10.10.2014 Views

Multiscale Modeling of Theta ' Precipitation in Al-Cu Binary Alloys

Multiscale Modeling of Theta ' Precipitation in Al-Cu Binary Alloys

Multiscale Modeling of Theta ' Precipitation in Al-Cu Binary Alloys

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

V. Vaithyanathan et al. / Acta Materialia 52 (2004) 2973–2987 2979<br />

<strong>Al</strong> 2 <strong>Cu</strong> (θ')/<strong>Al</strong> Supercell Energetics<br />

Fig. 5. Relaxed supercells from the first-pr<strong>in</strong>ciples <strong>in</strong>terfacial energy<br />

calculations <strong>of</strong> coherent (1 0 0) and semi-coherent (0 0 1) <strong>in</strong>terfaces <strong>of</strong><br />

h 0 -<strong>Al</strong> 2 <strong>Cu</strong> <strong>in</strong> fcc <strong>Al</strong> solid solution [10]. Dashed l<strong>in</strong>es <strong>in</strong>dicate the<br />

1a h<br />

0 ¼ 1a <strong>Al</strong> and 2c h<br />

0 ¼ 3a <strong>Al</strong> relationships <strong>of</strong> the coherent and semicoherent<br />

<strong>in</strong>terfaces, respectively.<br />

and a semi-coherent rim. We construct supercells consistent<br />

with the observed orientation relations between<br />

h 0 and the <strong>Al</strong> matrix: ð001Þ h<br />

0kf001g <strong>Al</strong> and ½010Š h<br />

0<br />

k½010Š <strong>Al</strong><br />

[4]. Representative cells show<strong>in</strong>g the <strong>in</strong>terfacial<br />

structures are given <strong>in</strong> Fig. 5. <strong>Al</strong>though the present<br />

phase-field model is 2D, we note that the first-pr<strong>in</strong>ciples<br />

calculations used to generate the various energetics <strong>of</strong><br />

the h 0 /<strong>Al</strong> system are fully three-dimensional. The coherent<br />

and semi-coherent <strong>in</strong>terfaces possess very different<br />

<strong>in</strong>terfacial structures. Due to lattice-misfit arguments<br />

(see below), the semi-coherent <strong>in</strong>terface structure is<br />

found to have a 2 h 0 to 3 <strong>Al</strong> SS unit cell arrangement. This<br />

configuration was proposed by Stobbs and Purdy [8]<br />

and confirmed by their TEM stra<strong>in</strong> field observations<br />

around the <strong>in</strong>terface.<br />

From Fig. 6, we see that the calculated T ¼ 0 K <strong>in</strong>terfacial<br />

energies from first-pr<strong>in</strong>ciples LDA calculations<br />

<strong>of</strong> the coherent and semi-coherent <strong>in</strong>terfaces are 190 and<br />

600 mJ/m 2 , respectively. GGA calculations, give slightly<br />

lower values <strong>of</strong> 170 and 520 mJ/m 2 , respectively. (The<br />

LDA numbers given here are slightly smaller than previous<br />

values published <strong>in</strong> [10] due to a more careful<br />

consideration <strong>of</strong> k-po<strong>in</strong>t convergence.) From our convergence<br />

studies, we estimate an uncerta<strong>in</strong>ty <strong>in</strong> these<br />

calculated <strong>in</strong>terfacial energies on the order <strong>of</strong> 5–10% due<br />

to supercell size. Interest<strong>in</strong>gly, for both LDA and GGA,<br />

the <strong>in</strong>terfacial anisotropy between semi-coherent and<br />

coherent <strong>in</strong>terfaces is consistently around 3. In addition<br />

to the isolated <strong>in</strong>terface energies, one can obta<strong>in</strong> some<br />

