17.08.2013 Views

A particle-in-Burgers model: theory and numerics - Laboratoire de ...

A particle-in-Burgers model: theory and numerics - Laboratoire de ...

A particle-in-Burgers model: theory and numerics - Laboratoire de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Mo<strong>de</strong>l <strong>and</strong> motivation Auxiliary steps Results h = 0: coupl<strong>in</strong>g h = 0: <strong>de</strong>f<strong>in</strong>ition, uniqueness h = 0: <strong>numerics</strong>, existence The coupled problem<br />

...Frozen <strong>particle</strong>: uniqueness, comparison, L 1 contraction.<br />

Theorem (L 1 contraction+comparison, analogous to Kruzhkov <strong>theory</strong>)<br />

Let u0 <strong>and</strong> v0 be two <strong>in</strong>itial data <strong>in</strong> L ∞ (R) <strong>and</strong> let u <strong>and</strong> v be the associated<br />

entropy solutions. Then for all R > 0,<br />

for a.e. t > 0<br />

R<br />

R<br />

(u − v) + (t, x) dx <br />

R+Lt<br />

(u0 − v0)<br />

−R−Lt<br />

+ (x) dx<br />

where L = max{u∞,v∞}. Consequently, if (u0 − v0) + ∈ L 1 (R), we have<br />

<br />

for a.e. t > 0 (u − v)<br />

R<br />

+ <br />

(t, x) dx (u0 − v0)<br />

R<br />

+ (x) dx.<br />

In particular, for all u0 ∈ L ∞ (R), there exists at most one solution <strong>and</strong> the map<br />

S(t) : u0 ↦→ u(t,·) on its doma<strong>in</strong> is an or<strong>de</strong>r-preserv<strong>in</strong>g L 1 contraction.<br />

The proof is straightforward us<strong>in</strong>g<br />

– the Kato <strong>in</strong>equality away from the <strong>in</strong>terface (st<strong>and</strong>ard Kruzhkov)<br />

– the characterization B. (“with traces” ) of entropy solutions<br />

– <strong>and</strong> the dissipativity of Gλ .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!