06.08.2013 Views

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

8<br />

Noetherian modules<br />

8.1. Modules and submodules<br />

8.1.1. Lemma. Let M be a module. The following conditions are equivalent.<br />

(1) Any increasing sequence Mn <strong>of</strong> submodules is stationary, Mn = Mn+1 for<br />

n >> 0.<br />

(2) Any nonempty subset <strong>of</strong> submodules <strong>of</strong> M contains a maximal element.<br />

(3) Any submodule <strong>of</strong> M is finite.<br />

Pro<strong>of</strong>. (1) ⇔ (2): See the pro<strong>of</strong> <strong>of</strong> 7.3.1. (2) ⇒ (3): Let N be a submodule <strong>of</strong><br />

M and choose a maximal element N ′ in the set <strong>of</strong> finite submodules <strong>of</strong> N. For<br />

y ∈ N, the module N ′ + Ry is finite, so N ′ = N ′ + Ry gives N = N ′ finite.<br />

(3) ⇒ (1): The union ∪Mn is a submodule, generated by x1, . . . , xm ∈ Mk, so<br />

Mn = ∪Mn, n > k.<br />

8.1.2. Definition. A module M which satisfies the conditions <strong>of</strong> 8.1.1 is a noetherian<br />

module.<br />

8.1.3. Proposition. Let 0 → N → M → L → 0 be an exact sequence <strong>of</strong> modules<br />

over the ring R. Then M is noetherian if and only if N and L are noetherian.<br />

Pro<strong>of</strong>. See the pro<strong>of</strong> <strong>of</strong> 7.3.4.<br />

8.1.4. Corollary. Let f : M → N be a homomorphism.<br />

(1) M is noetherian if and only if Ker f, Im f are noetherian.<br />

(2) N is noetherian if and only if Im f, Cok f are noetherian.<br />

Pro<strong>of</strong>. Use the sequences 3.1.8.<br />

8.1.5. Proposition. Let f : M → M be a homomorphism on a noetherian module.<br />

Then the following are equivalent<br />

(1) f is surjective<br />

(2) f is an isomorphism<br />

Pro<strong>of</strong>. Analog <strong>of</strong> the pro<strong>of</strong> <strong>of</strong> 7.3.4. There is a number n such that Ker f ◦2n =<br />

Ker f ◦n . For x ∈ Ker f ◦n there is y such that x = f ◦n (y). Then f ◦2n (y) =<br />

f ◦n (x) = 0, so y ∈ Ker f ◦2n = Ker f ◦n . Then x = f ◦n (y) = 0 and f is<br />

injective.<br />

8.1.6. Proposition. A finite direct sum <strong>of</strong> noetherian modules is noetherian.<br />

8.1.7. Proposition. Given submodules N, L ⊂ M. Then the following are equivalent.<br />

(1) M/N, M/L are noetherian<br />

(2) M/N ∩ L is noetherian<br />

93

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!