16.08.2013 Views

On the Identification of Misspecified Propensity Scores - School of ...

On the Identification of Misspecified Propensity Scores - School of ...

On the Identification of Misspecified Propensity Scores - School of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Thus, <strong>the</strong> second condition <strong>of</strong> <strong>the</strong> equicontinuity lemma is also satisfied.<br />

Next, we verify <strong>the</strong> same conditions for <strong>the</strong> process given in (14). First, we observe that<br />

we can rewrite each term <strong>of</strong> that summation as<br />

n √ hnεj0<br />

E<br />

an(n − 1)hn<br />

<br />

an[Q(Xi, θ) − Q(Xi, θ0)]K<br />

<br />

Q(Xi, θ) − Q(Xj, θ)<br />

|Xj .<br />

Since Q is Lipschitz with Lipschitz constant LQ, each <strong>of</strong> <strong>the</strong>se terms is bounded by<br />

n √ hn|εj0|LQǫθ<br />

an(n − 1) E<br />

<br />

1 <br />

<br />

hn<br />

K <br />

Q(Xi, θ) − Q(Xj, θ) <br />

|Xj .<br />

hn<br />

Then using <strong>the</strong> Lipschitz continuity <strong>of</strong> K and Q, we have<br />

n √ hn|εj0|LQǫθ<br />

an(n − 1) E<br />

<br />

1 <br />

<br />

hn<br />

K <br />

Q(Xi, θ) − Q(Xj, θ) <br />

|Xj<br />

hn<br />

= n|εj0|LQǫθ<br />

an(n − 1) √ <br />

Q(Xi, θ) − Q(Xj, θ) Q(Xi, θ0) − Q(Xj, θ0) <br />

E K<br />

−K<br />

|Xj +<br />

hn<br />

hn<br />

hn<br />

n|εj0|LQǫθ<br />

an(n − 1) √ <br />

Q(Xi, θ0) − Q(Xj, θ0) <br />

E K<br />

|Xj<br />

hn<br />

hn<br />

nC<br />

≤<br />

a2 nh 3/2<br />

n (n − 1) |εj0| + n√hn|εj0|LQǫθ an(n − 1) E<br />

<br />

1 <br />

<br />

hn<br />

K <br />

Q(Xi, θ0) − Q(Xj, θ0) <br />

|Xj ,<br />

hn<br />

where C = 2LKL2 gǫ2 θ . Then using a change <strong>of</strong> variables operation, we see that <strong>the</strong> second term<br />

in <strong>the</strong> last expression equals<br />

n √ hn|εj0|LQǫθ<br />

an(n − 1)<br />

<br />

hn<br />

<br />

|K (u)| fQ Q(Xj, θ0) + uhn du.<br />

Since K is bounded <strong>the</strong> integrals in this last expression are all finite. Therefore,<br />

n √ hn<br />

an(n − 1) |εj0|<br />

<br />

1<br />

<br />

,<br />

anh2 C + C1<br />

n<br />

where C1 is <strong>the</strong> appropriate constant, is an envelope for (14). To verify <strong>the</strong> first condition <strong>of</strong><br />

<strong>the</strong> equicontinuity lemma, consider<br />

n<br />

lim sup<br />

n→∞<br />

j<br />

2hn a2 n(n − 1) 2 E ε 2 <br />

j0<br />

1<br />

anh2 2 nhn<br />

C + C1 ≤ lim sup<br />

n<br />

n→∞ a2 <br />

1<br />

n anh2 2 C + C1 .<br />

n<br />

Sufficient conditions for this to be finite are that limn→∞ nhna −2<br />

n < ∞, and limn→∞ 1<br />

anh 2 n<br />

< ∞,<br />

which are implied by our assumptions. Thus <strong>the</strong> first condition <strong>of</strong> <strong>the</strong> equicontinuity lemma<br />

is satisfied.<br />

16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!