06.08.2013 Views

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2.7.4. Proposition. The construction<br />

2.7. CHANGE OF RINGS 37<br />

M ↦→ M ⊗R S<br />

and<br />

f : M → M ′ ↦→ f ⊗ 1S : M ⊗R S → M ′ ⊗R S<br />

is a functor from R-modules to S-modules.<br />

Pro<strong>of</strong>. This is clear from 2.7.2 and 2.6.7.<br />

2.7.5. Proposition. Let R → S be a ring homomorphism, M an R-module and N<br />

an S-modules. Then there is a natural isomorphism <strong>of</strong> S-modules.<br />

M ⊗R S ⊗S N M ⊗R N, x ⊗ b ⊗ y ↦→ x ⊗ by<br />

Pro<strong>of</strong>. The homomorphism v : S ⊗S N → N, b ⊗ y ↦→ by is an isomorphism,<br />

2.6.10. The homomorphism 1M ⊗ v : M ⊗R S ⊗S N M ⊗R N is an R-module<br />

isomorphism, 2.6.7. The identity x ⊗ bc ⊗ y = x ⊗ b ⊗ cy proves this to be an<br />

S-module homomorphism.<br />

2.7.6. Proposition. Let R → S be a ring homomorphism, M an R-module and N<br />

an S-modules. Then there is a natural isomorphism<br />

HomR(M, N) HomS(M ⊗R S, N), f ↦→ (x ⊗ b ↦→ bf(x))<br />

Pro<strong>of</strong>. A given f is mapped to the composite M⊗R → N ⊗R S → N which is an<br />

S-homomorphism. Given a homomorphism g : M ⊗R S → N then the composite<br />

M → M ⊗R S → N is an R-homomorphism and an inverse to the first given<br />

map.<br />

2.7.7. Lemma. Let R → S be a ring homomorphism, M an R-module and N an<br />

S-module. Then<br />

S × HomR(N, M) → HomR(N, M), (b, f : N → M) ↦→ (y ↦→ f(by))<br />

is an S-scalar multiplication.<br />

Pro<strong>of</strong>. The map (b, f) ↦→ f ◦ bN satisfies the laws 2.1.1.<br />

2.7.8. Definition. Let R → S be a ring homomorphism and M an R-module. The<br />

induced module is the S-module HomR(S, M) with S-scalar multiplication 2.7.7<br />

S × HomR(S, M) → HomR(S, M), (b, f : S → M) ↦→ (c ↦→ f(bc))<br />

2.7.9. Proposition. The induced module<br />

M ↦→ HomR(S, M)<br />

and<br />

f : M → M ′ ↦→ Hom(1S, f) : HomR(S, M) → HomR(S, M ′ )<br />

is a functor from R-modules to S-modules.<br />

Pro<strong>of</strong>. This is clear from 2.7.7 using 2.5.4.<br />

2.7.10. Proposition. Let R → S be a ring homomorphism and M an R-module<br />

and N an S-modules. Then there is a natural isomorphism<br />

HomR(N, M) HomS(N, HomR(S, M)), f ↦→ (y ↦→ [b ↦→ f(by)])<br />

Pro<strong>of</strong>. g ↦→ (y ↦→ g(y)(1)) is an inverse.<br />

2.7.11. Example. Let I ⊂ R be an ideal and R → R/I the projection.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!