06.08.2013 Views

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

36 2. MODULES<br />

2.6.12. Example. Let R be a ring, F a free module with basis yα and G a free<br />

module with basis zβ. Then F ⊗R G is a free module with basis yα ⊗ zβ.<br />

2.6.13. Proposition. Let R be a ring and M, N, L modules. Then there is a natural<br />

isomorphism<br />

HomR(M ⊗R N, L) HomR(M, HomR(N, L))<br />

(x ⊗ y ↦→ g(x)(y)) ← g<br />

f ↦→ (x ↦→ [y ↦→ f(x ⊗ y)])<br />

Pro<strong>of</strong>. A given f : M ⊗R N → L is mapped to the composite homomorphism<br />

M → HomR(N, M ⊗R N) → HomR(N, L), 2.5.4 and 2.6.2. This is a homomorphism<br />

as map <strong>of</strong> f by 2.5.4. Given g : M → HomR(N, L) the map M × N →<br />

L, (x, y) ↦→ g(x)(y) induces a homomorphism M ⊗R N → L, x ⊗ y ↦→ g(x)(y)<br />

by 2.6.3. Clearly the maps are inverse to each other and therefore giving an isomorphism<br />

by 2.1.5.<br />

2.6.14. Exercise. (1) Show that Q ⊗Z Q/Z 0.<br />

(2) Show that Z/(m) ⊗Z Z/(n) = 0 if (m, n) = Z.<br />

(3) Let P, Q ⊂ R be different maximal ideals and M a module. Show that M/P M ⊗R<br />

M/QM = 0.<br />

2.7. Change <strong>of</strong> rings<br />

2.7.1. Proposition. (1) Let φ : R → S be a ring homomorphism and N an S<br />

module. The restriction scalars 2.1.11 viewing N as an R-module through<br />

φ, R × N → N, (a, x) ↦→ ax = φ(a)x, is a functor from S-modules to<br />

R-modules.<br />

(2) Let I ⊂ R be an ideal. Restriction <strong>of</strong> scalars along R → R/I identifies<br />

R/I-modules M with R-modules such that I ⊂ Ann(M). For R/I-modules<br />

M, N there is a natural isomorphism<br />

HomR(M, N) Hom R/I(M, N)<br />

Pro<strong>of</strong>. This is a restatement <strong>of</strong> 2.1.11 using 2.5.4.<br />

2.7.2. Lemma. Let R → S be a ring homomorphism, M an R-module and N an<br />

S-module. Then<br />

is an S-scalar multiplication.<br />

S × M ⊗R N → M ⊗R N, (b, x ⊗ y) ↦→ x ⊗ by<br />

Pro<strong>of</strong>. For fixed b ∈ S the map M × N → M ⊗R N, (x, y) ↦→ x ⊗ by induces<br />

the homomorphism µb : M ⊗R N → M ⊗R N, x ⊗ y ↦→ x ⊗ by by 2.6.3. This<br />

gives a well defined scalar multiplication S × M ⊗R N → M ⊗R N, (b, x ⊗ y) ↦→<br />

µb(x ⊗ y).<br />

2.7.3. Definition. Let R → S be a ring homomorphism and M an R-module. The<br />

change <strong>of</strong> ring S-module is M ⊗R S with S-scalar multiplication 2.7.2<br />

S × M ⊗R S → M ⊗R S, (b, x ⊗ c) ↦→ x ⊗ bc

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!