10.10.2014 Views

Multiscale Modeling of Theta ' Precipitation in Al-Cu Binary Alloys

Multiscale Modeling of Theta ' Precipitation in Al-Cu Binary Alloys

Multiscale Modeling of Theta ' Precipitation in Al-Cu Binary Alloys

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

V. Vaithyanathan et al. / Acta Materialia 52 (2004) 2973–2987 2975<br />

∆H - FLAPW (meV/atom)<br />

0<br />

-50<br />

-100<br />

-150<br />

-200<br />

Comparison <strong>of</strong> VASP vs. FLAPW Energetics:<br />

fcc-Based <strong>Al</strong>-<strong>Cu</strong> Compounds<br />

-250<br />

-250 -200 -150 -100 -50 0<br />

∆H - VASP (meV/atom)<br />

Fig. 2. Comparison <strong>of</strong> FLAPW and VASP formation energies <strong>of</strong> more<br />

than 20 different fcc-based fully relaxed ordered compounds <strong>of</strong> <strong>Al</strong>–<strong>Cu</strong>.<br />

The average deviation between the two methodsÕ energies is extremely<br />

small (6 meV/atom out <strong>of</strong> the average formation energies <strong>of</strong> more<br />

than 100 meV/atom), thus <strong>in</strong>spir<strong>in</strong>g confidence that the FLAPW/<br />

VASP energies are basically <strong>in</strong>terchangeable for this system.<br />

FLAPW and VASP calculations, respectively). The<br />

structures, <strong>in</strong> all cases, were fully relaxed with respect to<br />

volume as well as all cell-<strong>in</strong>ternal and -external coord<strong>in</strong>ates.<br />

The comb<strong>in</strong>ation <strong>of</strong> different first-pr<strong>in</strong>ciples energetics<br />

<strong>in</strong>to a s<strong>in</strong>gle microstructural model might<br />

<strong>in</strong>itially cause concern, however, we tested the formation<br />

energies <strong>of</strong> more than 20 different fully relaxed fcc-based<br />

ordered compounds <strong>of</strong> <strong>Al</strong>–<strong>Cu</strong> with both the FLAPW<br />

and VASP methods. The average deviation between the<br />

two methodsÕ energies is extremely small (6 meV/atom<br />

out <strong>of</strong> the average formation energies <strong>of</strong> more than 100<br />

meV/atom), thus <strong>in</strong>spir<strong>in</strong>g confidence that the FLAPW/<br />

VASP energies are basically <strong>in</strong>terchangeable for this<br />

system. The comparison between FLAPW and VASP<br />

energies <strong>in</strong> <strong>Al</strong>–<strong>Cu</strong> is shown <strong>in</strong> Fig. 2.<br />

2.2. Mixed-space cluster expansion<br />

The calculation <strong>of</strong> f<strong>in</strong>ite temperature free energy <strong>of</strong> a<br />

disordered solid solution phase is outside the realm <strong>of</strong><br />

direct first-pr<strong>in</strong>ciples calculations, due to the disorder<br />

<strong>in</strong>volved as well as the configurational entropy contribution<br />

associated with it. However, the mixed-space<br />

cluster expansion (MSCE) technique parameterized<br />

from first-pr<strong>in</strong>ciples calculations enables the calculation<br />

<strong>of</strong> disordered solid solution phases at f<strong>in</strong>ite temperatures<br />

<strong>in</strong>clud<strong>in</strong>g the important energetic effects <strong>of</strong> atomic relaxations,<br />

all with the accuracy <strong>of</strong> first-pr<strong>in</strong>ciples energies<br />

[17]. In the MSCE technique, energetics <strong>of</strong> small<br />

unit cell ordered compounds are mapped onto a generalized<br />

Is<strong>in</strong>g-like model for a particular lattice type,<br />

<strong>in</strong>volv<strong>in</strong>g 2-, 3-, and 4-body <strong>in</strong>teractions plus coherency<br />

stra<strong>in</strong> energies (atomic misfit stra<strong>in</strong>). The Hamiltonian<br />

can be <strong>in</strong>corporated <strong>in</strong>to mixed-space Monte Carlo<br />

simulations <strong>of</strong> N 10 5 atoms [18], effectively allow<strong>in</strong>g<br />

one to explore the complexity <strong>of</strong> the 2 N configurational<br />

space at f<strong>in</strong>ite temperatures. The mixed-space CE<br />

Hamiltonian for fcc <strong>Al</strong>–<strong>Cu</strong> used here has been previously<br />

constructed from first-pr<strong>in</strong>ciples total energies <strong>of</strong><br />

