17.10.2013 Views

Theory, Design and Tests on a Prototype Module of a Compact ...

Theory, Design and Tests on a Prototype Module of a Compact ...

Theory, Design and Tests on a Prototype Module of a Compact ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

58 4. CIRCUIT MODEL<br />

For the derivative with respect to ε L,R<br />

p , we have to c<strong>on</strong>sider all the<br />

terms, <str<strong>on</strong>g>and</str<strong>on</strong>g> by c<strong>on</strong>sidering the following trig<strong>on</strong>ometric identities<br />

sinh (N − 2p + 1)x = j(−1) p cos N π<br />

cosh (N − 2p + 1)∆x<br />

2<br />

cosh x = j sinh ∆x<br />

sinh (N − 1)x = j sin (N − 1) π<br />

cosh (N − 1)∆x<br />

2<br />

cosh Nx = cos N π<br />

cosh N∆x<br />

2<br />

cosh (N − 1)x = j sin (N − 1) π<br />

(4.50)<br />

sinh (N − 1)∆x<br />

2<br />

the expressi<strong>on</strong> (4.48) becomes<br />

<br />

N<br />

<br />

Ti = −ωM cos N π<br />

N<br />

cosh ∆x sinh N∆x + j sin (N − 1)π<br />

2 2<br />

i=1<br />

12<br />

· [− cosh ∆x cosh (N − 1)∆x − sinh ∆x sinh (N − 1)∆x]<br />

N<br />

− ε<br />

p=1<br />

+ <br />

p sinh ∆x cosh (2p − N − 1)(j π<br />

<br />

+ ∆x)<br />

2<br />

N<br />

<br />

−j<br />

p=1<br />

ε − p cosh ∆x(−1) p cos N π<br />

cosh (N − 2p + 1)∆x<br />

2<br />

= f(∆x, ε L p , ε R p )<br />

p=1<br />

ε + p<br />

(4.51)<br />

In the derivative with respect to ε L,R<br />

p , the <strong>on</strong>ly term different from zero<br />

comes from i = p. For example, the term in ε L p is<br />

∂f<br />

∂εL = −j<br />

p<br />

ωM<br />

2 ·<br />

<br />

sin (N − 1) π<br />

[cosh ∆x cosh (N − 1)∆x + sinh ∆x sinh (N − 1)∆x]<br />

2<br />

<br />

− 2j sinh ∆x cosh (2p − N − 1)(j π<br />

<br />

+ ∆x)<br />

2<br />

cosh ∆x(−1) p cos N π<br />

<br />

cosh (N − 2p + 1)∆x<br />

2<br />

And finally, the res<strong>on</strong>ance equati<strong>on</strong> is<br />

jωM cos N π<br />

<br />

N<br />

ε<br />

2<br />

+ p + jN∆x + (−1) p<br />

N<br />

ε − <br />

p = 0<br />

p=1<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> therefore the unknown is<br />

∆x = j 1<br />

N<br />

<br />

L εp + ε<br />

N<br />

R p<br />

2<br />

p=1<br />

+ (−1) p εR p − ε L p<br />

2<br />

<br />

p=1<br />

= j<br />

N<br />

p=1 ε∗ p<br />

N<br />

(4.52)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!