17.08.2013 Views

Solitons in Nonlocal Media

Solitons in Nonlocal Media

Solitons in Nonlocal Media

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.3 Soliton Trajectory<br />

to n = 1 is always zero for the def<strong>in</strong>ition of 〈x〉. F<strong>in</strong>ally, if η(y) is even, all the odd<br />

terms <strong>in</strong> eq. (3.62) are zero, be<strong>in</strong>g y 2j+1 = 0 ∀j ∈ N, <strong>in</strong>dependently from Veq, i.e. <strong>in</strong><br />

every medium.<br />

3.3.2 Power series for the Equivalent Force<br />

In general, Wn = ∞<br />

l=0 cl n (〈x〉 − x0) l can be written us<strong>in</strong>g a Taylor expansion around<br />

〈x〉 = x0, where x0 is the <strong>in</strong>itial beam position, Substitut<strong>in</strong>g <strong>in</strong> eq. (3.62) I get<br />

F m X (〈x〉) =<br />

∞<br />

n=0 l=0<br />

∞<br />

c l n (〈x〉 − x0) l 〈y n 〉 η<br />

(3.63)<br />

Without loss of generality I can set x0 = 0. If the problem is <strong>in</strong>variant under the<br />

transformation x → −x (reflection with respect to the plane x = 0), the force on the<br />

beam must be odd; this implies c2l n = 0 (l = 0, 1, 2, . . .). Insert<strong>in</strong>g the last <strong>in</strong> eq. (3.63)<br />

I get F m X (〈x〉) = ∞ ∞ n=0 l=0 c2l+1 n 〈x〉 2l+1 〈yn 〉 η . The beam undergoes an equivalent<br />

potential<br />

V m X (〈x〉,s) = −<br />

〈x〉<br />

0<br />

F m X (x ′ , s)dx ′ = −<br />

∞<br />

∞<br />

n=0 l=0<br />

1<br />

(2l + 2) c2l+1<br />

n 〈x〉 2l+2 〈y n 〉 η (3.64)<br />

For small displacements from x = 0 <strong>in</strong> (3.64), x powers larger than 2 can be ne-<br />

glected; hence, the potential V m X<br />

takes the form<br />

V m X (〈x〉,s) = − 1<br />

<br />

∞<br />

c<br />

2<br />

n=0<br />

1 n 〈y n <br />

〉 η 〈x〉 2<br />

(3.65)<br />

Eq. (3.65) tells me that for small amplitude motions the beam is subjected to<br />

a classical harmonic oscillator potential, with an equivalent spr<strong>in</strong>g constant K =<br />

∞<br />

n=0 c1 n 〈y n 〉 η dependent on s. The quantity K depends on beam profile momenta<br />

〈y〉 η , that rema<strong>in</strong> unchanged <strong>in</strong> soliton propagation: <strong>in</strong> the latter case K varies with s<br />

only through the coefficients c l n.<br />

61

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!