17.10.2013 Views

Theory, Design and Tests on a Prototype Module of a Compact ...

Theory, Design and Tests on a Prototype Module of a Compact ...

Theory, Design and Tests on a Prototype Module of a Compact ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

96 5. RADIOFREQUENCY MEASUREMENT<br />

range is set around the res<strong>on</strong>ance, the locus <strong>of</strong> impedance<br />

points describes a complete circle which should be seen <strong>on</strong><br />

the display.<br />

• Next, we use the phase <strong>of</strong>fset opti<strong>on</strong> to make the circle symmetric<br />

respect to the real axis <strong>of</strong> Smith Chart. By this way,<br />

we put our point <strong>of</strong> view in a detuned short positi<strong>on</strong>.<br />

• Last, we store the data <strong>on</strong> a diskette, in order to c<strong>on</strong>tinue the<br />

procedure <strong>on</strong> a pers<strong>on</strong>al computer.<br />

By using definiti<strong>on</strong>s (5.21), we can write<br />

Zbb<br />

Z0<br />

=<br />

=<br />

β<br />

1 + j2Q0(δ − δ0) =<br />

β<br />

1 + j2Qextβ(δ − δ0) .<br />

β<br />

1 + j2QL(1 + β)(δ − δ0)<br />

(5.25)<br />

By then, we use a matlab program that numerically finds the frequency<br />

points where the following relati<strong>on</strong> occurs<br />

Zbb<br />

Z0<br />

= β<br />

1 ± j ,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g>, in this case, it is true that 2Q0(δ − δ0) = ±1. Let us call δ1 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

δ2 the two points where they occur, then<br />

Q0 =<br />

1<br />

δ1 − δ2<br />

= f0<br />

, (5.26)<br />

f1 − f2<br />

f1 <str<strong>on</strong>g>and</str<strong>on</strong>g> f2 are called half power points. In analogous way, we can find<br />

points where<br />

Zbb<br />

Z0<br />

=<br />

β<br />

1 ± j(1 + β)<br />

→ Ybb<br />

Y0<br />

= G ± jB = 1<br />

β<br />

± j( 1<br />

β<br />

+ 1)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g>, in this case, it is true that 2QL(δ − δ0) = ±1. Then, it is sufficient<br />

to find the points where B = G + 1, let us call δ3 <str<strong>on</strong>g>and</str<strong>on</strong>g> δ4 the two points<br />

where it occurs, next<br />

QL =<br />

1<br />

δ3 − δ4<br />

Finally, we can find points where<br />

Zbb<br />

Z0<br />

= β<br />

1 ± jβ<br />

→ Ybb<br />

Y0<br />

= f0<br />

, (5.27)<br />

f3 − f4<br />

= G ± jB = 1<br />

β<br />

± j1<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g>, in this case, it is true that 2Qext(δ−δ0) = ±1. Then, it is sufficient<br />

to find the points where B = 1, let us call δ5 <str<strong>on</strong>g>and</str<strong>on</strong>g> δ6 the two points<br />

where it occurs, next<br />

1<br />

Qext = =<br />

δ5 − δ6<br />

f0<br />

, (5.28)<br />

f5 − f6<br />

Of course, this procedure could be manually carried out, by using<br />

Smith Chart. The relevant points are shown in figure 5.27. Finally,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!