23.01.2014 Views

advances in numerical modeling of manufacturing processes

advances in numerical modeling of manufacturing processes

advances in numerical modeling of manufacturing processes

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

RAJIV SHIVPURI : NUMERICAL MODELING OF MANUFACTURING PROCESSES<br />

d 0<br />

At The Ohio State University, microstructure<br />

evolution models for vanadium modified ferritepearlite<br />

microalloyed steel TMS80R were <strong>in</strong>tegrated<br />

with the FEM models for process simulations. To<br />

model austenite evolution <strong>in</strong> a thermomechanical<br />

control process, it is necessary to develop the models<br />

for gra<strong>in</strong> growth k<strong>in</strong>etics, static recrystallization<br />

k<strong>in</strong>etics, metadynamic recrystallization k<strong>in</strong>etics, and<br />

recrystallized gra<strong>in</strong> size ( d<br />

rex<br />

). These models were<br />

developed by conduct<strong>in</strong>g controlled heat<strong>in</strong>g and hot<br />

compression tests on a Gleeble 3500<br />

thermomechanical test<strong>in</strong>g mach<strong>in</strong>e at DSI Inc. Details<br />

on the test<strong>in</strong>g can be found <strong>in</strong> Pauskar 12 .<br />

2.2.1 Gra<strong>in</strong> growth model<br />

Gra<strong>in</strong> growth us<strong>in</strong>g conventional gra<strong>in</strong> growth law<br />

and regression analysis yielded the follow<strong>in</strong>g gra<strong>in</strong><br />

growth model for TMS80R<br />

5 5<br />

32 ⎛ 655826 ⎞<br />

d = d0<br />

+ 1.26×<br />

10 t ⋅exp⎜<br />

⎟ (1)<br />

⎝ RT ⎠<br />

Here, d is the austenite gra<strong>in</strong> size at time t (<strong>in</strong><br />

microns), is the <strong>in</strong>itial gra<strong>in</strong> size (microns), T<br />

is the absolute temperature (K), R is the universal<br />

gas constant. To apply this isothermal model under<br />

non-isothermal conditions we used <strong>in</strong>cremental<br />

<strong>numerical</strong> computation. In this procedure, the timetemperature<br />

cool<strong>in</strong>g (or heat<strong>in</strong>g) curve is divided <strong>in</strong>to<br />

several small time segments. In each <strong>of</strong> these segments,<br />

the temperature is assumed to be held constant. If the<br />

<strong>in</strong>itial gra<strong>in</strong> size <strong>in</strong> time segment 1 is d<br />

01<br />

, the gra<strong>in</strong><br />

size at the end <strong>of</strong> m th segment is given by:<br />

n<br />

m m<br />

⎛ Q ⎞<br />

dt<br />

= d01 + K∑∆ti<br />

exp ⎜<br />

⎟<br />

(2)<br />

i=<br />

1 ⎝ RTi<br />

⎠<br />

Where Q is the activity coefficient and K is a constant.<br />

2.2.2 Recrystallization model<br />

Most <strong>of</strong> the microstructural changes <strong>in</strong> bar roll<strong>in</strong>g<br />

are due to the static and metadynamic recrystallizations<br />

phenomena. Double hit compression tests were<br />

conducted for model<strong>in</strong>g recrystallization k<strong>in</strong>etics us<strong>in</strong>g<br />

stra<strong>in</strong>, stra<strong>in</strong> rate, temperature, gra<strong>in</strong> size and <strong>in</strong>terhit<br />

time as the control variables. Details on the<br />

experiments can be found <strong>in</strong> Pauskar 12 . The k<strong>in</strong>etics<br />

for static and metadynamic recrystallizations were<br />

modeled us<strong>in</strong>g an Avrami type relation<br />

n<br />

⎛ ⎛ t ⎞ ⎞<br />

X = 1 −exp −0.<br />

693<br />

⎜<br />

⎜ ⎟<br />

⎝ ⎝ t ⎠ ⎟<br />

(3)<br />

05 . ⎠<br />

Where X is the material fraction recrystallized at<br />

time t, t 0.5<br />

is the time for 50% recrystallization and<br />

n is the time exponent which is assumed to be a<br />

constant. The value <strong>of</strong> n was determ<strong>in</strong>ed to be 1.46<br />

for static recrystallization and 1.0 for metadynamic<br />

recrystallization. Regression analysis on the<br />

experimental data yielded the follow<strong>in</strong>g models for<br />

Static recrystallization:<br />

t<br />

= 1.73×<br />

10<br />

−10<br />

−1.78<br />

−0.433<br />

0.5<br />

ε ε<br />

Metadynamic recrystallization:<br />

−6<br />

−<br />

t0.5<br />

= 5.78×<br />

10 ε<br />

1.00<br />

&<br />

d<br />

0.15<br />

0<br />

Z<br />

d<br />

0.60<br />

0<br />

−0.6<br />

app<br />

⎛197000<br />

⎞<br />

exp⎜<br />

⎟<br />

⎝ RT ⎠<br />

(4)<br />

⎛ 230000 ⎞<br />

⋅ exp⎜<br />

⎟<br />

⎝ RT ⎠<br />

(5)<br />

⎛197000<br />

⎞<br />

Where Z app<br />

= ε& ⋅ exp⎜<br />

⎟ is the apparent<br />

⎝ RT ⎠<br />

Zener-Hollomon parameter for the deformation <strong>in</strong><br />

the roll gap.<br />

Recrystallized gra<strong>in</strong> size:<br />

Experiments were performed with stra<strong>in</strong>, stra<strong>in</strong> rate,<br />

gra<strong>in</strong> size and temperature as the control variables.<br />

The follow<strong>in</strong>g equations were developed to model<br />

recrystallized gra<strong>in</strong> size ( d ).<br />

Static Recrystallization:<br />

⎛ ⎞<br />

= ⋅<br />

−0.341<br />

⋅<br />

−0.06<br />

0.58 3586<br />

d rex<br />

36.5 ε & ε ⋅ d<br />

0<br />

exp⎜<br />

− ⎟<br />

⎝ T ⎠<br />

(6)<br />

Metadynamic recrystallization:<br />

⎛ ⎞<br />

= ⋅<br />

−0.72<br />

⋅<br />

−0.113<br />

0.39 3544<br />

d rex<br />

53.41 ε & ε ⋅ d<br />

0<br />

exp⎜<br />

− ⎟<br />

⎝ T ⎠<br />

(7)<br />

rex<br />

347

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!