17.10.2013 Views

Theory, Design and Tests on a Prototype Module of a Compact ...

Theory, Design and Tests on a Prototype Module of a Compact ...

Theory, Design and Tests on a Prototype Module of a Compact ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

56 4. CIRCUIT MODEL<br />

matrix <strong>of</strong> the whole chain is<br />

Ttot = ˙ T N + ˙ T N−1<br />

N<br />

ε + p +<br />

p=1<br />

cosh x<br />

sinh x<br />

N<br />

ε + p [♥ + ♦] +<br />

p=1<br />

N<br />

p=1<br />

ε − p ♣ (4.46)<br />

where the symbols represent the following matrices<br />

⎛<br />

sinh (N − 1)x<br />

⎞<br />

jωM sinh x cosh (N − 1)x<br />

♥ = ⎝<br />

⎠<br />

cosh (N−1)x<br />

sinh (N − 1)x<br />

jωM sinh x<br />

⎛<br />

⎞<br />

− sinh (2p − N − 1)x jωM sinh x cosh (2p − N − 1)x<br />

♦ = ⎝<br />

⎠<br />

− cosh (2p−N−1)x<br />

jωM sinh x<br />

⎛<br />

cosh (N − 2p + 1)x<br />

sinh (2p − N − 1)x<br />

⎞<br />

jωM sinh x sinh (N − 2p + 1)x<br />

♣ = ⎝<br />

⎠<br />

− cosh (N − 2p + 1)x<br />

sinh (N−2p+1)x<br />

− jωM sinh x<br />

It is apparent that the matrix (4.46) has an imperturbed term, a perturbed<br />

<strong>on</strong>e not depending <strong>on</strong> the errors positi<strong>on</strong>s al<strong>on</strong>g the chain <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

two terms that depend instead.<br />

3. The perturbed res<strong>on</strong>ant frequency<br />

The res<strong>on</strong>ant frequencies <strong>of</strong> the whole chain can be obtained from<br />

the zeros <strong>of</strong> the element <strong>of</strong> place (1, 2) in the transmissi<strong>on</strong> matrix,<br />

representing the chain impedance seen from <strong>on</strong>e side when the opposite<br />

side is short-circuited.<br />

We mainly refer to the π/2 mode <str<strong>on</strong>g>and</str<strong>on</strong>g> want to analyze the effect<br />

<strong>of</strong> the errors <strong>on</strong> the res<strong>on</strong>ant frequency that goes from ω0 to<br />

ω = ω0 + ∆ω. We can represent this situati<strong>on</strong> by a functi<strong>on</strong>: ∆ω =<br />

F (δω01, δω02, . . . , δω0N). We obtain the expressi<strong>on</strong> for the element (1, 2)<br />

from the formula (4.46) which is<br />

<br />

N<br />

<br />

i=1<br />

Ti<br />

12<br />

= h(ω, δω01, . . . , δω0N) = g(ω0 + ∆ω, ε L p , ε R p )<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> then the res<strong>on</strong>ant frequency can be seen as an implicit functi<strong>on</strong><br />

g(ω0+∆ω, ε L p , ε R p ) = 0, the soluti<strong>on</strong> <strong>of</strong> which is the perturbed frequency<br />

we are looking for. In that case we deal with<br />

g(ω0 + ∆ω, ε L p , ε R p ) = f(j π<br />

2 + ∆x, εL p , ε R p ) = 0<br />

It could be c<strong>on</strong>venient to calculate ∆x which is the error <strong>of</strong> x, rather<br />

than directly calculate ∆ω. Let us exp<str<strong>on</strong>g>and</str<strong>on</strong>g>, up to the first order, the<br />

functi<strong>on</strong> f around the imperturbed value ∆x = 0, namely x = x0 = j π<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!