and Byrnes R., F/A-18 470.5 Bulkhead Crotch Repair Coup<strong>on</strong> Tests, DSTO-DDP-<br />

179, July 1996<br />

51


DSTO-RR-0208<br />

Sharp P.K. and Clark G., <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Peening</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Fatigue</strong> <strong>Life</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Aluminium</strong> <strong>Alloy</strong>s, <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

9 th Internati<strong>on</strong>al C<strong>on</strong>gress <strong>on</strong> Fracture, Sydney, 1997<br />

Sharp P.K., Barter S.A. and Clark G., Localised <strong>Life</strong> Extensi<strong>on</strong> Specificati<strong>on</strong> for <strong>the</strong> F/A-18<br />

Y470 X19 Pocket, DSTO-TN-0279, May 2000<br />

Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g> Applicati<strong>on</strong>s, Metal Improvements Company Inc, Seventh Editi<strong>on</strong><br />

Smith T.R, FS 488 Bulkhead Shot Peen Coup<strong>on</strong> Test Program, MDA F/A-18 Project<br />

Presentati<strong>on</strong>, November 1990<br />

Stanier .M., FS488 Bulkhead Polishing During Incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> AFC44 and AFC129, TFP 399<br />

pt13 (81), August 1990<br />

Ward E.J SQNLDR, Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Y488 Bulkhead, STL 2506/3/1-2-2 TECH, ,<br />

ENGMECHSTL Report #72, January 1991<br />

Ward E.J SQNLDR, Y488 Bulkhead Shot peening and IVD Coating, STL 2506/3/1-2-2 TECH,<br />

ENGMECHSTL Report #90, May 1991<br />

Ward E.J SQNLDR, Y488 Bulkhead Shot peening and IVD Coating, STL 2506/3/1-2-2 TECH,<br />

ENGMECHSTL Report #98, July 1991<br />

Was G.S. and Pelloux R.M., <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Fatigue</strong> Behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Alloy</strong><br />

7075-T6, Met. Trans. A, 10A, May 1979, pp656-658<br />

7. Acknowledgments<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> authors would like to thank a number <str<strong>on</strong>g>of</str<strong>on</strong>g> people and organisati<strong>on</strong>s for <strong>the</strong>ir assistance in<br />

<strong>the</strong> programs discussed in this report.<br />

1. Christina Jacques-Olss<strong>on</strong> (MPD) and M<strong>on</strong>ash University Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics for <strong>the</strong><br />

residual stress analysis.<br />

2. ASTA Military Services (Aval<strong>on</strong>) and Hunter Aviati<strong>on</strong> and Engineering Services<br />

(Williamtown) for specimen preparati<strong>on</strong> and allowing access to <strong>the</strong>ir facilities.<br />

3. Rohan Byrnes, Nick Athiniotis and Sim<strong>on</strong> Barter for <strong>the</strong>ir work over <strong>the</strong> years which has<br />

c<strong>on</strong>tributed to this report.<br />

4. Dr John Clayt<strong>on</strong> was involved in all <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> early phases <str<strong>on</strong>g>of</str<strong>on</strong>g> this work.<br />

52


DSTO-RR-0208<br />

Appendix A:<br />

A.1. Spectrum Details<br />

SPECTRUM<br />

NAME<br />

SOURCE TURNING<br />

POINTS<br />

LARGE COUPON<br />

APPLIED STRESS<br />

SMALL COUPON<br />

APPLIED STRESS<br />

Spec 16 RAAF 22010 396 MPa<br />

ST16 USN 5922 410 MPa 417 MPa<br />

IARP03a CF 450MPa, 420MPa,<br />

390MPa, 360MPa<br />

Note for <strong>the</strong> small specimens K t = 1.035 and for <strong>the</strong> large coup<strong>on</strong>s K t = 1.055. All sequences<br />

feature repeats <str<strong>on</strong>g>of</str<strong>on</strong>g> are approximately 320 simulated flight hours (SFH).<br />

A.2. Almen Definiti<strong>on</strong><br />

Calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> impact energy or peening intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> shot stream is essential for<br />

c<strong>on</strong>trolled shot peening. <str<strong>on</strong>g>The</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> stream is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> media size, material,<br />

hardness, velocity and impingement angle. In order to specify, measure and calibrate impact<br />

energy, J.O. Almen developed a method utilising SAE 1070 spring steel specimens he called<br />

ALMEN strips.<br />

53


DSTO-RR-0208<br />

Figure 23: <str<strong>on</strong>g>The</str<strong>on</strong>g> standard Almen strips and process <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement (Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g> Applicati<strong>on</strong>s 7 th<br />

Editi<strong>on</strong>).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are three standard Almen strips currently in use; “A” strip 0.051inch thick, “C” strip<br />

