17.08.2013 Views

A particle-in-Burgers model: theory and numerics - Laboratoire de ...

A particle-in-Burgers model: theory and numerics - Laboratoire de ...

A particle-in-Burgers model: theory and numerics - Laboratoire de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Frozen <strong>particle</strong>: a f<strong>in</strong>ite volume scheme...<br />

We use a well-balanced f<strong>in</strong>ite volume scheme , preserv<strong>in</strong>g exactly<br />

(some of) the stationary sols u(t, x) := u−1l {x0}.<br />

Usual schemes are <strong>de</strong>term<strong>in</strong>ed by a numerical flux g(·,·) :<br />

– g locally Lipschitz;<br />

– g(u, u) = u2<br />

2 (consistency );<br />

– g(·, b) is ր, g(a,·) is ց (monotonicity ).<br />

We only modify g(·,·) at the <strong>in</strong>terface x = 0 (between x0 <strong>and</strong> x1):<br />

g −<br />

λ<br />

(a, b) = g(a, b + λ) <strong>and</strong> g+<br />

λ (a, b) = g( a − λ,b).<br />

I<strong>de</strong>a : g ±<br />

λ “only see” the G 1 λ part of the germ !<br />

Then the scheme writes<br />

∀i = 0, 1 u n+1<br />

i = u n i<br />

i = 0 : u n+1<br />

0 = un 0<br />

i = 1 : u n+1<br />

1<br />

Numerical solution:<br />

u∆(t, x) = <br />

n∈N<br />

− ∆t<br />

∆x (g(un i , un i+1 )−g(un i−1 , un i ));<br />

∆t − ∆x (g− λ (un 0 , un 1 )−g(un −1 , un 0 ));<br />

= un 1 − ∆t<br />

∆x (g(un 1, u n 2)−g +<br />

λ (un 0, u n 1)).<br />

<br />

i∈Z un i 1l (n∆t,(n+1)∆t)(t) 1l (xi−1/2,x i+1/2)(x).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!