10.10.2014 Views

Multiscale Modeling of Theta ' Precipitation in Al-Cu Binary Alloys

Multiscale Modeling of Theta ' Precipitation in Al-Cu Binary Alloys

Multiscale Modeling of Theta ' Precipitation in Al-Cu Binary Alloys

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2976 V. Vaithyanathan et al. / Acta Materialia 52 (2004) 2973–2987<br />

2.4. Phase-field model<br />

In the phase-field methodology, a precipitate microstructure<br />

is described by a set <strong>of</strong> cont<strong>in</strong>uum order parameter<br />

fields characteriz<strong>in</strong>g the difference <strong>in</strong> composition<br />

and structure between the precipitate and matrix [11]. In a<br />

two-dimensional representation <strong>of</strong> h 0 precipitates <strong>in</strong> a<br />

b<strong>in</strong>ary <strong>Al</strong>–<strong>Cu</strong> alloy, the precipitate microstructure is described<br />

by one composition field and two orientation-related<br />

long range order parameter fields.<br />

The chemical free energy <strong>of</strong> the microstructure, <strong>in</strong>clud<strong>in</strong>g<br />

the bulk and <strong>in</strong>terfacial energy, is then expressed<br />

as<br />

Z<br />

F bulk þ F <strong>in</strong>t ¼ f ðc; g 1 ; g 2 ; g 3 Þ þ a 2 ðrcÞ2<br />

V<br />

þ 1 X<br />

b<br />

2 ij ðpÞr i g p r j g p<br />

!dV ; ð4Þ<br />

p<br />

where a and b ij ðpÞ are gradient energy coefficients for<br />

composition and order parameters, respectively. b ij ðpÞ is<br />

reta<strong>in</strong>ed as a second rank tensor to <strong>in</strong>corporate the<br />

(tetragonal) anisotropy <strong>in</strong> <strong>in</strong>terfacial energy. The<br />

anisotropy <strong>in</strong> <strong>in</strong>terfacial energy <strong>of</strong> the precipitate is dependent<br />

on the orientational variant, g, <strong>of</strong> the precipitate<br />

(see Fig. 3). S<strong>in</strong>ce the phase-field model used <strong>in</strong> this<br />

study is a dislocation-free model, semi-coherent <strong>in</strong>terfaces<br />

are treated effectively as coherent <strong>in</strong>terfaces with a<br />

larger <strong>in</strong>terfacial energy.<br />

<br />

b ij ð1Þ ¼ b <br />

11ð1Þ 0<br />

;<br />

0 b 22 ð1Þ<br />

<br />

b ij ð2Þ ¼ b <br />

11ð2Þ 0<br />

0 b 22 ð2Þ<br />

c<br />

sc<br />

(η 1 = 0,<br />

η 2 =1 or -1)<br />

<br />

¼ b <br />

22ð1Þ 0<br />

:<br />

0 b 11 ð1Þ<br />

c<br />

(η 1 =1 or -1,<br />

η 2 =0)<br />

ð5Þ<br />

Fig. 3. Schematic <strong>of</strong> the h 0 precipitates <strong>in</strong> 2D show<strong>in</strong>g the two variants<br />

along with their equilibrium order parameters. The <strong>in</strong>terfaces <strong>of</strong> the<br />

variants are marked as coherent (c) and semi-coherent (sc) to show the<br />

symmetry and the <strong>in</strong>terface orientation dependence on the variants.<br />

sc<br />

The bulk free energy describ<strong>in</strong>g the phase-separation<br />

and order-disorder transformation <strong>in</strong>volved dur<strong>in</strong>g<br />

precipitation <strong>of</strong> the h 0 phase is approximated us<strong>in</strong>g the<br />