0.094 inch thick and “N” strip 0.031inch thick. <str<strong>on</strong>g>The</str<strong>on</strong>g> approximate relati<strong>on</strong>ship between <strong>the</strong><br />

three Almen strip types is 3N= A= 0.3C. <str<strong>on</strong>g>The</str<strong>on</strong>g> useable range <str<strong>on</strong>g>of</str<strong>on</strong>g> curvature <strong>on</strong> an Almen strip<br />

is 0.004 to 0.024 inch.<br />

A.3. Saturati<strong>on</strong> Curve<br />

An Almen arc height is not properly termed intensity unless saturati<strong>on</strong> is achieved. In<br />

order to measure Almen saturati<strong>on</strong>, an intensity curve must be developed. Saturati<strong>on</strong> is<br />

defined as <strong>the</strong> earliest point <strong>on</strong> <strong>the</strong> curve where doubling <strong>the</strong> exposure time produces no<br />

more than ten percent (10%) increase in arc height.<br />

Arc Height<br />

Less than 10% increase<br />

T 2T Exposure Time<br />

Figure 24: <str<strong>on</strong>g>Peening</str<strong>on</strong>g> saturati<strong>on</strong> curve <strong>the</strong>ory (Shot <str<strong>on</strong>g>Peening</str<strong>on</strong>g> Applicati<strong>on</strong>s, 7 th Editi<strong>on</strong>).<br />

54


DSTO-RR-0208<br />

It should be noted that <strong>the</strong> saturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Almen strip and coverage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> part are not <strong>the</strong><br />

same, nor will <strong>the</strong>y necessarily occur at <strong>the</strong> same exposure time <strong>on</strong> <strong>the</strong> parts being peened.<br />

Saturati<strong>on</strong> is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> shot stream and establishes <strong>the</strong> actual intensity<br />

for <strong>the</strong> particular machine set-up.<br />

Saturati<strong>on</strong> should not be c<strong>on</strong>fused with coverage, which refers to <strong>the</strong> populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dimples<br />

<strong>on</strong> <strong>the</strong> surface as verified by coverage inspecti<strong>on</strong> techniques. Coverage is usually expressed<br />

as a percent coverage (eg 100% coverage). 100% coverage is reached when <strong>the</strong> original<br />

surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> material is obliterated entirely by overlapping peening dimples. 150%<br />

coverage would be exposing <strong>the</strong> part to 1.5 times <strong>the</strong> time required to achieve 100%<br />

coverage. In <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> F/A-18, 200% coverage is specified for all peening work.<br />

55


DSTO-RR-0208<br />

A.4. Surface Roughness<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> surface roughness used in this report are standard measurements<br />

produced by a laser surface pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iler. <str<strong>on</strong>g>The</str<strong>on</strong>g> values are based <strong>on</strong> German DIN standards but<br />

typical <str<strong>on</strong>g>of</str<strong>on</strong>g> roughness measurements specified in numerous machining handbooks.<br />

Z 1<br />

Z 2 = R max<br />

Z 3<br />

Z 4<br />

L<br />

R max = <strong>the</strong> largest single roughness depth within <strong>the</strong> evaluati<strong>on</strong> length. <str<strong>on</strong>g>The</str<strong>on</strong>g> required<br />

standard is DIN 4768<br />

R z = mean value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> single roughness depths “Z” <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>secutive sampling lengths. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

required standard is DIN 4768<br />

R z = (Z 1 + Z 2 + Z 3 + ….. + Z n )/n<br />

R a = is <strong>the</strong> arithmetic mean <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> areas <str<strong>on</strong>g>of</str<strong>on</strong>g> all pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> roughness pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile.<br />

R a = [Integral {y(x)}dx] /L<br />

56


DISTRIBUTION LIST<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Peening</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Fatigue</strong> <strong>Life</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>7050</strong> <strong>Aluminium</strong> <strong>Alloy</strong><br />

DEFENCE ORGANISATION<br />

Task Sp<strong>on</strong>sor<br />

DGTA-ASI<br />

S&T Program<br />

Chief Defence Scientist<br />

FAS Science Policy<br />

P.K. Sharp and G. Clark<br />

AUSTRALIA<br />

⎫<br />

⎬ shared copy<br />

⎭<br />

AS Science Corporate Management<br />

Director General Science Policy Development<br />

Counsellor Defence Science, L<strong>on</strong>d<strong>on</strong> (Doc Data Sheet)<br />

Counsellor Defence Science, Washingt<strong>on</strong> (Doc Data Sheet)<br />

Scientific Adviser to MRDC Thailand (Doc Data Sheet )<br />

Scientific Adviser Policy and Command<br />

Navy Scientific Adviser (Doc Data Sheet and distributi<strong>on</strong> list <strong>on</strong>ly)<br />