41 ordered structures [18].<br />

2.3. Monte Carlo simulations and thermodynamic <strong>in</strong>tegration<br />

Us<strong>in</strong>g the first-pr<strong>in</strong>ciples MSCE Hamiltonian <strong>in</strong><br />

Monte Carlo simulations, we can obta<strong>in</strong> the energy (per<br />

atom) <strong>of</strong> the <strong>Al</strong>–<strong>Cu</strong> solid solution (E SS ) as a function <strong>of</strong><br />

temperature for different solute (<strong>Cu</strong>) compositions. The<br />

mix<strong>in</strong>g enthalpy <strong>of</strong> the solid solution (DH SS ) is obta<strong>in</strong>ed<br />

from E SS by subtract<strong>in</strong>g the composition-weighted average<br />

<strong>of</strong> the pure constituent energies<br />

DH SS ¼ E SS ½X <strong>Cu</strong> E <strong>Cu</strong> þð1<br />

X <strong>Cu</strong> ÞE <strong>Al</strong> Š; ð1Þ<br />

where X <strong>Cu</strong> is the concentration <strong>of</strong> copper, and E <strong>Cu</strong> and<br />

E <strong>Al</strong> are the energies per atom <strong>of</strong> copper and alum<strong>in</strong>um,<br />

respectively, <strong>in</strong> their equilibrium fcc structures. Monte<br />

Carlo simulations can give energetics such as Eq. (1)<br />

directly as an output. However, the entropy cannot be<br />

directed computed <strong>in</strong> a Monte Carlo simulation; <strong>in</strong>stead<br />

one must use techniques such as thermodynamic <strong>in</strong>tegration:<br />

The configurational entropy <strong>of</strong> the disordered<br />

alloy at any f<strong>in</strong>ite temperature T is computed from a<br />

Monte Carlo simulation start<strong>in</strong>g at very high temperatures<br />

(‘‘T ¼1’’) and slowly cool<strong>in</strong>g down [19]. The<br />

follow<strong>in</strong>g thermodynamic relation gives the configurational<br />

entropy at temperature T<br />

DS conf ðT Þ¼DS ideal þ DH Z<br />

SSðT Þ<br />

b<br />

k B DH SS ðb 0 Þ db 0 ;<br />

T<br />

0<br />

ð2Þ<br />

where DS ideal ¼ k B ½X <strong>Cu</strong> lnðX <strong>Cu</strong> Þþð1 X <strong>Cu</strong> Þ lnð1 X <strong>Cu</strong> ÞŠ<br />

is the configurational entropy <strong>of</strong> an ideal solution (reference<br />

entropy at T ¼1), and b ¼ 1=ðk B T Þ, where T is<br />

the temperature (<strong>in</strong> K) and k B is the Boltzmann constant.<br />

The free energy is then given by<br />

DF SS ðT Þ¼DH SS ðT Þ T DS conf ðT Þ<br />

Z b<br />

¼ 1 DH SS ðb 0 Þ db 0 T DS ideal : ð3Þ<br />

b 0<br />

To facilitate the <strong>in</strong>tegration <strong>in</strong> Eq. (3), we fit the mix<strong>in</strong>g<br />

enthalpy to a polynomial <strong>in</strong> b.<br />

The vibrational entropy contribution to the solid<br />

solution free energy is not <strong>in</strong>cluded <strong>in</strong> this calculation.<br />

While a systematic computation <strong>of</strong> the vibrational entropy<br />

<strong>of</strong> configurationally disordered solid solutions <strong>in</strong><br />

<strong>Al</strong>–<strong>Cu</strong> would be <strong>in</strong>terest<strong>in</strong>g, the complexity <strong>of</strong> such<br />

calculations is considerable.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!