25.08.2013 Views

development of micro-pattern gaseous detectors – gem - LMU

development of micro-pattern gaseous detectors – gem - LMU

development of micro-pattern gaseous detectors – gem - LMU

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

5.3. Optimized Efficiencies 61<br />

Cathode<br />

GEM 3<br />

GEM 2<br />

GEM 1<br />

readout<br />

structure<br />

E drift<br />

E trans2<br />

E trans1<br />

E ind<br />

U GEM 3<br />

U GEM 2<br />

U GEM 1<br />

Figure 5.5: The triple GEM detector and its different<br />

field regions (repetition).<br />

corr<br />

∈<br />

1<br />

0.95<br />

0.9<br />

0.85<br />

0.8<br />

0.75<br />

0.7<br />

0.65<br />

0.6<br />

0.55<br />

Δ U = 330 V<br />

GEM3<br />

Δ U = 290 V<br />

GEM2<br />

Δ U = 320 V<br />

GEM1<br />

EffGEM<br />

vs Etrans1,2<br />

cm<br />

kV<br />

E = 1.00<br />

drift<br />

cm<br />

kV<br />

E = 1.25<br />

drift<br />

cm<br />

kV<br />

Edrift<br />

= 1.50<br />

Eind<br />

= Etrans1,2<br />

0.5<br />

1 1.2 1.4 1.6 1.8 2 2.2<br />

Etrans1,2<br />

[kV/cm]<br />

Figure 5.7: Efficiency dependence <strong>of</strong> Etrans1,2 =<br />

Eind and three different Edri ft fields.<br />

corr<br />

∈<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Δ U = 350 V<br />

GEM3<br />

Δ U = 290 V<br />

GEM2<br />

Δ U = 330 V<br />

GEM1<br />

EffGEM<br />

vs Etrans1,2<br />

cm V<br />

Edrift<br />

= 1.50<br />

Eind<br />

= Etrans1,2<br />

0<br />

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2<br />

Etrans1,2<br />

[kV/cm]<br />

Figure 5.6: Efficiency scan for Etrans1,2 = Eind.<br />

The drift field is constant at Edri ft = 1.50 kV/cm<br />

corr<br />

∈<br />

1<br />

0.95<br />

0.9<br />

0.85<br />

0.8<br />

0.75<br />

0.7<br />

0.65<br />

0.6<br />

0.55<br />

Δ U = 330 V<br />

GEM3<br />

Δ U = 290 V<br />

GEM2<br />

Δ U = 320 V<br />

GEM1<br />

EffGEM<br />

vs Edrift<br />

cm<br />

kV<br />

E = E = 1.30<br />

trans1,2 ind<br />

cm<br />

kV<br />

E = E = 1.70<br />

trans1,2 ind<br />

cm<br />

kV<br />

Etrans1,2<br />

= Eind<br />

= 2.00<br />

0.5<br />

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7<br />

Edrift<br />

[kV/cm]<br />

Figure 5.8: Efficiency dependence <strong>of</strong> Edri ft for<br />

three different Etrans1,2 = Eind fields.<br />

breakdown voltage limit ∆U limit<br />

GEM ≥ 360 V.<br />

Additional to this changing, the preamplifier CATSA82 is replaced by an home-made ELab1 preamplifier since it provides higher gains and faster rise time.<br />

Testing the temperature influence could be realized by installing the triple GEM in an insulated box<br />

packed with cooling elements. Herefore it was necessary to insulate the HV supplies and all other<br />

electronic components against moisture for safety reasons. This lead to a worse noise performance in<br />

comparison to the normal setup which could not be eliminated and was accommodated with higher<br />

discrimination thresholds.<br />

1 Electronics Laboratory <strong>of</strong> the <strong>LMU</strong> Munich

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!