10.10.2014 Views

Multiscale Modeling of Theta ' Precipitation in Al-Cu Binary Alloys

Multiscale Modeling of Theta ' Precipitation in Al-Cu Binary Alloys

Multiscale Modeling of Theta ' Precipitation in Al-Cu Binary Alloys

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

V. Vaithyanathan et al. / Acta Materialia 52 (2004) 2973–2987 2981<br />

∆E CS (meV/atom)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Coherency Stra<strong>in</strong> Energies: <strong>Al</strong>/<strong>Al</strong>2<strong>Cu</strong>(θ')<br />

0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

<strong>Al</strong><br />

Hydrostatically stra<strong>in</strong>ed<br />

Biaxially stra<strong>in</strong>ed - 111<br />

Biaxially stra<strong>in</strong>ed - 100<br />

Fraction <strong>of</strong> θ'<br />

<strong>Al</strong> 2 <strong>Cu</strong> (θ')<br />

D ¼þ0:35 Mbar > 0 <strong>in</strong>dicates that h 0 precipitate has an<br />

elastically s<strong>of</strong>t direction along h100i, as can also be seen<br />

from the results <strong>of</strong> Fig. 7.<br />

4. Construct<strong>in</strong>g the phase-field model<br />

We have described how all the energetic <strong>in</strong>puts required<br />

for the phase-field microstructure model<strong>in</strong>g <strong>of</strong><br />

<strong>Al</strong>-h 0 system have been obta<strong>in</strong>ed from first-pr<strong>in</strong>ciples<br />

atomistic calculations. Next, we describe how the phasefield<br />

model is assembled from these energetics.<br />

4.1. Coarse-gra<strong>in</strong>ed free energy<br />

Fig. 7. First-pr<strong>in</strong>ciples (FLAPW-LDA) coherency stra<strong>in</strong> energies <strong>of</strong><br />

the <strong>Al</strong>/h 0 system. Shown are stra<strong>in</strong> energies for hydrostatic deformation,<br />

as well as epitaxial deformation along [1 0 0] and [1 1 1] orientations.<br />

The stra<strong>in</strong> energies shown are for the coherency constra<strong>in</strong>t <strong>of</strong> the<br />

semi-coherent <strong>in</strong>terfaces (around the rims <strong>of</strong> the plates), 2c h<br />

0 : 3a <strong>Al</strong> .<br />

The stra<strong>in</strong> energies for the broad face coherency constra<strong>in</strong>t, a h<br />

0 : a <strong>Al</strong><br />

(not shown), are qualitatively similar, but substantially reduced <strong>in</strong><br />

magnitude due to the smaller misfit <strong>in</strong> this orientation.<br />

Fig. 7. The epitaxial s<strong>of</strong>ten<strong>in</strong>g function [19] is given by<br />

the ratio <strong>of</strong> the epitaxial stra<strong>in</strong> energy along an orientation<br />

^G and the stra<strong>in</strong> energy for hydrostatic deformation,<br />

each deformed to a lattice parameter a S :<br />

qð^G; a S Þ¼ dEepi ð^G; a S Þ<br />

dE hydro ða S Þ :<br />

ð21Þ<br />

In harmonic elasticity theory, this s<strong>of</strong>ten<strong>in</strong>g function<br />

is given by<br />

B<br />

q harm ð^GÞ ¼1<br />

;<br />

ð22Þ<br />

C 11 þ Dc harm<br />

where B is the bulk modulus, C ij are the elastic constants,<br />

D ¼ C 44 ðC 2 11 C 12 Þ is the elastic anisotropy<br />

1<br />

parameter, and c harm is a geometric function <strong>of</strong> the<br />

spherical angles formed by ^G [19]. Specifically, for the<br />

pr<strong>in</strong>ciple high-symmetry directions,<br />

c harm ð½001ŠÞ ¼ 0; c harm ð½110ŠÞ ¼ 1; c harm ð½001ŠÞ ¼ 4=3:<br />

ð23Þ<br />

From Fig. 7, we extract the values <strong>of</strong> qð½111ŠÞ and<br />

qð½001ŠÞ for a 5% phase fraction <strong>of</strong> h 0 . Us<strong>in</strong>g these values<br />

