10.10.2014 Views

Multiscale Modeling of Theta ' Precipitation in Al-Cu Binary Alloys

Multiscale Modeling of Theta ' Precipitation in Al-Cu Binary Alloys

Multiscale Modeling of Theta ' Precipitation in Al-Cu Binary Alloys

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2978 V. Vaithyanathan et al. / Acta Materialia 52 (2004) 2973–2987<br />

energetics is applicable only for substitutional fcc-based<br />

configurations. It can be used for calculat<strong>in</strong>g the free<br />

energy <strong>of</strong> an fcc-based compound (e.g., a structure that<br />

can be represented by a substitutional decoration <strong>of</strong> A<br />

and B atoms on the sites <strong>of</strong> an fcc lattice, such as an<br />

ordered L1 2 or L1 0 ), but cannot be used for calculat<strong>in</strong>g<br />

the free energy <strong>of</strong> h 0 , which has a (distorted) CaF 2<br />

crystal structure. Hence, the h 0 energy is obta<strong>in</strong>ed from<br />

direct first-pr<strong>in</strong>ciples calculations at T ¼ 0 K, coupled<br />

with the vibrational entropy <strong>of</strong> h 0 , which has been found<br />

to be unexpectedly important for this phase [1]. Additionally,<br />

by perform<strong>in</strong>g po<strong>in</strong>t defect calculations <strong>of</strong> supercells<br />

<strong>of</strong> h 0 and <strong>in</strong>sert<strong>in</strong>g the energetics <strong>in</strong>to a lowtemperature<br />

expansion, we f<strong>in</strong>d that the configurational<br />

entropy <strong>of</strong> h 0 is small, and we do not consider h 0 <strong>of</strong>fstoichiometry.<br />

The h 0 formation enthalpy was calculated<br />

from first-pr<strong>in</strong>ciples as )195.8 meV/atom at <strong>Al</strong> 2 <strong>Cu</strong><br />

stoichiometry (X <strong>Cu</strong> ¼ 1=3). The computed (formation)<br />

vibrational entropy is )0.62k B [1]. Hence, the free energy<br />

<strong>of</strong> h 0 as a function <strong>of</strong> temperature is given by<br />

DF h<br />

0ðT Þ¼ 195:8 þ 0:62k B T ð<strong>in</strong> meV=atomÞ: ð15Þ<br />

We note that without the <strong>in</strong>clusion <strong>of</strong> the h 0 vibrational<br />

entropy term, the calculated equilibrium solubility <strong>of</strong> <strong>Cu</strong><br />

<strong>in</strong> solid solution is extremely small. For easier visualization,<br />

the free energy is scaled by a l<strong>in</strong>ear term <strong>in</strong><br />

composition ½ 3X <strong>Cu</strong> DF h<br />

0ðT ÞŠ, such that the rescaled h 0<br />

free energy at X <strong>Cu</strong> ¼ 1=3 is zero (Fig. 4(c)). This l<strong>in</strong>ear<br />

scal<strong>in</strong>g <strong>of</strong> the free energy does not affect the determ<strong>in</strong>ation<br />

<strong>of</strong> equilibrium composition through the common<br />

tangent construction.<br />

3.2. Interfacial energy<br />

In a system where the precipitate and matrix phases<br />

are substitutional rearrangements <strong>of</strong> atoms on the same<br />

lattice type, and form perfectly coherent <strong>in</strong>terfaces (e.g.,<br />

GP zone phases), one could calculate the <strong>in</strong>terfacial free<br />

energy from a Monte Carlo simulation coupled with<br />

thermodynamic <strong>in</strong>tegration, analogous to the procedure<br />

described for bulk free energies. <strong>Al</strong>ternatively, T ¼ 0K<br />

values may be obta<strong>in</strong>ed from direct first-pr<strong>in</strong>ciples supercell<br />

calculations (without us<strong>in</strong>g a CE). h 0 precipitates<br />

are partially coherent with different crystal structures for<br />

precipitate and matrix. Hence, it is not amenable to the<br />

CE method. Therefore, we extract the T ¼ 0 K <strong>in</strong>terfacial<br />

energies directly from first-pr<strong>in</strong>ciples supercell calculations.<br />

We next describe how the <strong>in</strong>terfacial energies<br />

are extracted from supercell energetics, and separated<br />

from the coherency stra<strong>in</strong> energetics.<br />

We beg<strong>in</strong> by consider<strong>in</strong>g an N-atom coherent supercell<br />

conta<strong>in</strong><strong>in</strong>g an <strong>in</strong>terface between two materials, A<br />

and B (<strong>in</strong> the case <strong>of</strong> this work, A ¼ <strong>Al</strong> and B ¼ <strong>Al</strong> 2 <strong>Cu</strong><br />

h 0 ). For simplicity, we consider the case <strong>of</strong> cells compris<strong>in</strong>g<br />

equal amount <strong>of</strong> A and B. The energy <strong>of</strong> a such<br />

an A N=2 B N=2 supercell can be separated <strong>in</strong>to two components<br />

