16.08.2013 Views

On the Identification of Misspecified Propensity Scores - School of ...

On the Identification of Misspecified Propensity Scores - School of ...

On the Identification of Misspecified Propensity Scores - School of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

To check <strong>the</strong> second condition <strong>of</strong> <strong>the</strong> lemma, let δ > 0,<br />

<br />

limn→∞ j<br />

n 2 hn<br />

a2 n (n−1)2<br />

<br />

1<br />

anh2 2 <br />

C+C1 E ε<br />

n<br />

2 j01 =limn→∞ hn<br />

a2 <br />

1<br />

n anh2 C+C1<br />

n<br />

≤limn→∞ hn<br />

a 2 n<br />

<br />

1<br />

anh2 C+C1<br />

n<br />

2 <br />

j E<br />

<br />

ε2 j01 2 <br />

j E<br />

<br />

n √ hn|εj0 |<br />

an(n−1)<br />

n √ hn|εj0 |<br />

an(n−1)<br />

ε2 j01 √<br />

n hn<br />

an(n−1)<br />

<br />

1<br />

anh2 <br />

C+C1 >δ<br />

n<br />

<br />

1<br />

anh2 C+C1<br />

n<br />

<br />

1<br />

anh2 C+C1<br />

n<br />

<br />

>δ<br />

<br />

>δ ,<br />

where we use <strong>the</strong> fact that |εj0| ≤ 1 to write <strong>the</strong> last inequality. Note that limn→∞[1/(anh2 n )] <<br />

∞ implies that 1/(a2 nh 3/2<br />

n ) → 0. This in turn implies that for each δ > 0 only finitely many<br />

terms in <strong>the</strong> last summation will be non-zero, and <strong>the</strong>refore <strong>the</strong> second condition <strong>of</strong> <strong>the</strong> lemma<br />

is satisfied as well.<br />

<strong>On</strong> <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> same arguments show that <strong>the</strong> same conditions are satisfied for <strong>the</strong><br />

process<br />

<br />

<br />

n[Q(Xj, θ) − Q(Xj, θ0)] Q(Xi, θ) − Q(Xi, θ0) Q(Xi, θ) − Q(Xj, θ)<br />

E √ K<br />

|Xj<br />

n − 1<br />

hn<br />

hn<br />

j<br />

<br />

n[Q(Xj, θ) − Q(Xj, θ0)][Q(Xi, θ) − Q(Xi, θ0)]<br />

− E<br />

(n − 1) √ <br />

Q(Xi, θ) − Q(Xj, θ)<br />

K<br />

hn<br />

hn<br />

To verify <strong>the</strong> third condition note that since Θ is a compact subset <strong>of</strong> R l , its L 2 packing<br />

number, D2(τ, Θ), is less than or equal to 2lτ −l . If K(·) is bounded and Lipschitz, Q(·, ·) is<br />

Lipschitz, and n−1h −3/2<br />

n = O(1), <strong>the</strong>n D2(τ, Ψn) ≤ C · τ −l . Thus, <strong>the</strong> third condition <strong>of</strong> <strong>the</strong><br />

lemma is also satisfied.<br />

We know that ψn0 ∈ Ψn. In addition, if<br />

√ n( ˆ θ − θ0) d → N(0, Σθ),<br />

<strong>the</strong>n for any {an} sequence such that an/ √ n → 0, we will have an( ˆ θ − θ0) P → 0, and ˆ ψn will<br />

belong to Ψn with probability approaching to 1.<br />

<br />

<br />

<br />

<br />

j<br />

The arguments given so far allow us to argue that<br />

<br />

<br />

<br />

ˆψn(i, j) − E[<br />

i,j<br />

ˆ <br />

<br />

ψn(i, j)|j] − ψn0(i, j) − E[ψn0 (i, j)|j]<br />

<br />

<br />

=oP (1),<br />

<br />

<br />

<br />

√<br />

hnεj0<br />

<br />

<br />

n − 1 E<br />

<br />

(εi0 − ˆεi) 1<br />

<br />

Q(Xi,<br />

K<br />

hn<br />

ˆ θ) − Q(Xj, ˆ <br />

θ)<br />

|Xj<br />

hn<br />

<br />

<br />

=oP (1), and<br />

n √ hn(εj0 −ˆε j )<br />

n−1<br />

E<br />

(εi0 −ˆε i )<br />

hn<br />

i,j<br />

K<br />

Q(Xi , ˆ θ)−Q(X j , ˆ θ)<br />

hn<br />

<br />

|Xj<br />

<br />

−E<br />

17<br />

n(εj0 −ε j )(ε i0 −ˆε i )<br />

(n−1) √ hn<br />

K<br />

Q(Xi , ˆ θ)−Q(X j , ˆ θ)<br />

hn<br />

=oP (1).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!