follow<strong>in</strong>g polynomial <strong>in</strong> c and g:<br />

f ðc; g 1 ; g 2 ; g 3 Þ<br />

¼ A 1 ðc C 1 Þ 2 þ A 2 ðc C 2 Þðg 2 1 þ g2 2 þ g2 3 Þ<br />

þ A 41 ðg 4 1 þ g4 2 þ g4 3 ÞþA 42ðg 2 1 g2 2 þ g2 2 g2 3 þ g2 1 g2 3 Þ<br />

þ A 61 ðg 6 1 þ g6 2 þ g6 3 Þ<br />

þ A 62 fg 4 1 ðg2 2 þ g2 3 Þþg4 2 ðg2 3 þ g2 1 Þþg4 3 ðg2 1 þ g2 2 Þg<br />

þ A 63 ðg 2 1 g2 2 g2 3 Þ;<br />

ð6Þ<br />

where C 1 and C 2 are constants close to the equilibrium<br />

compositions <strong>of</strong> solid solution matrix and h 0 precipitates,<br />

respectively. The coefficients A 41 and A 61 are constra<strong>in</strong>ed<br />

to have negative and positive values, respectively, to<br />

describe a first order phase transition [20].<br />

The elastic energy contribution to the total free energy<br />

<strong>of</strong> the system is obta<strong>in</strong>ed analytically us<strong>in</strong>g the<br />

method <strong>of</strong> Khachaturyan [21,22]. The stress-free misfit<br />

stra<strong>in</strong>, 0 ijðrÞ, between precipitates and matrix, is expressed<br />

as a function <strong>of</strong> the structural order parameters,<br />

0 ij ðrÞ ¼X 0 ij ðpÞg2 p ðrÞ;<br />

ð7Þ<br />

p<br />

where 0 ijðpÞ represents the stress-free stra<strong>in</strong> <strong>of</strong> the pth<br />

variant. With the homogeneous modulus approximation<br />

(matrix and precipitates have similar elastic constants),<br />

the elastic energy <strong>in</strong> terms <strong>of</strong> order parameters can be<br />

expressed as [23]<br />

E el ¼ V 2 k X<br />

ijkl ij kl V k ijkl ij 0 kl ðpÞg2 p ðrÞ<br />

þ V 2 k X X<br />

ijkl 0 ij ðpÞ0 kl ðqÞg2 p ðrÞg2 q ðrÞ<br />

1 X<br />

2<br />

p<br />

p<br />

q<br />

X<br />

Z<br />

q<br />

p<br />

d 3 g<br />

ð2pÞ 3 B pqðnÞfg 2 p ðrÞg g fg2 q ðrÞg g ;<br />

ð8Þ<br />

where k ijkl is the elastic stiffness tensor. B pq ðnÞ ¼<br />

n i r ij ðpÞX jk ðnÞr kl ðqÞn l and X jk ðnÞ is the <strong>in</strong>verse matrix <strong>of</strong><br />

X 1<br />

jk ðnÞ ¼ n ik ijkl n l . n ¼ g=jgj is the unit vector <strong>in</strong> reciprocal<br />

space, fg 2 q ðrÞg g<br />

is the Fourier transform <strong>of</strong> the<br />

square <strong>of</strong> order parameter [g 2 q ðrÞ] and fg2 p ðrÞg g<br />

is the<br />

complex conjugate <strong>of</strong> fg 2 p ðrÞg g . ij ¼ 0 ij þ a ij<br />

is the sum <strong>of</strong><br />

homogeneous stra<strong>in</strong> caused by transformation and external<br />

constra<strong>in</strong>ts or applied stress, respectively. In the<br />

absence <strong>of</strong> applied stra<strong>in</strong>, the fourth term <strong>in</strong> the elastic<br />

energy (Eq. (8)) is the dom<strong>in</strong>ant term controll<strong>in</strong>g the<br />

precipitate morphology.<br />

The temporal evolution <strong>of</strong> the microstructure <strong>in</strong> the<br />

phase-field model is obta<strong>in</strong>ed by numerically solv<strong>in</strong>g the<br />

Cahn–Hilliard and <strong>Al</strong>len–Cahn equations [24]<br />

ocðr; tÞ<br />

ot<br />

¼ Mr 2 dF<br />

dcðr; tÞ ;<br />

ð9Þ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!