23.01.2014 Views

A quantitative approach to carbon price risk modeling - CiteSeerX

A quantitative approach to carbon price risk modeling - CiteSeerX

A quantitative approach to carbon price risk modeling - CiteSeerX

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Given the fuel switching policy (ξt) i T t=0 −1 ∈ U i of the agent i, replace the de fac<strong>to</strong><br />

allowances trading (θt) i T t=0 ∈ L 1 × L 1 by the virtual trading (ϑ i t) T t=0 ∈ L 1 × L 1<br />

given by<br />

t∑<br />

ϑ i t = θt i + ξs, i t = 0, . . . , T. (24)<br />

Next, for (ϑ i t) T t=0 ∈ L 1 × L 1 , (ξ i t) T −1<br />

t=0 ∈ U i introduce the objective<br />

s=0<br />

I A,i<br />

T (ϑi , ξ i ) := V ϑi ,A<br />

T<br />

− ϑ i T A T − π(Γ i − ϑ i T )+ + ∑ T −1<br />

t=0 ξi t(A t − Et). i (25)<br />

which, as shown in the proof of the following proposition, expresses (7) in terms<br />

of the virtual trading in the sense that<br />

if (ξ i t) T −1<br />

t=0 , (ϑi t) T t=0 , (θi t) T t=0<br />

fulfill (24), then IA,i<br />

T<br />

(θi , ξ i ) = I A,i<br />

T (ϑi , ξ i ). (26)<br />

Consequently, we have the following equilibrium characterization for the new parameterization<br />

(compare with Definition 1)<br />

Proposition 2. A ∗ = (A ∗ t ) T t=0 is an equilibrium <strong>carbon</strong> <strong>price</strong> process, if for i =<br />

1, . . . , N there exist (ϑ i∗ , ξ i∗ ) ∈ L 1 × L 1 × U i satisfying<br />

E(I A∗ ,i<br />

T<br />

(ϑ i∗ , ξ i∗ )) ≥ E(I A∗ ,i<br />

T<br />

(ϑ i , ξ i )) for all<br />

(ϑ i , ξ i ) ∈ L 1 × L 1 × U i , i = 1, . . . , N<br />

(27)<br />

and<br />

N∑<br />

i=1<br />

ϑ ∗i<br />

t =<br />

N∑<br />

t∑<br />

i=1 s=0<br />

ξ ∗i<br />

s holds at each time t = 0, . . . , T . (28)<br />

Proof. Since the re-parameterization mappings<br />

L 1 × L 1 × U i → L 1 × L 1 × U i , (θ i , ξ i ) → (ϑ i , ξ i )<br />

from (24) are bijections for all i = 1, . . . , N and (θ i , ξ i ) N i=1 fulfills (11) if and only<br />

if (ϑ i , ξ i ) N i=1 satisfies (28), it suffices <strong>to</strong> prove (26). This assertion is derived as<br />

follows:<br />

V θi ,A<br />

T<br />

− θ i T A T =<br />

T∑<br />

θ s (A s+1 − A s ) − θT i A T<br />

s=0<br />

= −θ 0 A 0 +<br />

= −ϑ 0 A 0 +<br />

T∑<br />

(θ s−1 − θ s )A s<br />

s=1<br />

T∑<br />

T∑<br />

−1<br />

(ϑ s−1 − ϑ s )A s + ξ s A s<br />

s=1<br />

s=0<br />

T∑<br />

−1<br />

= V ϑi ,A<br />

T<br />

− ϑ i T A T + ξ s A s , (29)<br />

17<br />

s=0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!