[27]: (a) coherency stra<strong>in</strong> (cs): the stra<strong>in</strong> energy<br />

required to ma<strong>in</strong>ta<strong>in</strong> coherency between the (lattice<br />

mismatched) materials A and B, and (b) <strong>in</strong>terfacial energy:<br />

the energy associated with the <strong>in</strong>teractions between<br />

materials at the A=B <strong>in</strong>terface(s). To def<strong>in</strong>e these terms,<br />

it is useful to first consider the <strong>in</strong>f<strong>in</strong>ite period supercell<br />

limit N !1, for a supercell with <strong>in</strong>terface along an<br />

orientation ^G with lattice constants a k and a ? parallel<br />

and perpendicular to ^G, respectively. In this <strong>in</strong>f<strong>in</strong>iteperiod<br />

case, A=B <strong>in</strong>terfacial <strong>in</strong>teractions (which scale as<br />

the area <strong>of</strong> the <strong>in</strong>terface) contribute a negligible amount<br />

to the supercell formation energy dE sup (which scales as<br />

the volume <strong>of</strong> the superlattice):<br />

dE sup ðN !1; ^GÞ<br />

<br />

1<br />

dE CS ð^GÞ ¼m<strong>in</strong><br />

a ?<br />

2 dEepi A<br />

ða ?; a A k ; ^GÞ<br />

þ 1 <br />

2 dEepi B ða ?; a B k ; ^GÞ ;<br />

ð16Þ<br />

where dE sup is the energy <strong>of</strong> the supercell relative to<br />

equilvalent amounts <strong>of</strong> A and B <strong>in</strong> their equilibrium bulk<br />

geometries. In Eq. (16), the materials A and B are deformed<br />

<strong>in</strong> an ‘‘epitaxial’’ geometry: Both materials are<br />

brought to a common lattice constant a ? perpendicular<br />

to ^G, and the energy <strong>of</strong> each material is <strong>in</strong>dividually<br />

m<strong>in</strong>imized with respect to the lattice constant a k parallel<br />

to ^G. The epitaxial energies dE epi are the energies <strong>of</strong> A<br />

and B <strong>in</strong> these epitaxial geometries relative to their<br />

equilibrium bulk energy. For f<strong>in</strong>ite-period supercells, the<br />

energy is determ<strong>in</strong>ed not only by the coherency sta<strong>in</strong><br />

energy, but also by the <strong>in</strong>terfacial energy r times the<br />

number (2) and area (A) <strong>of</strong> these <strong>in</strong>terfaces. S<strong>in</strong>ce we are<br />

us<strong>in</strong>g energetics per atom, we must divide by the number<br />

<strong>of</strong> atoms <strong>in</strong> the cell, N. The <strong>in</strong>terfacial energy is then<br />

def<strong>in</strong>ed as<br />

dE sup ðN; ^GÞ dE sup ðN !1; bGÞ 2rð^GÞA : ð17Þ<br />

N<br />

Comb<strong>in</strong><strong>in</strong>g Eqs. (16) and (17), we see the decomposition<br />

<strong>of</strong> the supercell energy (for any period) <strong>in</strong>to stra<strong>in</strong> and<br />

<strong>in</strong>terfacial components<br />

dE SL ðN; ^GÞ ¼ 2rð^GÞA þ dE CS ð^GÞ:<br />

ð18Þ<br />

N<br />

From Eq. (18), we see that if the supercell formation<br />

energies (per atom) are plotted as a function <strong>of</strong> 1=N, the<br />

slope is just 2rA, and the y-<strong>in</strong>tercept is dE CS ð^GÞ. We<br />

have extracted the <strong>in</strong>terfacial energies from first-pr<strong>in</strong>ciples<br />

supercell calculations us<strong>in</strong>g the construction <strong>of</strong> Eq.<br />

(18). The results are shown <strong>in</strong> Fig. 6. We note that extract<strong>in</strong>g<br />

the coherency stra<strong>in</strong> energy from these calculations<br />

is not numerically stable; a more robust<br />

approach is the direct calculation <strong>of</strong> Eq. (16) described<br />

below.<br />

The tetragonal structure <strong>of</strong> h 0 precipitate embedded <strong>in</strong><br />

an fcc matrix results <strong>in</strong> partially coherent plate-shaped<br />

precipitates. The h 0 plates possess a broad coherent face

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!