06.08.2013 Views

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

7.5. LOCAL ARTINIAN RING 91<br />

(1) M ⊗R S is a finite length S-module.<br />

(2) In general<br />

ℓS(M ⊗R S) ≤ ℓS(S/P S) · ℓR(M)<br />

(3) If R → S is flat then<br />

ℓS(M ⊗R S) = ℓS(S/P S) · ℓR(M)<br />

Pro<strong>of</strong>. The case M = k(P ) is clear. Conclude by induction.<br />

7.4.9. Exercise. (1) Let K ⊂ L be a finite field extension and W a finite vector space<br />

over L. Show that<br />

rankK(W ) = rankK(L) · rankL(W )<br />

(2) Let K ⊂ L be a finite field extension and V a finite vector space over K. Show that<br />

rankL(V ⊗K L) = rankK(V )<br />

7.5. Local artinian ring<br />

7.5.1. Lemma. Let (R, P ) be a local artinian ring and M a finite module. The<br />

following are equivalent.<br />

(1) M = 0.<br />

(2) HomR(k(P ), M) = 0.<br />

(3) HomR(M, k(P )) = 0.<br />

Pro<strong>of</strong>. Clear by a filtration.<br />

7.5.2. Proposition. Let (R, P ) be a local artinian ring and k(P ) ⊂ E an injective<br />

envelope.<br />

(1) The are isomorphisms<br />

k(P ) HomR(k(P ), k(P )) HomR(k(P ), E)<br />

(2) For a finite module M, the module HomR(M, E) has finite length and<br />

ℓR(HomR(M, E)) = ℓR(M)<br />

Pro<strong>of</strong>. (1) A nonzero homomorphism f : k(P ) → E has Im f = k(P ) since the<br />

extension is essential. (2) This follows from (1) by use <strong>of</strong> a filtration.<br />

7.5.3. Corollary. Let (R, P ) be a local artinian ring and k(P ) ⊂ E an injective<br />

envelope. Then E has finite length<br />

ℓR(E) = ℓR(R)<br />

7.5.4. Proposition. Let (R, P ) be a local artinian ring and k(P ) ⊂ E an injective<br />

envelope. There is a natural isomorphism for any finite module M<br />

x ↦→ evx : M → HomR(HomR(M, E), E)<br />

Pro<strong>of</strong>. The case M = k(P ) is clear by 7.5.2. Let 0 → N → M → L → 0 be a<br />

short exact sequence. Then the following diagram has exact rows.<br />

0<br />

0<br />

<br />

N<br />

<br />

<br />

HomR(HomR(N, E), E)<br />

<br />

M<br />

<br />

<br />

HomR(HomR(M, E), E)<br />

Conclusion by the five lemma 3.2.8 and induction on the length.<br />

<br />

L<br />

<br />

<br />

HomR(HomR(L, E), E)<br />

<br />

0<br />

<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!