06.08.2013 Views

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

30 2. MODULES<br />

2.4.11. Proposition. Let F be a free module with basis yα. For a module M and<br />

a family <strong>of</strong> elements xα ∈ M there is a unique homomorphism g : F → M such<br />

that g(yα) = xα given by g( aαyα) = aαxα.<br />

Pro<strong>of</strong>. The basis yα ∈ F gives the isomorphism 2.4.7 f : <br />

α R → F . The<br />

family 1xα : R → M gives a homomorphism g ′ : <br />

R → M by 2.4.3. Then<br />

g = g ′ ◦ f −1 .<br />

2.4.12. Corollary. Let M be an R-module and <br />

M R the free module with basis<br />

ex indexed by x ∈ M. The homomorphism<br />

<br />

R → M, axex ↦→ ax x<br />

M<br />

is surjective identifying M as a factor module <strong>of</strong> a free module in a natural way.<br />

2.4.13. Definition. A module is indecomposable if it is not isomorphic to a direct<br />

sum <strong>of</strong> two nonzero submodules, otherwise decomposable.<br />

2.4.14. Example. Q is an indecomposable Z-module. Namely if m1<br />

n1<br />

nonzero numbers in two submodules, then n1m2 m1<br />

n1<br />

ber in the intersection.<br />

α<br />

= n2m1 m2<br />

n2<br />

, m2<br />

n2 are<br />

is a nonzero num-<br />

2.4.15. Exercise. (1) Show that if a ring is decomposable as a module, then it is the<br />

product <strong>of</strong> two nonzero rings.<br />

(2) Let Mα be a finite family <strong>of</strong> modules. Show that Mα = Mα,<br />

(3) Let Nα ⊂ Mα be a family <strong>of</strong> submodules modules. Show that<br />

Mα/ Nα Mα/Nα<br />

and that Mα/ Nα Mα/Nα<br />

2.5. Homomorphism modules<br />

2.5.1. Lemma. Let R be a ring and f, g : M → N homomorphisms.<br />

(1) (f + g)(x) = f(x) + g(x) is a homomorphism.<br />

(2) If a ∈ R, then (af)(x) = af(x) is a homomorphism.<br />

Pro<strong>of</strong>. Calculate according to 2.1.1. (1) (f + g)(x + y) = f(x + y) + g(x + y) =<br />

f(x) + f(y) + g(x) + g(y) = (f + g)(x) + (f + g)(y) and (f + g)(ax) =<br />

f(ax) + g(ax) = a(f(x) + g(x)) = a(f + g)(x). (2) (af)(x + y) = af(x + y) =<br />

af(x) + af(y) = (af)(x) + (af)(y) and (af)(bx) = af(bx) = abf(x) =<br />

baf(x) = b(af)(x). The last calculation uses that R is commutative 1.1.2 (4).<br />

2.5.2. Definition. Let R be a ring and M, N modules. By 2.5.1, the homomorphism<br />

module HomR(M, N) is the additive group <strong>of</strong> all homomorphism with<br />

scalar multiplication<br />

R × HomR(M, N) → HomR(M, N), (a, f) ↦→ af = [x ↦→ af(x)]<br />

2.5.3. Definition. Let a ∈ R be a ring and f : M → M ′ , g : N → N ′ , h, k :<br />

M ′ → N homomorphisms <strong>of</strong> modules. By 2.5.1<br />

(1) (h + k) ◦ f = h ◦ f + k ◦ f.<br />

(2) (ah) ◦ f = a(h ◦ f).<br />

(3) g ◦ (h + k) = g ◦ h + g ◦ k.<br />

(4) g ◦ (ah) = a(g ◦ h).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!