29.03.2013 Views

Construction of Hyperkähler Metrics for Complex Adjoint Orbits

Construction of Hyperkähler Metrics for Complex Adjoint Orbits

Construction of Hyperkähler Metrics for Complex Adjoint Orbits

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3.3 Regular Nahm Solutions and Line bundles on S 42<br />

The conditions we must impose are<br />

f1(0) = f2(0) = f3(0),<br />

⎛<br />

f<br />

⎜<br />

det ⎜<br />

⎝<br />

′ 1(0)<br />

f<br />

1 λ1<br />

′ 2(0) 1 λ2<br />

f ′ ⎞<br />

⎟ = 0,<br />

⎠<br />

⎛<br />

⎜<br />

det ⎜<br />

⎝<br />

3(0) 1 λ3<br />

˜ f1(0) = ˜ f2(0) = ˜ f3(0),<br />

from which we easily get that α1 and β1 must satisfy<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

d exp(λ1(s + a) + λ 2 1c) α1 +<br />

exp(λ1(s + a) + λ 2 1c)<br />

3<br />

i=1<br />

3<br />

i=1<br />

˜f ′ 1(0) 1 λ1<br />

˜f ′ 2(0) 1 λ2<br />

˜f ′ 3(0) 1 λ3<br />

exp(λi(s + a) + λ 2 i c)<br />

<br />

j=i (λi − λj)<br />

⎞<br />

⎟ = 0,<br />

⎠<br />

<br />

β1 = 0,<br />

exp(−λi(s + a) − λ2 i c)<br />

<br />

j=i (λi<br />

<br />

− λj)<br />

α1 − b β1 = 0.<br />

The condition (3.35) fails at a point s exactly when this system has a non-zero<br />

solution, that is to say if and only if<br />

⎛<br />

⎜<br />

det ⎜<br />

⎝<br />

3<br />

i=1<br />

in other words if<br />

where<br />

τ(t) = bd +<br />

d<br />

exp(−λi(s + a) − λ 2 i c)<br />

<br />

j=i (λi − λj)<br />

3<br />

i=1<br />

3<br />

i=1<br />

τ(s + a) = 0,<br />

exp(λit + λ2 i c)<br />

<br />

j=i (λi<br />

<br />

3<br />

− λj)<br />

i=1<br />

Now since the λ ′ is are real, we clearly have<br />

lim |τ(t)| = ∞;<br />

t→−∞<br />

exp(λi(s + a) + λ 2 i c)<br />

<br />

j=i (λi − λj)<br />

−b<br />

⎞<br />

exp(−λit − λ2 i c)<br />

<br />

j=i (λi<br />

<br />

.<br />

− λj)<br />

⎟ = 0,<br />

⎟<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!