07.06.2013 Views

Asymptotic Analysis and Singular Perturbation Theory

Asymptotic Analysis and Singular Perturbation Theory

Asymptotic Analysis and Singular Perturbation Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

It follows that<br />

where<br />

Since<br />

we have<br />

where<br />

= 1 − 1<br />

<br />

√ e<br />

π<br />

−x2<br />

<br />

1<br />

x<br />

erf x = 1 − e−x2<br />

√ π<br />

1<br />

1 · 3 · . . . · (2N − 1)<br />

− + . . . (−1)N<br />

2x3 2Nx2N+1 N+1 1 · 3 · . . . · (2N + 1)<br />

+ (−1)<br />

2N+1 <br />

FN+1(x) .<br />

N<br />

n 1 · 3 · . . . · (2n − 1)<br />

(−1) + RN+1(x)<br />

n=0<br />

N+1 1<br />

RN+1(x) = (−1) √<br />

π<br />

|Fn(x)| =<br />

≤<br />

<br />

<br />

<br />

<br />

2 n x 2n+1<br />

1 · 3 · . . . · (2N + 1)<br />

2N+1 FN+1(x).<br />

∞<br />

x2 s −n−1/2 e −s ds<br />

∞<br />

1<br />

x 2n+1<br />

≤ e−x2<br />

,<br />

x2n+1 x 2<br />

e −s ds<br />

e<br />

|RN+1(x)| ≤ CN+1<br />

−x2<br />

,<br />

x2N+3 CN =<br />

1 · 3 · . . . · (2N + 1)<br />

2N+1√ .<br />

π<br />

This proves the result. <br />

2.2.3 Generalized asymptotic expansions<br />

Sometimes it is useful to consider more general asymptotic expansions with respect<br />

to a sequence of gauge functions {ϕn} of the form<br />

where for each N = 0, 1, 2, . . .<br />

f(x) −<br />

f(x) ∼<br />

∞<br />

fn(x),<br />

n=0<br />

N<br />

fn(x) = o(ϕN+1).<br />

n=0<br />

25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!