23.01.2014 Views

advances in numerical modeling of manufacturing processes

advances in numerical modeling of manufacturing processes

advances in numerical modeling of manufacturing processes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

TRANS. INDIAN INST. MET., VOL. 57, NO. 4, AUGUST 2004<br />

objective <strong>of</strong> elim<strong>in</strong>at<strong>in</strong>g end crack<strong>in</strong>g <strong>in</strong> the extruded<br />

shafts, it is necessary to conta<strong>in</strong> the maximum<br />

circumferential stress ( <br />

) and the maximum axial<br />

stress ( z<br />

) below the fracture strength <strong>of</strong> the material<br />

<strong>in</strong> circumferential tension and uniaxial tension,<br />

respectively (i.e., <br />

< 107.5 ksi and z<br />

< 98 ksi).<br />

M<strong>in</strong>imize:<br />

<br />

= (136.19) – (138.74*a) + (0.48*b) +<br />

(90.61*c) + (6.59*d) – (1022.8*e) +<br />

(43.33*a 2 ) – (1.39*d 2 ) + (496.06*e 2 ) +<br />

(7.5*a*d) + (381.23*a*e) + (90.22*d*e)<br />

Fig. 22: Circumferential stress at die exit for the optimal<br />

design (Max. value: 65.16Ksi, predicted value: 59Ksi)<br />

optimization <strong>of</strong> the design. The model selected was<br />

a 3-level, five factor DOE. Us<strong>in</strong>g a ‘fractional<br />

factorial’ design, the same experiment was conducted<br />

with a reasonable level <strong>of</strong> accuracy with 15 runs.<br />

The ranges for the parameters were same as the<br />

screen<strong>in</strong>g experiment, while the middle value was<br />

simply the average <strong>of</strong> the low and high levels (see<br />

Table 3). As <strong>in</strong> the screen<strong>in</strong>g experiment, the<br />

circumferential stress ( q<br />

) was the ma<strong>in</strong> response and<br />

the axial stress ( z<br />

) was a secondary response.<br />

Table 3<br />

LOW, MIDDLE AND HIGH VALUES FOR THE FACTORS<br />

Parameter Low Middle High<br />

(-1) (0) (+1)<br />

Relief Btw Stages (<strong>in</strong>) 0 .375 0.75<br />

Die angle (degrees) 5 11.75 18.5<br />

Land (<strong>in</strong>) 0.15 0.325 0.5<br />

Reduction (%) 4 7 10<br />

Friction (m) 0.08 .14 0.2<br />

Us<strong>in</strong>g regression analysis, nonl<strong>in</strong>ear equations were<br />

obta<strong>in</strong>ed for circumferential stress and axial stress <strong>in</strong><br />

terms <strong>of</strong> the design variables (factors).<br />

5.4 Optimization <strong>of</strong> the die design<br />

Us<strong>in</strong>g the regression equations and the values <strong>of</strong> the<br />

design parameters from common <strong>in</strong>dustry knowledge<br />

and practices, the follow<strong>in</strong>g nonl<strong>in</strong>ear m<strong>in</strong>imization<br />

problem was formulated. To meet the prelim<strong>in</strong>ary<br />

Subject to:<br />

z<br />

= (79.97) + (256.16*a) - (13.78*b) +<br />

(31.04*c) - (1.81*d) + (91.79* e) -<br />

(225.72* a 2 ) + (0.664* b 2 ) + (0.08*d 2 ) -<br />

(0.44*a*b) - (7.03*a*d) + (0.498*d*b)<br />

80<br />

Where the design constra<strong>in</strong>ts are:<br />

0 a (relief between stages) 0.75; 3 b (die<br />

angle) 15; 0.05 c (die land ) 0.5 4 d (%<br />

reduction ) 10 and 0.08 e (coefficient <strong>of</strong> friction)<br />

0.2<br />

Us<strong>in</strong>g the solver <strong>in</strong> Micros<strong>of</strong>t Excel ® , the follow<strong>in</strong>g<br />

optimum solution (Table 4) to the problem was<br />

obta<strong>in</strong>ed:<br />

Table 4<br />

OPTIMAL VALUES OF THE DESIGN PARAMETERS<br />

Variable Parameter name Optimal value<br />

a * relief between stages 0.587 <strong>in</strong><br />

b * die angle 5.146 o<br />

c * die land length 0.05 <strong>in</strong><br />

d * % reduction 10 %<br />

e * coefficient <strong>of</strong> friction 0.08<br />

5.5 Validation <strong>of</strong> optimal design<br />

The optimal design was <strong>in</strong>corporated <strong>in</strong>to<br />

DEFORM2D and was tested for consistency (Fig. 22).<br />

The predicted and observed values were very much<br />

<strong>in</strong> agreement, as shown <strong>in</strong> Table 5. The observed<br />

362

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!