16.08.2013 Views

On the Identification of Misspecified Propensity Scores - School of ...

On the Identification of Misspecified Propensity Scores - School of ...

On the Identification of Misspecified Propensity Scores - School of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

where M = sup θ∈Θ[D−Q(x, θ)] 2 . Since Θ is a compact subset <strong>of</strong> a finite dimensional Euclidean<br />

space, <strong>the</strong> covering number condition needed to apply <strong>the</strong> <strong>the</strong>orem is satisfied by Theorem 4.8<br />

<strong>of</strong> Pollard [11], and applying Theorem 37 <strong>of</strong> Pollard [10] with δn = M and αn = a −1<br />

n<br />

<strong>the</strong> desired result (20) as long as nM2a −2<br />

n<br />

log n<br />

= M 2 na −2<br />

n<br />

log n<br />

gives us<br />

→ ∞. Then, a small modification <strong>of</strong> <strong>the</strong><br />

consistency pro<strong>of</strong> in [9] yields an|| ˆ θ − θ0|| → 0 a.s.. This in turn implies that for ǫθ > 0 and<br />

sufficiently large n, we almost surely have<br />

<br />

<br />

an[Q(Xj,<br />

<br />

<br />

ˆ θ) − Q(Xj, θ0)]an[Q(Xi, ˆ <br />

θ) − Q(Xi, θ0)] Q(Xi,<br />

K<br />

hn<br />

ˆ θ) − Q(Xj, ˆ <br />

θ)<br />

<br />

hn<br />

<br />

<br />

<br />

<br />

K<br />

<br />

Q(Xi, ˆ θ) − Q(Xj, ˆ <br />

θ)<br />

<br />

≤ ǫ3 θLKLQ <br />

<br />

<br />

K <br />

Q(Xi, θ0) − Q(Xj, θ0) <br />

.<br />

≤ ǫ2 θ<br />

hn<br />

Since lim 1<br />

anh 2 n<br />

[14]. Thus,<br />

hn<br />

< ∞ and E 1<br />

<br />

<br />

K hn<br />

anh 2 n<br />

Q(Xi,θ0)−Q(Xj,θ0)<br />

hn<br />

+ ǫ2 θ<br />

hn<br />

n <br />

hn<br />

ˆVn − Vn0 = oP (1).<br />

hn<br />

< ∞, (18) follows from Theorem 1.3.6 <strong>of</strong><br />

Combining this with Lemma 3.3a <strong>of</strong> [18] completes <strong>the</strong> pro<strong>of</strong> for <strong>the</strong> first part <strong>of</strong> Theorem 4.1.<br />

Next we argue that Σ = 2 K2 (u)du [E(D2 i |Qi0)] 2f 2 Q (Qi0)dQi0<br />

<br />

, and Σ can be consistently<br />

estimated by<br />

n 2 1<br />

K<br />

n(n − 1)<br />

2<br />

<br />

Q(Xi, ˆ θ) − Q(Xj, ˆ <br />

θ)<br />

ˆε 2 i ˆε 2 j.<br />

hn<br />

i=1 j=n<br />

We argue this in two steps again. First, note that if K is symmetric, bounded and Lipschitz,<br />

<strong>the</strong>n so is K2 . Thus, under <strong>the</strong> same conditions as before <strong>the</strong> analysis above yields that,<br />

n<br />

<br />

2 1<br />

K<br />

n(n − 1)<br />

2<br />

<br />

Q(Xi, ˆ θ) − Q(Xj, ˆ <br />

θ)<br />

ˆε 2 i ˆε 2 j −K 2<br />

<br />

Q(Xi, θ0) − Q(Xj, θ0)<br />

ε 2 i ε 2 <br />

j = op(1).<br />

hn<br />

i=1 j=i<br />

hn<br />

Second, <strong>the</strong> arguments in <strong>the</strong> pro<strong>of</strong> <strong>of</strong> Lemma 3.3e <strong>of</strong> [18] show that<br />

hn<br />

i=1 j=i<br />

hn<br />

n 2 1<br />

K<br />

n(n − 1)<br />

2<br />

<br />

Q(Xi, θ0) − Q(Xj, θ0)<br />

Combining <strong>the</strong>se gives us <strong>the</strong> second result in Theorem 4.1. <br />

References<br />

hn<br />

hn<br />

<br />

ε 2 i ε 2 j = Σ + oP (1).<br />

[1] A, A., G. I (2004): “Simple and Bias-Corrected Matching Estimators<br />

for Average Treatment Effect,” mimeo, UC-Berkeley and Harvard University.<br />

19<br />

(21)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!