17.08.2013 Views

Solitons in Nonlocal Media

Solitons in Nonlocal Media

Solitons in Nonlocal Media

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.4 Soliton Oscillations <strong>in</strong> a F<strong>in</strong>ite-Size Geometry<br />

<br />

2 2<br />

ǫa s<strong>in</strong> (θ − δ) − s<strong>in</strong> (θ0 − δ) , with m = k0ne cos δ. In section 3.2.4.2 I demonstrated<br />

that, for typical (experimental) powers, only terms up to P 2 must be considered to reach<br />

<br />

a good approximation; hence, I can set ∆n = ǫa s<strong>in</strong>[2(θ0 − δ)]Ψ + cos[2(θ0 − δ)]Ψ2 and, from eq. (3.42), perturbation angle is Ψ = γPg1 +γ 2 P 2 g2. Thus, consider<strong>in</strong>g only<br />

terms up to P 2 , I get:<br />

∆n ∼ <br />

= ǫa s<strong>in</strong>[2(θ0 − δ)] γPg1 + γ 2 P 2 <br />

g2 + cos[2(θ0 − δ)]γ 2 P 2 g 2 1<br />

Therefore, the equivalent potential Veq (def<strong>in</strong>ed <strong>in</strong> section 3.3.1) is:<br />

where I def<strong>in</strong>ed<br />

V L<br />

eq = − ǫak0<br />

2ne cos δ s<strong>in</strong>[2(θ0 − δ)]<br />

Veq = V L<br />

eq + V NL<br />

eq<br />

<br />

|A| 2 = Ce −[ξ2 /ω 2 x+υ 2 /ω 2 t] with C = 2Z0/ neπωxωta 2<br />

<br />

γP<br />

πω 2 t<br />

V NL<br />

eq = − ǫak0<br />

2ne cos δ cos[2(θ0 − δ)] γ2 P 2<br />

πω 2 t<br />

∞<br />

∞<br />

−∞<br />

−∞<br />

υ2<br />

−<br />

ω e 2 t g1dυ + γ2P 2<br />

<br />

πω2 t<br />

υ2<br />

−<br />

ω e 2 t g 2 1dυ<br />

The force W0 act<strong>in</strong>g on the soliton is (section 3.3.1):<br />

be<strong>in</strong>g W L 0<br />

<br />

∂V L<br />

eq <br />

= and W<br />

ξ=〈ξ〉 NL<br />

∂ξ<br />

0<br />

W0 = W L 0 + W NL<br />

0<br />

∂V NL<br />

eq<br />

= ∂ξ<br />

∞<br />

−∞<br />

(3.74)<br />

(3.75)<br />

υ2<br />

−<br />

ω e 2 <br />

t g2dυ<br />

(3.76)<br />

(3.77)<br />

<br />

<br />

the terms stemm<strong>in</strong>g from l<strong>in</strong>ear and<br />

ξ=〈ξ〉<br />

quadratic parts 1 of ∆n, respectively. Substitut<strong>in</strong>g def<strong>in</strong>itions of g 1/2 [see eqs. (3.43)]<br />

<strong>in</strong> (3.76), the two forces W L 0<br />

and W NL<br />

0 are:<br />

W L 0 = ǫak0<br />

2ne cos δ s<strong>in</strong>[2(θ0<br />

<br />

<br />

∞<br />

− δ)] γCP s<strong>in</strong>[2(θ0 − δ)] V<br />

m=1<br />

ξ mV υ <br />

m cos(πm 〈ξ〉)<br />

+γ 2 C 2 P 2 <br />

∞<br />

<br />

∞<br />

<br />

s<strong>in</strong>[4(θ0 − δ)] cos(πm 〈ξ〉)<br />

1 With respect to Ψ.<br />

67<br />

m=1<br />

l=1<br />

G m l Hm l<br />

(3.78a)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!