Scientific Adviser - Army (Doc Data Sheet and distributi<strong>on</strong> list <strong>on</strong>ly)<br />

Air Force Scientific Adviser<br />

Director Trials<br />

Aer<strong>on</strong>autical and Maritime Research Laboratory<br />

Director<br />

Chief <str<strong>on</strong>g>of</str<strong>on</strong>g> Airframes and Engines Divisi<strong>on</strong><br />

Task Manager: G. Clark<br />

Author(s): P.K. Sharp<br />

O<strong>the</strong>r AED Staff: L. Molent<br />

S. Barter<br />

Canadian TLO IFOSTP<br />

Q.Liu<br />

P. Baduramani<br />

USAF AFRL D. Peeler<br />

DSTO Library and Archives<br />

Library Fishermans Bend (Doc Data Sheet )<br />

Library Maribyrn<strong>on</strong>g (Doc Data Sheet )<br />

Library Salisbury<br />

Australian Archives<br />

Library, MOD, Pyrm<strong>on</strong>t (Doc Data sheet <strong>on</strong>ly)<br />

US Defense Technical Informati<strong>on</strong> Center, 2 copies


UK Defence Research Informati<strong>on</strong> Centre, 2 copies<br />

Canada Defence Scientific Informati<strong>on</strong> Service, 1 copy<br />

NZ Defence Informati<strong>on</strong> Centre, 1 copy<br />

Nati<strong>on</strong>al Library <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia, 1 copy<br />

Capability Systems Staff<br />

Director General Maritime Development (Doc Data Sheet <strong>on</strong>ly)<br />

Director General Aerospace Development (Doc Data Sheet <strong>on</strong>ly)<br />

Knowledge Staff<br />

Director General Command, C<strong>on</strong>trol, Communicati<strong>on</strong>s and Computers (DGC4)<br />

(Doc Data Sheet <strong>on</strong>ly)<br />

Director General Intelligence, Surveillance, Rec<strong>on</strong>naissance, and Electr<strong>on</strong>ic Warfare<br />

(DGISREW)R1-3-A142 CANBERRA ACT 2600 (Doc Data Sheet <strong>on</strong>ly)<br />

Director General Defence Knowledge Improvement Team (DGDKNIT)<br />

R1-5-A165, CANBERRA ACT 2600 (Doc Data Sheet <strong>on</strong>ly)<br />

Army<br />

Stuart Schnaars, ABCA Standardisati<strong>on</strong> Officer, Tobruck Barracks, Puckapunyal,<br />

3662(4 copies)<br />

SO (Science), Deployable Joint Force Headquarters (DJFHQ) (L), MILPO Gallipoli<br />

Barracks, Enoggera QLD 4052 (Doc Data Sheet <strong>on</strong>ly)<br />

NPOC QWG Engineer NBCD Combat Development Wing, Tobruk Barracks,<br />

Puckapunyal, 3662 (Doc Data Sheet relating to NBCD matters <strong>on</strong>ly)<br />

Air Force<br />

DGTA-ASI<br />

SQNLDR David Zemel<br />

TFLMSQN – Chief Engineer SQNLDR Greg Young<br />

RAAF TLO IFOSTP (Canada) SQNLDR Jas<strong>on</strong> Agis<br />

Intelligence Program<br />

DGSTA Defence Intelligence Organisati<strong>on</strong><br />

Manager, Informati<strong>on</strong> Centre, Defence Intelligence Organisati<strong>on</strong><br />

Corporate Support Program<br />

Library Manager, DLS-Canberra<br />

UNIVERSITIES AND COLLEGES<br />

Australian Defence Force Academy<br />

Library<br />

Head <str<strong>on</strong>g>of</str<strong>on</strong>g> Aerospace and Mechanical Engineering<br />

Serials Secti<strong>on</strong> (M list), Deakin University Library, Geel<strong>on</strong>g, 3217 (<br />

Hargrave Library, M<strong>on</strong>ash University (Doc Data Sheet <strong>on</strong>ly)<br />

Librarian, Flinders University<br />

OTHER ORGANISATIONS


NASA (Canberra)<br />

AusInfo<br />

OUTSIDE AUSTRALIA<br />

ABSTRACTING AND INFORMATION ORGANISATIONS<br />

Library, Chemical Abstracts Reference Service<br />

Engineering Societies Library, US<br />

Materials Informati<strong>on</strong>, Cambridge Scientific Abstracts, US<br />

Documents Librarian, <str<strong>on</strong>g>The</str<strong>on</strong>g> Center for Research Libraries, US<br />

INFORMATION EXCHANGE AGREEMENT PARTNERS<br />

Acquisiti<strong>on</strong>s Unit, Science Reference and Informati<strong>on</strong> Service, UK<br />

Library - Exchange Desk, Nati<strong>on</strong>al Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Standards and Technology, US<br />