and Eq. (22), we extract average modulii <strong>of</strong><br />

C 12 =C 11 ¼ 0:442 and C 44 =C 11 ¼ 0:428. We note that<br />

these averaged modulii therefore conta<strong>in</strong> <strong>in</strong>formation<br />

about the energetic penalty required to stra<strong>in</strong> both the h 0<br />

precipitates and the <strong>Al</strong> matrix.<br />

From the epitaxial deformation calculations described<br />

above, we have also extracted elastic constants<br />

<strong>of</strong> the cubic (CaF 2 ) h 0 phase, as these constants are not<br />

available experimentally: C 11 ¼ 1:9 Mbar, C 12 ¼ 0:8<br />

Mbar and C 44 ¼ 0:9 Mbar. The elastic anisotropy<br />

The solid solution free energy from first-pr<strong>in</strong>ciples<br />

can be directly related to the first term <strong>in</strong> the coarsegra<strong>in</strong>ed<br />

free energy <strong>in</strong> the phase field model (Eq. (6)), i.e.<br />

f ðc; g 1 ¼ 0; g 2 ¼ 0; g 3 ¼ 0Þ ¼A 1 ðc C 1 Þ 2 : ð24Þ<br />

The free energy <strong>of</strong> <strong>of</strong> the h 0 phase <strong>in</strong> the phase-field<br />

model is given by f ðc; g eq ðcÞÞ, where the equilibrium<br />

order parameter as a function <strong>of</strong> composition [g eq ðcÞ] is<br />

obta<strong>in</strong>ed by m<strong>in</strong>imiz<strong>in</strong>g the bulk free energy<br />

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

p<br />

A 41 <br />

A 2 41<br />

4A 61 A 2 ðc C 2 Þ<br />

g eq ðcÞ ¼<br />

: ð25Þ<br />

2A 61<br />

The coefficients A 2 , A 41 and A 61 are obta<strong>in</strong>ed us<strong>in</strong>g the<br />

first-pr<strong>in</strong>ciples calculated equilibrium free energy and<br />

equilibrium composition <strong>of</strong> h 0 . The result<strong>in</strong>g coefficients<br />

(<strong>in</strong> meV/atom) <strong>of</strong> the coarse-gra<strong>in</strong>ed free energy at 723<br />

K <strong>in</strong> Eq. (6) from the fit are as follows:<br />

A 1 ¼ 1622:6; A 2 ¼ 1075:1; A 41 ¼ 536:6;<br />

A 61 ¼ 536:6; C 1 ¼ 0:002; C 2 ¼ 0:3333:<br />

The coarse-gra<strong>in</strong>ed free energy curves <strong>in</strong> Fig. 8 represent<br />

the two-phase equilibrium <strong>of</strong> <strong>Al</strong> solid solution and h 0 ,<br />

described <strong>in</strong> the multiscale model based on coefficients<br />

obta<strong>in</strong>ed from first-pr<strong>in</strong>ciples. The maximum driv<strong>in</strong>g<br />

force for the transformation (at 723 K) from Fig. 8 is<br />

34 meV/atom, while the equilibrium compositions<br />

based on common tangent construction to the free energy<br />

curves are c a ¼ 0:0013 (a represents the <strong>Al</strong> solid<br />

solution) and c h<br />

0 ¼ 0:3322. The h 0 free energy <strong>in</strong> Fig. 8 is<br />

admittedly an approximation to the first-pr<strong>in</strong>ciples calculated<br />

l<strong>in</strong>e compound free energy, <strong>in</strong>troduced to avoid<br />

numerical <strong>in</strong>stabilities. However, the approximated free<br />

energy reflects the proper equilibrium compositions <strong>of</strong><br />

the two phases.<br />

4.2. Gradient energy coefficients / <strong>in</strong>terfacial energies<br />

In the phase-field description, the <strong>in</strong>terfacial energy<br />

ÔrÕ for a system described by both the composition and<br />

an order parameter is given by [32]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!