27.06.2013 Views

Palladium- and Copper-Catalyzed Aryl Halide Amination ...

Palladium- and Copper-Catalyzed Aryl Halide Amination ...

Palladium- and Copper-Catalyzed Aryl Halide Amination ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

REVIEW <strong>Palladium</strong>- <strong>and</strong> <strong>Copper</strong>-<strong>Catalyzed</strong> Heterocycle Synthesis 11<br />

N Ph<br />

MeO<br />

Pd(OAc) 2 (5 mol%)<br />

MeO<br />

dppf (12) (7.5 mol%)<br />

NH2 Br<br />

NaOt-Bu<br />

toluene, 90 °C<br />

65<br />

Scheme 30<br />

Hall<strong>and</strong>, Lindenschmidt <strong>and</strong> co-workers reported an alternative<br />

route to the 2H-indazole isomers employing the<br />

same o-alkynylhaloarene substrates used successfully by<br />

others to access indoles (see Schemes 11 <strong>and</strong> 12). The reactions<br />

proceeded via an initial regioselective amination<br />

reaction using a monosubstituted hydrazine to generate an<br />

N,N¢-disubstituted hydrazine, which then underwent intramolecular<br />

hydroamination to form a dihydroindazole<br />

intermediate (67, Scheme 31). 82 Isomerization from these<br />

intermediates to the aromatic 2H-indazoles occurred<br />

spontaneously under the reaction conditions of palladium(II)<br />

chloride/tri(tert-butyl)phosphine with cesium carbonate<br />

in N,N-dimethylformamide. Good functional<br />

group tolerance was demonstrated <strong>and</strong> an extensive range<br />

of substituted products was described; three examples are<br />

shown in Scheme 31.<br />

67<br />

Scheme 31<br />

Indazolones can be prepared by the copper-catalyzed cyclization<br />

of o-halobenzohydrazides. For example, treatment<br />

of hydrazide 68 with a copper(I) iodide/proline<br />

catalyst system delivered indazolone 69 in 60% yield<br />

(Scheme 32). 83 Iodo substrates delivered the most efficient<br />

reactions; the bromo <strong>and</strong> chloro substrates were also<br />

shown to deliver the desired products, albeit in reduced<br />

yields.<br />

Scheme 32<br />

Ph<br />

+ H2N<br />

Cl<br />

O<br />

I<br />

Ph<br />

N Ph<br />

N<br />

H<br />

N<br />

H<br />

H<br />

N<br />

2.5 Pyrroles<br />

PdCl2 (5 mol%)<br />

Pt-Bu3 HBF4 (10 mol%)<br />

NH<br />

Cs2CO<br />

Ph<br />

3<br />

DMF, 110–130 °C<br />

.<br />

93%<br />

CO2t-Bu<br />

N Ph<br />

N<br />

CuI (10 mol%)<br />

L-proline (20 mol%)<br />

K 2CO 3, DMSO<br />

r.t. to 70 °C<br />

68 69, 60%<br />

N Ph<br />

N<br />

66, 60%<br />

N Ph<br />

N<br />

79%<br />

OEt<br />

The Buchwald <strong>and</strong> Li research groups both reported cascade<br />

copper-catalyzed alkenyl amidation routes to pyr-<br />

Ph<br />

N Ph<br />

N<br />

55%<br />

O<br />

OEt<br />

NH<br />

N<br />

roles. The Buchwald group utilized a copper(I) iodide/<br />

diamine 25 catalyst system to combine carbamates (<strong>and</strong> a<br />

limited number of amides) with 1,4-diiodo-1,3-dienes to<br />

generate highly substituted pyrrole products (70 → 71,<br />

Scheme 33). 84 The methodology displayed excellent<br />

functional group tolerance <strong>and</strong> was applied to the synthesis<br />

of a wide range of pyrroles, including tetrasubstituted<br />

examples. The method was also applicable to the synthesis<br />

of heteroarylpyrroles, such as thienopyrrole 72. The Li<br />

approach exploited similar diene substrates in combination<br />

with a range of amide coupling partners. 45,85 For example,<br />

diiododiene 73 was combined with phenylacetamide<br />

using a copper(I) iodide/diamine 64 catalyst to<br />

deliver the expected pyrrole in 86% yield (Scheme 33).<br />

Pr<br />

S<br />

Bu<br />

Bu<br />

SiMe3<br />

Pr<br />

70<br />

73<br />

Scheme 33<br />

I O<br />

I<br />

+<br />

H2N Ot-Bu<br />

Me<br />

Pr<br />

CuI (5 mol%)<br />

25 (20 mol%)<br />

Cs 2CO 3<br />

THF, 80 °C<br />

CuI (20 mol%)<br />

64 (20 mol%)<br />

Cs 2CO 3<br />

dioxane, 100 °C<br />

Pr<br />

N<br />

Boc<br />

71, 86%<br />

N<br />

SiMe3<br />

Pr<br />

N<br />

SiMe3<br />

N<br />

Boc<br />

Boc<br />

Boc<br />

98% 80%<br />

72, 83%<br />

I O<br />

+<br />

I<br />

H2N Ph<br />

Buchwald <strong>and</strong> colleagues reported a complementary stepwise<br />

approach to pyrroles also based on copper-catalyzed<br />

alkenylation reactions. 86 N,N¢-Di(Boc)-protected alkenylhydrazides<br />

74, themselves prepared by copper-catalyzed<br />

alkenylation reactions, were coupled with a second alkenyl<br />

iodide to generate bis(ene)hydrazide 75 (Scheme 34).<br />

Thermolysis triggered a [3,3] rearrangement to generate<br />

bis-imine 76, cyclization of which provided the pyrrole<br />

Pr<br />

Pr<br />

Pr<br />

Boc<br />

Oct<br />

N<br />

Boc<br />

N<br />

N<br />

H<br />

Boc<br />

74<br />

+<br />

Boc<br />

N<br />

Pr Oct<br />

I<br />

[3,3]<br />

Bu<br />

(i) CuI (10 mol%)<br />

1,10-phenanthroline<br />

(20 mol%)<br />

Cs2CO3, DMF<br />

80 °C, 30 h<br />

ii) o-xylene, 140 °C, 30 h<br />

iii) p-TsOH, r.t.<br />

Boc Boc<br />

N N<br />

Pr<br />

Pr Oct<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York<br />

Pr<br />

S<br />

Bu<br />

N<br />

Bu<br />

O<br />

86% Ph<br />

75 76 77<br />

Scheme 34<br />

Pr<br />

Pr<br />

Pr Oct<br />

N<br />

68% Boc<br />

Boc<br />

N<br />

Pr Oct<br />

SiMe3<br />

H<br />

NBoc

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!