Nati<strong>on</strong>al Aerospace Laboratory, Japan<br />

Nati<strong>on</strong>al Aerospace Laboratory, Ne<strong>the</strong>rlands<br />

SPARES (5 copies)<br />

Total number <str<strong>on</strong>g>of</str<strong>on</strong>g> copies: 54


Page classificati<strong>on</strong>: UNCLASSIFIED<br />

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION<br />

DOCUMENT CONTROL DATA<br />

1. PRIVACY MARKING/CAVEAT (OF<br />

DOCUMENT)<br />

2. TITLE<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Peening</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Fatigue</strong> <strong>Life</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>7050</strong> <strong>Aluminium</strong> <strong>Alloy</strong><br />

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED<br />

REPORTS THAT ARE LIMITED RELEASE USE (L) NEXT TO<br />

DOCUMENT CLASSIFICATION)<br />

Document<br />

Title<br />

Abstract<br />

(U)<br />

(U)<br />

(U)<br />

4. AUTHOR(S)<br />

P.K. Sharp and G. Clark<br />

5. CORPORATE AUTHOR<br />

Aer<strong>on</strong>autical and Maritime Research Laboratory<br />

506 Lorimer St<br />

Fishermans Bend Vic 3207<br />

6a. DSTO NUMBER<br />

DSTO-RR-0208<br />

6b. AR NUMBER<br />

AR-011-795<br />

6c. TYPE OF REPORT<br />

Research Report<br />

7. DOCUMENT DATE<br />

March 2001<br />

8. FILE NUMBER<br />

M1/9/328<br />

13. URL <strong>on</strong> <strong>the</strong> World Wide Web<br />

9. TASK NUMBER<br />

AIR 98/217<br />

10. TASK SPONSOR<br />

DGTA ASI Secti<strong>on</strong><br />

11. NO. OF PAGES<br />

53<br />

14. RELEASE AUTHORITY<br />

12. NO. OF<br />

REFERENCES<br />

51<br />

http://www.dsto.defence.gov.au/corporate/reports/DSTO-RR-0208.pdf<br />

Chief, Airframes and Engines Divisi<strong>on</strong><br />

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT<br />

Approved for public release<br />

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, SALISBURY, SA 5108<br />

16. DELIBERATE ANNOUNCEMENT<br />

No Limitati<strong>on</strong>s<br />

17. CASUAL ANNOUNCEMENT Yes<br />

18. DEFTEST DESCRIPTORS<br />

Crack propagati<strong>on</strong>, <strong>Aluminium</strong> alloy, <strong>Fatigue</strong>, Crack growth, Finishing, <str<strong>on</strong>g>Peening</str<strong>on</strong>g>, Metal finishing<br />

19. ABSTRACT<br />

Many changes in <strong>the</strong> design and manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> high-performance military aircraft ⎯ for example, <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> highly<br />

optimised design and <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> higher-strength material ⎯ have led to an increased sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> airframe fatigue life to<br />

surface features such as corrosi<strong>on</strong> or mechanical damage. <str<strong>on</strong>g>The</str<strong>on</strong>g> peening applied to <strong>the</strong> F/A-18 represents a significant<br />

departure from traditi<strong>on</strong>al manufacture, and it is <strong>the</strong>refore important that <strong>the</strong> RAAF and AMRL have a through<br />

understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> peening process, <strong>the</strong> surface c<strong>on</strong>diti<strong>on</strong>s produced, and <strong>the</strong>ir effect <strong>on</strong> structural integrity. This<br />

report discusses <strong>the</strong> fatigue crack growth research at AMRL, and elsewhere, relating to peening <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium alloys, and<br />

summarises <strong>the</strong> improvements in peening which have arisen from this research. . <str<strong>on</strong>g>The</str<strong>on</strong>g> overall aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> peening research<br />

and development discussed was to establish a <strong>Life</strong>-Improvement-Factor (LIF) for <strong>the</strong> peening used <strong>on</strong> <strong>the</strong> F/A-18, as well<br />

as any future peening required by modificati<strong>on</strong>s. It also attempted to provide a means <str<strong>on</strong>g>of</str<strong>on</strong>g> measuring peening quality, to<br />

allow <strong>the</strong> full exploitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> peening to improve fatigue life. It also highlights areas where fur<strong>the</strong>r research could be<br />

beneficial in relati<strong>on</strong> to peening and <strong>the</strong> structural integrity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> F/A-18 aircraft. <str<strong>on</strong>g>The</str<strong>on</strong>g> report highlights <strong>the</strong> practical<br />

problems <str<strong>on</strong>g>of</str<strong>on</strong>g> introducing changes to fatigue critical surfaces, with particular reference to <strong>the</strong> RAAF and CF fleets.<br />

Page classificati<strong>on</strong>: UNCLASSIFIED

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!