25.08.2013 Views

development of micro-pattern gaseous detectors – gem - LMU

development of micro-pattern gaseous detectors – gem - LMU

development of micro-pattern gaseous detectors – gem - LMU

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

42 Chapter 4 Energy Resolution and Pulse Height Analysis<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

55Fe Pulse Height<br />

dE<br />

| = 0.1771<br />

E Kα<br />

Cu anode seg<br />

preamp: Canberra<br />

cm<br />

kV<br />

Edrift<br />

= 1.25<br />

cm<br />

kV<br />

Etrans1,2<br />

= Eind<br />

= 2.00<br />

Δ U<strong>gem</strong>3=<br />

330 V<br />

Δ U<strong>gem</strong>2=<br />

330 V<br />

Δ U<strong>gem</strong>1=<br />

330 V<br />

data_<strong>gem</strong>_0221_pulseheight_fit<br />

Entries 19368<br />

Mean 340<br />

RMS 145.3<br />

χ 2 / ndf 980.2 / 550<br />

p0 272 ± 0.6<br />

p1 50 ± 0.0<br />

p2 8 ± 0.0<br />

p3 20.03 ± 0.50<br />

p4 194.5 ± 1.8<br />

p5 66.53 ± 1.78<br />

K α norm 139.4 ± 1.7<br />

K α mean 414.8 ± 0.8<br />

K α σ 31.2 ± 0.6<br />

p9 22.36 ± 2.44<br />

p10 482.7 ± 2.6<br />

p11 25 ± 0.2<br />

muon<br />

Mn K<br />

Mn Kα<br />

Mn K<br />

α esc.<br />

0<br />

0 100 200 300 400 500 600 700 800<br />

voltage [0.244mV]<br />

Figure 4.3: 55 Fe pulse height spectrum as taken with Canberra2004 preamplifier. All peaks are resolved. An<br />

energy resolution <strong>of</strong> dE/E = 17.7% for Kα is observed.<br />

for all tested setups.<br />

<br />

dE<br />

= 0.20 ± 0.03 (4.3)<br />

E FWHM<br />

The statistical limit gives a lower limit for the resolution. The relative mean error <strong>of</strong> a Poisson<br />

distribution is given by [Leo 94]:<br />

σ<br />

µ = 1<br />

√ µ<br />

with the mean µ and the standard deviation σ. Considering the fact that the energy <strong>of</strong> a single Kα<br />

photon can be identified with an ionization <strong>of</strong> µ = N = 223 molecules <strong>of</strong> the filling gas, one receives<br />

theoretically a lower limit for the relative resolution at FWHM:<br />

dE<br />

E<br />

<br />

FWHM<br />

= 2.35 ·<br />

1<br />

õ<br />

<br />

= 2.35 ·<br />

<br />

1<br />

√N<br />

= 2.35 ·<br />

β<br />

(4.4)<br />

1<br />

√ 223 = 0.1576 . (4.5)<br />

The factor 2.35 corresponds to the former presented relation <strong>of</strong> the standard deviation <strong>of</strong> a Gaussian<br />

distribution and the full width at half maximum. Inclusion <strong>of</strong> the Fano factor F [Fano 47] leads to:<br />

σ 2 corr = F · µ . (4.6)<br />

where F characterizes the detecting gas as a function <strong>of</strong> all possible processes <strong>of</strong> particle in the<br />

medium, i.e. including photon excitation [Leo 94]. In the case <strong>of</strong> pure Argon the Fano factor has a<br />

value <strong>of</strong> [Hash 84]:<br />

F = 0.23 . (4.7)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!