06.08.2013 Views

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.7. FLAT MODULES 55<br />

3.7.4. Proposition. Let Fα be family <strong>of</strong> flat modules, then the direct sum <br />

α Fα<br />

is a flat module.<br />

Pro<strong>of</strong>. Let M → N be injective. Then M ⊗R ( Fα) → N ⊗R ( Fα) is<br />

injective by 2.6.11 and 3.1.6, so the product is flat.<br />

3.7.5. Example. A free module is flat.<br />

3.7.6. Corollary. A projective module is flat.<br />

Pro<strong>of</strong>. By 3.5.7 a projective module is a direct summand in a free. Conclusion by<br />

3.7.4.<br />

3.7.7. Proposition. Let F, F ′ be flat modules. Then F ⊗R F ′ is flat.<br />

Pro<strong>of</strong>. Let M → N be injective. Then by 2.6.10 M ⊗R (F ⊗R F ′ ) → N ⊗R<br />

(F ⊗R F ′ ) is (M ⊗R F ) ⊗R F ′ → (N ⊗R F ) ⊗R F ′ being injective by using the<br />

definition twice.<br />

3.7.8. Proposition. Let R → S be a ring homomorphism and F a flat R-module.<br />

The change <strong>of</strong> ring module F ⊗R S is a flat S-module.<br />

Pro<strong>of</strong>. Let M → N be an injective homomorphism <strong>of</strong> S-modules. Then by 2.7.5<br />

M ⊗S (F ⊗R S ′ ) → N ⊗S (F ⊗R S) is M ⊗R F → N ⊗R F being injective since<br />

F is a flat R-module.<br />

3.7.9. Proposition. Let R be a ring and F a module. The following are equivalent.<br />

(1) F is a flat module.<br />

(2) HomR(F, E) is an injective module for any injective module E.<br />

Pro<strong>of</strong>. Let M → N be injective. By 3.6.13 M ⊗R F → N ⊗R F is injective if and<br />

only if HomR(N ⊗R F, E) → HomR(M ⊗R F, E) is surjective for any injective<br />

module E. By 2.6.13 this is HomR(N, HomR(F, E)) → HomR(M, HomR(F, E)).<br />

3.7.10. Corollary. Given a short exact sequence<br />

0<br />

<br />

M<br />

<br />

N<br />

<br />

F<br />

where F is a flat module. Then M is flat if and only if N is flat.<br />

Pro<strong>of</strong>. Let E be an injective module. By 3.7.9 and 3.6.3 the sequence<br />

0<br />

<br />

HomR(F, E)<br />

<br />

HomR(N, E)<br />

<br />

0<br />

<br />

HomR(M, E)<br />

is split exact. By 3.6.5 and 3.6.6 HomR(N, E) is injective if and only if HomR(M, E)<br />

is so. Conclusion by 3.7.9.<br />

3.7.11. Corollary. Given a short exact sequence<br />

0<br />

<br />

M<br />

where F is a flat module. For any module L there is a short exact sequence<br />

0<br />

<br />

L ⊗R M<br />

<br />

N<br />

<br />

L ⊗R N<br />

<br />

F<br />

<br />

0<br />

<br />

L ⊗R F<br />

<br />

0<br />

<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!