06.08.2013 Views

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

50 3. EXACT SEQUENCES OF MODULES<br />

3.4.2. Proposition. Given a split exact sequence<br />

0<br />

f<br />

<br />

M<br />

g<br />

<br />

N<br />

<br />

L<br />

and a module K. Then the following sequence is split exact<br />

0<br />

<br />

K ⊗R M<br />

<br />

K ⊗R N<br />

Pro<strong>of</strong>. This follows from the functor properties 3.1.14.<br />

<br />

0<br />

<br />

K ⊗R L<br />

3.4.3. Proposition. Let I ⊂ R be an ideal. For any module M, the homomorphism<br />

is an isomorphism.<br />

M ⊗R R/I → M/IM, x ⊗ a + I ↦→ ax + IM<br />

Pro<strong>of</strong>. x + IM ↦→ x ⊗ 1 is an inverse.<br />

3.4.4. Corollary. Let I, J ⊂ R be ideals. Then<br />

is an isomorphism.<br />

R/I ⊗R R/J → R/(I + J), a + I ⊗ b + J ↦→ ab + I + J<br />

3.4.5. Proposition. Let I1, . . . , Ik ⊂ R be pairwise comaximal ideals and M a<br />

module. Then the product <strong>of</strong> projections<br />

is an isomorphism.<br />

Pro<strong>of</strong>. By Chinese remainders 1.4.2<br />

M/I1 · · · IkM → M/I1M × · · · × M/IkM<br />

R/I1 · · · Ik → R/I1 × · · · × R/Ik<br />

is an isomorphism. Tensor with M and use 3.4.3 to get the isomorphism.<br />

3.4.6. Exercise. (1) Calculate Z/(m) ⊗Z Z/(n) for all integers m, n.<br />

(2) Let I ⊂ R be an ideal. Show that R/I ⊗R R/I R/I.<br />

(3) Let I ⊂ R be an ideal. Show that I ⊗R R/I I/I 2 .<br />

(4) Let 2Z be scalar multiplication. Show that 2Z ⊗ 1 Z/(2) : Z ⊗Z Z/(2) → Z ⊗Z Z/(2)<br />

is not injective.<br />

3.5. Projective modules<br />

3.5.1. Definition. An R-module F is a projective module if for any exact sequence<br />

N → L → 0 the sequence<br />

is exact.<br />

HomR(F, N) → HomR(F, L) → 0<br />

3.5.2. Proposition. A module F is projective if and only if any surjective homomorphism<br />

M → F → 0 has a section.<br />

Pro<strong>of</strong>. Assume F projective and g : M → F surjective. Then HomR(F, M) →<br />

HomR(F, F ) → 0 is exact. So there exists a v : F → M such that g ◦ v = 1F .<br />

v is then a section. Conversely given g : N → L surjective and h : F → L. Let<br />

M = Ker N ⊕F → L, (y, z) ↦→ g(y)−h(z) and pN : M → N, pF : M → F the<br />

<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!