16.08.2013 Views

On the Identification of Misspecified Propensity Scores - School of ...

On the Identification of Misspecified Propensity Scores - School of ...

On the Identification of Misspecified Propensity Scores - School of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Ichimura, and Todd [6]. In addition, <strong>the</strong> expression in (15) can be fur<strong>the</strong>r broken into<br />

n √ hn<br />

n − 1<br />

<br />

<br />

[Q(Xj, θ) − Q(Xj, θ0)][Q(Xi, θ) − Q(Xi, θ0)] Q(Xi, θ) − Q(Xj, θ)<br />

E<br />

K<br />

|Dj, Xj<br />

j<br />

hn<br />

<br />

[Q(Xj, θ) − Q(Xj, θ0)][Q(Xi, θ) − Q(Xi, θ0)] Q(Xi, θ) − Q(Xj, θ)<br />

−E<br />

K<br />

hn<br />

(16)<br />

+n <br />

[Q(Xj, θ) − Q(Xj, θ0)][Q(Xi, θ) − Q(Xi, θ0)] Q(Xi, θ) − Q(Xj, θ)<br />

hnE<br />

K<br />

.<br />

hn<br />

hn<br />

(17)<br />

(16) is a degenerate order 1 process, and hence could be analyzed using <strong>the</strong> same lemma. We<br />

study (17) at <strong>the</strong> end.<br />

Our first step is verifying <strong>the</strong> conditions <strong>of</strong> <strong>the</strong> equicontinuity lemma for {ψn(i, j) −<br />

2<br />

E[ψn(i, j)|j]}. Note that since |D − Q(x, θ)| ≤ 1 for all x, θ,<br />

(n−1) √ <br />

Q(Xi,θ)−Q(Xj,θ) <br />

K<br />

is<br />

hn<br />

hn<br />

an envelope for this process. Moreover,<br />

<br />

lim sup<br />

4<br />

<br />

E K<br />

n→∞<br />

2<br />

<br />

Q(Xi, θ)− Q(Xj, θ)<br />

= lim sup<br />

<br />

Q(Xi, θ)− Q(Xj, θ)<br />

.<br />

n→∞<br />

i<br />

j<br />

(n − 1) 2 hn<br />

In addition,<br />

<br />

1<br />

E K<br />

hn<br />

2<br />

<br />

Q(Xi, θ)− Q(Xj, θ)<br />

=<br />

hn<br />

1<br />

<br />

E K<br />

hn<br />

2<br />

<br />

Q(Xi, θ)− Q(Xj, θ)<br />

hn<br />

<br />

1 Q(Xi, θ0)−Q(Xj, θ0)<br />

+E<br />

.<br />

K<br />

hn<br />

2<br />

hn<br />

hn<br />

hn<br />

<br />

4<br />

E K<br />

hn<br />

2<br />

−K 2<br />

hn<br />

hn<br />

<br />

Q(Xi, θ0)−Q(Xj, θ0)<br />

Since K and Q are Lipschitz, and K is bounded, for some constant C, <strong>the</strong> first expression is<br />

bounded by C/(anh 2 n ), which has a finite limit. Moreover, since Q(X, θ0) is assumed to have<br />

a Lebesgue density, denoted by fQ, we have<br />

<br />

Q(Xi, θ0)− Q(Xj, θ0)<br />

=<br />

<br />

1<br />

E K<br />

hn<br />

2<br />

hn<br />

hn<br />

K 2 (u)fQ(Q(Xj, θ0) + uhn)dufQ(Q(Xj, θ0))dQ.<br />

But boundedness <strong>of</strong> K implies that this last expression has a finite limit as well. Thus, <strong>the</strong> first<br />

condition <strong>of</strong> <strong>the</strong> equicontinuity lemma is satisfied for our process. To<br />

verify <strong>the</strong> second condi-<br />

1<br />

tion, we note that for each δ > 0, if <strong>the</strong> kernel function is bounded, 1<br />

(n−1) √ hn K hn<br />

equals 1 for only finitely many n because n √ hn → ∞. <strong>On</strong> <strong>the</strong> o<strong>the</strong>r hand, by <strong>the</strong> dominated<br />

convergence <strong>the</strong>orem, we have<br />

<br />

limn→∞ E 1 <br />

= E<br />

<br />

limn→∞<br />

(n−1) 2<br />

<br />

i<br />

i<br />

<br />

j<br />

<br />

j 1<br />

hn K2<br />

1<br />

(n−1) 2 hn K2<br />

Q(Xi,θ)−Q(Xj,θ)<br />

hn <br />

Q(Xi,θ)−Q(Xj,θ)<br />

hn<br />

15<br />

<br />

1 1<br />

(n−1) √ hn K<br />

<br />

1 1<br />

(n−1) √ hn K<br />

Q(Xi,θ)−Q(Xj,θ)<br />

hn <br />

Q(Xi,θ)−Q(Xj,θ)<br />

hn<br />

Q(Xi,θ)−Q(Xj,θ)<br />

<br />

<br />

> δ<br />

<br />

> δ<br />

= 0.<br />

<br />

<br />

> δ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!