17.08.2013 Views

A particle-in-Burgers model: theory and numerics - Laboratoire de ...

A particle-in-Burgers model: theory and numerics - Laboratoire de ...

A particle-in-Burgers model: theory and numerics - Laboratoire de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

Frozen <strong>particle</strong>: a f<strong>in</strong>ite volume scheme...<br />

We use a well-balanced f<strong>in</strong>ite volume scheme , preserv<strong>in</strong>g exactly<br />

(some of) the stationary sols u(t, x) := u−1l {x0}.<br />

Usual schemes are <strong>de</strong>term<strong>in</strong>ed by a numerical flux g(·,·) :<br />

– g locally Lipschitz;<br />

– g(u, u) = u2<br />

2 (consistency );<br />

– g(·, b) is ր, g(a,·) is ց (monotonicity ).<br />

We only modify g(·,·) at the <strong>in</strong>terface x = 0 (between x0 <strong>and</strong> x1):<br />

g −<br />

λ<br />

(a, b) = g(a, b + λ) <strong>and</strong> g+<br />

λ (a, b) = g( a − λ,b).<br />

I<strong>de</strong>a : g ±<br />

λ “only see” the G 1 λ part of the germ !<br />

Then the scheme writes<br />

∀i = 0, 1 u n+1<br />

i = u n i<br />

i = 0 : u n+1<br />

0 = un 0<br />

i = 1 : u n+1<br />

1<br />

Numerical solution:<br />

u∆(t, x) = <br />

n∈N<br />

− ∆t<br />

∆x (g(un i , un i+1 )−g(un i−1 , un i ));<br />

∆t − ∆x (g− λ (un 0 , un 1 )−g(un −1 , un 0 ));<br />

= un 1 − ∆t<br />

∆x (g(un 1, u n 2)−g +<br />

λ (un 0, u n 1)).<br />

<br />

i∈Z un i 1l (n∆t,(n+1)∆t)(t) 1l (xi−1/2,x i+1/2)(x).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!