10.10.2014 Views

Multiscale Modeling of Theta ' Precipitation in Al-Cu Binary Alloys

Multiscale Modeling of Theta ' Precipitation in Al-Cu Binary Alloys

Multiscale Modeling of Theta ' Precipitation in Al-Cu Binary Alloys

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

V. Vaithyanathan et al. / Acta Materialia 52 (2004) 2973–2987 2983<br />

5. Results: phase-field model<strong>in</strong>g<br />

5.1. Equilibrium morphology <strong>of</strong> h 0<br />

In an effort to understand the physics controll<strong>in</strong>g the<br />

equilibrium morphology <strong>of</strong> h 0 , we have calculated morphologies<br />

from our multiscale approach, <strong>in</strong>clud<strong>in</strong>g various<br />

physical factors which affect the precipitate<br />

morphology, both <strong>in</strong>dividually and <strong>in</strong> comb<strong>in</strong>ation.<br />

Fig. 9 is a collection <strong>of</strong> the late stage precipitate microstructures<br />

obta<strong>in</strong>ed from phase-field simulations with<br />

different comb<strong>in</strong>ations <strong>of</strong> energetic contributions: (i)<br />

isotropic <strong>in</strong>terfacial energy alone, (ii) anisotropic <strong>in</strong>terfacial<br />

energy alone, (iii) anisotropic stra<strong>in</strong> (or elastic<br />

energy) alone, and (iv) the ‘‘full’’ calculations us<strong>in</strong>g both<br />

anisotropic <strong>in</strong>terfacial and elastic energy <strong>in</strong> comb<strong>in</strong>ation.<br />

The simulation results for these four cases are<br />

compared with an experimental TEM micrograph <strong>of</strong> a<br />

319-type <strong>Al</strong>–Si–<strong>Cu</strong> alloy aged at 230 °C for 3 h [37].<br />

Though all the simulations started with similar <strong>in</strong>itial<br />

conditions, the number <strong>of</strong> precipitates <strong>in</strong> the microstructure<br />

<strong>in</strong> the late stages is dependent on the anisotropy<br />

contribution(s) <strong>in</strong>cluded. In general, the presence<br />

<strong>of</strong> stra<strong>in</strong> <strong>in</strong>creases the critical nuclei size and hence, reduces<br />

the number <strong>of</strong> precipitates which atta<strong>in</strong> the<br />

growth stage. <strong>Al</strong>so, some coalescence effects are observed<br />

(<strong>in</strong> the case <strong>of</strong> elastic energy anisotropy) from<br />

closely spaced identical precipitate variants which survived<br />

to the growth stage.<br />

(i) Isotropic <strong>in</strong>terfacial energy alone: As expected, the<br />

result<strong>in</strong>g precipitate shapes are spherical with <strong>in</strong>crease <strong>in</strong><br />

average precipitate size caused by growth and coarsen<strong>in</strong>g.<br />

(ii) Anisotropic <strong>in</strong>terfacial energy alone: The precipitates<br />

are plate-shaped with an aspect ratio close to<br />

the <strong>in</strong>terfacial energy anisotropy value <strong>of</strong> 3. We note<br />

that there exists a small effect from spatial discretization<br />

<strong>of</strong> our phase-field model on the morphology. The difference<br />

<strong>in</strong> <strong>in</strong>terfacial widths along the semi-coherent and<br />

coherent <strong>in</strong>terfaces, <strong>in</strong>troduced by the anisotropy <strong>in</strong> <strong>in</strong>terfacial<br />

energy, requires a very f<strong>in</strong>e grid spac<strong>in</strong>g to<br />

elim<strong>in</strong>ate this spatial discretization artifact completely.<br />

The f<strong>in</strong>er grid spac<strong>in</strong>g implies more computational effort<br />

<strong>in</strong> evaluat<strong>in</strong>g the model. Hence, we strike a balance<br />

between the discretization artifact and the computational<br />

effort, and choose a grid spac<strong>in</strong>g such that the<br />

precipitate aspect ratio is close to the expected value<br />

from <strong>in</strong>terfacial energy anisotropy. Use <strong>of</strong> an adaptive<br />

grid spac<strong>in</strong>g could also be beneficial <strong>in</strong> elim<strong>in</strong>at<strong>in</strong>g this<br />

discretization artifact, and future work <strong>in</strong> that area<br />

would be <strong>of</strong> <strong>in</strong>terest. (iii) Anisotropic elastic energy<br />

alone: The elastic energy anisotropy arises from the tetragonality<br />

<strong>in</strong> stra<strong>in</strong> and should result <strong>in</strong> lens-shaped<br />

precipitates [22]. The deviation from the expected lensshape<br />

<strong>of</strong> precipitates (<strong>in</strong> Fig. 9(c)) is caused by the<br />

coalescence events from neighbor<strong>in</strong>g precipitates. (iv)<br />

Anisotropic <strong>in</strong>terfacial and elastic energy <strong>in</strong> comb<strong>in</strong>ation:<br />

Only <strong>in</strong> this case, (Fig. 9(d)), does the model result <strong>in</strong> h 0<br />

precipitates with aspect ratios that are <strong>in</strong> reasonable<br />

agreement with those observed experimentally after long<br />

ag<strong>in</strong>g times [38]. The experimental TEM micrograph <strong>in</strong><br />

Fig. 9(e) obta<strong>in</strong>ed from a 319-type <strong>Al</strong>–Si–<strong>Cu</strong> cast alloy<br />

after ag<strong>in</strong>g at 230 °C for 3 h is shown for comparison<br />

[37]. By determ<strong>in</strong><strong>in</strong>g the effect <strong>of</strong> different anisotropy<br />

contributions on the morphology <strong>of</strong> h 0 precipitates us<strong>in</strong>g<br />

the multiscale tool, and by compar<strong>in</strong>g with the exist<strong>in</strong>g<br />

experimental results on equilibrium aspect ratio, we<br />

Fig. 9. Phase-field simulation us<strong>in</strong>g thermodynamic parameters from first-pr<strong>in</strong>ciples, show<strong>in</strong>g h 0 morphologies obta<strong>in</strong>ed with different anisotropic<br />

contributions for an ag<strong>in</strong>g temperature <strong>of</strong> 200–250 °C. The experimental micrograph is from an <strong>Al</strong>–Si–<strong>Cu</strong> cast alloy aged at 230 °C for 3 h [37]. The<br />

label on the top <strong>of</strong> each frame <strong>in</strong>dicates the anisotropy(ies) <strong>in</strong>cluded (expressed as semi-coherent:coherent; <strong>in</strong>terface – 3:1, stra<strong>in</strong> – )0.051: +0.007).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!