06.08.2013 Views

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

46 3. EXACT SEQUENCES OF MODULES<br />

Pro<strong>of</strong>. The commutative diagram<br />

0<br />

0<br />

<br />

N ∩ L<br />

<br />

N ⊕ L<br />

<br />

N + L<br />

<br />

x↦→(x,x) <br />

(x,y)↦→x−y <br />

<br />

M <br />

M ⊕ M <br />

M<br />

where the rows are short exact sequences, gives by 3.2.4 a five term long exact<br />

sequence<br />

0<br />

<br />

M/N ∩ L<br />

<br />

M/N ⊕ M/L<br />

<br />

M/N + L<br />

3.2.8. Proposition (five lemma). Given a commutative diagram <strong>of</strong> homomorphisms<br />

M1<br />

u1<br />

<br />

M ′ 1<br />

<br />

M2<br />

u2<br />

<br />

<br />

M ′<br />

2<br />

<br />

M3<br />

u3<br />

<br />

<br />

M ′<br />

3<br />

<br />

M4<br />

u4<br />

<br />

<br />

M ′<br />

4<br />

<br />

M5<br />

u5<br />

<br />

<br />

M ′<br />

5<br />

where the rows are exact sequences. If u1 is surjective, u2, u4 are isomorphism<br />

and u5 is injective, then u3 is an isomorphism.<br />

Pro<strong>of</strong>. Let fi : Mi → Mi+1, f ′ i : M ′ i → M ′ i+1 . Split the given diagram in three as<br />

follows<br />

0<br />

0<br />

0<br />

0<br />

0<br />

M1<br />

u1<br />

<br />

<br />

Ker f ′<br />

2<br />

<br />

Cok f2<br />

u ′′<br />

3<br />

<br />

<br />

Ker f ′<br />

4<br />

<br />

Im f2<br />

u ′ 3<br />

<br />

<br />

Im f ′<br />

2<br />

<br />

M2<br />

u2<br />

<br />

<br />

M ′<br />

2<br />

<br />

M4<br />

u4<br />

<br />

<br />

M ′<br />

4<br />

<br />

M3<br />

u3<br />

<br />

<br />

M ′<br />

3<br />

<br />

Cok f1<br />

u ′ 3<br />

<br />

<br />

Im f ′<br />

2<br />

<br />

Im f4<br />

u5<br />

<br />

<br />

M ′<br />

5<br />

<br />

Cok f2<br />

u ′′<br />

3<br />

<br />

<br />

Cok f ′<br />

2<br />

Note that Cok f1 Im f2 and Cok f ′ 2 Ker f ′ 4 . Now use 2.3.3 and the snake<br />

lemma to conclude that Ker u3 = 0 and Cok u3 = 0 and u3 is therefore an isomorphism.<br />

3.2.9. Proposition (windmill lemma). Given homomorphism M f<br />

There is induced an eight term long exact sequence<br />

0<br />

<br />

Ker f<br />

<br />

Ker g ◦ f<br />

<br />

<br />

Cok f<br />

f<br />

g<br />

<br />

Ker g<br />

<br />

<br />

Cok g ◦ f<br />

<br />

0<br />

<br />

0<br />

<br />

0<br />

<br />

0<br />

<br />

0<br />

<br />

0<br />

<br />

0<br />

<br />

Cok g<br />

<br />

0<br />

g<br />

<br />

N<br />

<br />

0<br />

<br />

L .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!