<strong>in</strong>dication <strong>of</strong> the <strong>in</strong>terface-<strong>in</strong>terface <strong>in</strong>teractions from<br />

the energies <strong>in</strong> Fig. 6 for relatively small supercells. For<br />

the coherent <strong>in</strong>terface, the small-cell energies fall above<br />

the l<strong>in</strong>e extracted from large cells, thus <strong>in</strong>dicat<strong>in</strong>g a repulsion<br />

between these <strong>in</strong>terfaces at short distances. For<br />

Formation Energy (meV/atom)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

SEMICOHERENT (θ' rim)<br />

LDA: γ = 600 mJ/m 2<br />

GGA: γ = 520 mJ/m 2<br />

COHERENT (θ' broad face)<br />

LDA: γ = 190 mJ/m 2<br />

GGA: γ = 170 mJ/m 2<br />

0<br />

0.00 0.02 0.04 0.06 0.08 0.10 0.12<br />

1/N<br />

Fig. 6. First-pr<strong>in</strong>ciples (VASP) formation energies <strong>of</strong> <strong>Al</strong>/h 0 N-atom<br />

supercells as a function <strong>of</strong> 1=N for both <strong>in</strong>terfaces shown <strong>in</strong> Fig. 5.<br />

Energetics are shown for both LDA (filled symbols) and GGA (empty<br />

symbols) calculations. The energies <strong>of</strong> the large-cell calculations are fit<br />

to straight l<strong>in</strong>es, and the <strong>in</strong>terfacial energies (r) are extracted from the<br />

slopes, 2rA, <strong>of</strong> these l<strong>in</strong>es [see Eq. (18)].<br />

the semi-coherent <strong>in</strong>terface, the opposite is true, i.e.,<br />

these <strong>in</strong>terfaces tend to attract one another at short<br />

separations.<br />

We can contrast our first-pr<strong>in</strong>ciples calculated <strong>in</strong>terfacial<br />

anisotropy <strong>of</strong> 3 with a previous estimate by<br />

Aaronson and Laird [28] <strong>of</strong> 12. Our first-pr<strong>in</strong>ciples<br />

calculations <strong>in</strong>clude more physical contributions, and<br />

hence, are more predictive and certa<strong>in</strong>ly more accurate<br />

than the previous highly simplified estimate [28].<br />

Therefore, we assert that the currently most reliable<br />

value <strong>of</strong> the <strong>in</strong>terfacial anisotropy for the h 0 /<strong>Al</strong> system is<br />

3. This is noteworthy, s<strong>in</strong>ce the anisotropy estimate <strong>of</strong><br />

12 has been widely used <strong>in</strong> the literature as a prediction<br />

<strong>of</strong> the equilibrium aspect ratio <strong>of</strong> h 0 . These estimates <strong>of</strong><br />

the equilibrium aspect ratio are flawed not only because<br />

we have shown the more accurate <strong>in</strong>terfacial anisotropy<br />

is 3, but also there exists a strong stra<strong>in</strong> anisotropy<br />

contribution <strong>in</strong> this system (discussed <strong>in</strong> the next section),<br />

which can significantly alter the equilibrium aspect<br />

ratio <strong>of</strong> h 0 precipitates.<br />

We note that the <strong>in</strong>terfacial energy anisotropy obta<strong>in</strong>ed<br />

from first-pr<strong>in</strong>ciples is obta<strong>in</strong>ed at T ¼ 0 K and<br />

for a completely sharp <strong>in</strong>terface (Fig. 5). It would be <strong>of</strong><br />

considerable <strong>in</strong>terest to know how this anisotropy<br />

changes with temperature. At f<strong>in</strong>ite temperature, the<br />

<strong>in</strong>terfaces will naturally be diffuse to some extent and<br />

hence, configurational degrees <strong>of</strong> freedom will alter the<br />

<strong>in</strong>dividual <strong>in</strong>terfacial energy values. <strong>Al</strong>so the vibrational<br />

entropy at the <strong>in</strong>terface should be considered <strong>in</strong> a<br />

complete description <strong>of</strong> the temperature-dependence <strong>of</strong><br />

the <strong>in</strong>terfacial free energies. Future work along these<br />

l<strong>in</strong>es would be most <strong>in</strong>terest<strong>in</strong>g.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!