10.10.2014 Views

Multiscale Modeling of Theta ' Precipitation in Al-Cu Binary Alloys

Multiscale Modeling of Theta ' Precipitation in Al-Cu Binary Alloys

Multiscale Modeling of Theta ' Precipitation in Al-Cu Binary Alloys

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

V. Vaithyanathan et al. / Acta Materialia 52 (2004) 2973–2987 2977<br />

og i ðr; tÞ<br />

¼<br />

ot<br />

dF<br />

Lð^/ p Þ ; i ¼ 1; 2; 3; ð10Þ<br />

dg i ðr; tÞ<br />

where M is the solute mobility and Lð^/ p Þ¼LAð^/ p Þ is the<br />

orientation-dependent <strong>in</strong>terfacial k<strong>in</strong>etic parameter. L is<br />

the <strong>in</strong>terfacial k<strong>in</strong>etic coefficient. Interface orientation is<br />

def<strong>in</strong>ed by the unit normal to the precipitate <strong>in</strong>terface,<br />

^/ p ð¼ ~rg p =j~rg p jÞ. The anisotropy <strong>in</strong> <strong>in</strong>terfacial k<strong>in</strong>etics<br />

can be <strong>in</strong>corporated as a function <strong>of</strong> the <strong>in</strong>terface normal<br />

(^/ p ).<br />

The temporal equations (Eqs. (9) and (10)) <strong>in</strong> dimensionless<br />

form can be reduced to<br />

<br />

oc<br />

ot ¼ M r 2 <strong>of</strong> <br />

nr 2 c ; ð11Þ<br />

oc<br />

og p<br />

ot ¼<br />

Lð^/ p Þ<br />

L<br />

"<br />

<strong>of</strong> <br />

og p<br />

#<br />

w ii ðpÞr 2 i g p þ dE el<br />

; ð12Þ<br />

dg p<br />

t ¼ LjDf jt; r ¼ r=l; ð13Þ<br />

M ¼ M Ll 2 ;<br />

n ¼<br />

a<br />

jDf jl 2 ;<br />

f f ðc; gÞ<br />

¼ ; E el<br />

jDf j<br />

¼ E el<br />

jDf j ;<br />

w iiðpÞ ¼ b iiðpÞ<br />

jDf jl ; 2<br />

ð14Þ<br />

where the quantities with asterisk ( ) represent the dimensionless<br />

equivalent <strong>of</strong> the correspond<strong>in</strong>g dimensional<br />

values. l represents the grid spac<strong>in</strong>g (Dx) or the characteristic<br />

length scale and Df represents the characteristic<br />

free energy (usually the maximum driv<strong>in</strong>g force for phase<br />

transformation from the constructed bulk free energy).<br />

The temporal equations are solved numerically us<strong>in</strong>g the<br />

semi-implicit Fourier-Spectral method [25].<br />

3. Results: first-pr<strong>in</strong>ciples calculations<br />

3.1. Bulk chemical free energy<br />

3.1.1. Solid solution phase<br />

The enthalpy and free energy (<strong>in</strong> meV/atom) as a<br />

function <strong>of</strong> composition and temperature, obta<strong>in</strong>ed<br />

from the comb<strong>in</strong>ed first-pr<strong>in</strong>ciples/MSCE/Monte Carlo<br />

approach, are shown <strong>in</strong> Figs. 4(a) and (b), respectively.<br />

We note that the temperature dependence <strong>of</strong> enthalpy <strong>in</strong><br />

Fig. 4(a) is due to a cluster<strong>in</strong>g-type short range order<br />

(SRO) <strong>in</strong> the Monte Carlo simulations <strong>of</strong> the <strong>Al</strong>–<strong>Cu</strong><br />

alloy. For a more detailed discussion <strong>of</strong> the predicted<br />

and experimentally measured SRO <strong>in</strong> <strong>Al</strong>–<strong>Cu</strong>, see [26].<br />

We also note that our calculated free energy for the solid<br />

solution phase <strong>in</strong>cludes configurational but not vibrational<br />

entropic contributions.<br />

3.1.2. h 0 precipitate phase<br />

The MSCE Hamiltonian obta<strong>in</strong>ed for the solid solution<br />

free energy calculations based on first-pr<strong>in</strong>ciples<br />

∆H ss (mev/atom)<br />

(a)<br />

∆F ss (mev/atom)<br />

(b)<br />

sc. ∆F ss (mev/atom)<br />

(c)<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

-14<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 0.02 0.04 0.06 0.08 0.1<br />

573 K<br />

673 K<br />

723 K<br />

773 K<br />

873 K<br />

X <strong>Cu</strong><br />

-40<br />

0 0.02 0.04 0.06 0.08 0.1<br />

X <strong>Cu</strong><br />

-1<br />

0 0.005 0.01 0.015 0.02 0.025 0.03<br />

X <strong>Cu</strong><br />

573 K<br />

673 K<br />

723 K<br />

773 K<br />

873 K<br />

573 K<br />

673 K<br />

723 K<br />

773 K<br />

873 K<br />

Fig. 4. (a) Enthalpy, (b) free energy and (c) scaled free energy <strong>of</strong> the<br />

<strong>Al</strong>–<strong>Cu</strong> solid solution as a function <strong>of</strong> solute composition and temperature,<br />

calculated us<strong>in</strong>g the first-pr<strong>in</strong>ciples (FLAPW-LDA) MSCE<br />

comb<strong>in</strong>ed with thermodynamic <strong>in</strong>tegration. The scaled free energy is<br />

obta<strong>in</strong>ed by add<strong>in</strong>g a l<strong>in</strong>ear term <strong>in</strong> composition ½ 3X <strong>Cu</strong> DF h<br />

0 ðT ÞŠ,<br />

such that the rescaled h 0 free energy at X <strong>Cu</strong> ¼ 1=3 is zero. This l<strong>in</strong>ear<br />

scal<strong>in</strong>g <strong>of</strong> the free energy does not affect the determ<strong>in</strong>ation <strong>of</strong> equilibrium<br />

composition through the common tangent construction, but<br />

merely aids <strong>in</strong> visualization.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!