17.08.2013 Views

A particle-in-Burgers model: theory and numerics - Laboratoire de ...

A particle-in-Burgers model: theory and numerics - Laboratoire de ...

A particle-in-Burgers model: theory and numerics - Laboratoire de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: uniqueness, comparison, L 1 contraction.<br />

Theorem (L 1 contraction+comparison, analogous to Kruzhkov <strong>theory</strong>)<br />

Let u0 <strong>and</strong> v0 be two <strong>in</strong>itial data <strong>in</strong> L ∞ (R) <strong>and</strong> let u <strong>and</strong> v be the associated<br />

entropy solutions. Then for all R > 0,<br />

for a.e. t > 0<br />

R<br />

R<br />

(u − v) + (t, x) dx <br />

R+Lt<br />

(u0 − v0)<br />

−R−Lt<br />

+ (x) dx<br />

where L = max{u∞,v∞}. Consequently, if (u0 − v0) + ∈ L 1 (R), we have<br />

<br />

for a.e. t > 0 (u − v)<br />

R<br />

+ <br />

(t, x) dx (u0 − v0)<br />

R<br />

+ (x) dx.<br />

In particular, for all u0 ∈ L ∞ (R), there exists at most one solution <strong>and</strong> the map<br />

S(t) : u0 ↦→ u(t,·) on its doma<strong>in</strong> is an or<strong>de</strong>r-preserv<strong>in</strong>g L 1 contraction.<br />

The proof is straightforward us<strong>in</strong>g<br />

– the Kato <strong>in</strong>equality away from the <strong>in</strong>terface (st<strong>and</strong>ard Kruzhkov)<br />

– the characterization B. (“with traces” ) of entropy solutions<br />

– <strong>and</strong> the dissipativity of Gλ .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!