23.01.2014 Views

Estimation in Financial Models - RiskLab

Estimation in Financial Models - RiskLab

Estimation in Financial Models - RiskLab

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

disadvantage of ~G n and G n motivates us to consider mart<strong>in</strong>gale estimat<strong>in</strong>g<br />

functions generated by higher order conditional moments for<br />

example by the conditional variance:<br />

H n () =<br />

nX <br />

2<br />

h(X (i,1) ; ) Xi , F (X (i,1) ; ) , (X(i,1) ; )<br />

i=1<br />

; (3.59)<br />

with given by (3.51) and F given by (3.47). In analogy to (3.50) we obta<strong>in</strong><br />

the optimal estimat<strong>in</strong>g function with<strong>in</strong> the class (3.59), <strong>in</strong> the sense of<br />

Godambe and Heyde [33]. This optimal function takes the form<br />

H n() =<br />

nX<br />

i=1<br />

_(X (i,1) ; )<br />

(X (i,1) ; )<br />

<br />

Xi , F (X (i,1) ; ) 2<br />

, (X(i,1) ; )<br />

; (3.60)<br />

where is assumed to be dierentiable <strong>in</strong> and is the fourth conditional<br />

cumulant<br />

(X (i,1) ; ) =E <br />

<br />

Xi , F (X (i,1) ; ) 4<br />

jX(i,1)<br />

<br />

, (X (i,1) ; ) 2 ;<br />

where i =1;:::;n.<br />

Comb<strong>in</strong><strong>in</strong>g the functions G n and H n leads to further mart<strong>in</strong>gale estimat<strong>in</strong>g<br />

functions that may have better properties. Follow<strong>in</strong>g the optimal way of<br />

comb<strong>in</strong><strong>in</strong>g G n and H n described <strong>in</strong> Heyde [35], the function Kn is obta<strong>in</strong>ed:<br />

" nX _()() , F () ()<br />

Kn() =<br />

(X<br />

() () , 2 i , F ())<br />

()<br />

i=1<br />

F<br />

+ _ ()() , ()() _ # (Xi , F ()) 2 , () ; (3.61)<br />

() () , 2 ()<br />

where for abbreviation the rst argument of all functions on the right hand<br />

side, that is X (i,1) , has been left out and where denotes the third conditional<br />

central moment<br />

(X (i,1) ; ) =E <br />

h<br />

(Xi , F (X (i,1) ; )) 3 jX (i,1)<br />

i<br />

; i =1;:::;n:<br />

For K n, as for G n , it can be shown that an estimator obta<strong>in</strong>ed from the estimat<strong>in</strong>g<br />

equation K n() =0exists, is consistent and asymptotically normal.<br />

Under some regularity conditions (see Bibby [5], pp. 4{6) we have<br />

Theorem 5 An estimator ^ n exists for every n, which on a set C n solves<br />

the equation<br />

K n (^ n )=0;<br />

40

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!