02.11.2012 Views

SPECIAL - Alu-web.de

SPECIAL - Alu-web.de

SPECIAL - Alu-web.de

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Giesel Verlag GmbH · Postfach 120158 · D-30907 Isernhagen – PVST H 13410 – Dt. Post AG – Entgelt bezahlt<br />

Alcoa image - used with permission<br />

Volume 83 · January / February 2007<br />

International Journal for Industry, Research and Application<br />

Special 2007<br />

The international<br />

smelting industry<br />

Positive mood in the<br />

German aluminium<br />

industry<br />

Strapping technology<br />

with PET high performance<br />

strip<br />

1/2


llets ready for shipment.<br />

Continuous<br />

Homogenizing Plant<br />

ntinuous Homogenizing Plant.<br />

There are many benefits in one-stop shopping –<br />

even for industrial goods. Reliable, co-operative<br />

planning, specifications, which meet exactly your<br />

<strong>de</strong>mands and individual service-packages to operate<br />

on first-class level throughout the whole lifetime of<br />

the plant – this can be realized by one of the most<br />

experienced suppliers: Hertwich Engineering.<br />

Major benefits<br />

Hertwich Engineering is <strong>de</strong>dicated to leading technology<br />

in the aluminium casthouse. We add value<br />

by <strong>de</strong>signing integrated turn-key solutions. From<br />

melting and remelting to testing and packing. The<br />

results are convincing: highest quality of products<br />

at lowest cost-of-ownership. This has been proven<br />

by numerous plants all over the world.<br />

HERTWICH ENGINEERING GMBH<br />

Weinbergerstrasse 6<br />

5280 Braunau, Austria<br />

Leading technology in the aluminium casthouse.<br />

Phone: +43 (0) 7722 806-0<br />

Fax: +43 (0) 7722 806-122<br />

Continuous Homogenizing Plant.<br />

Continuous Homogenizing Plant<br />

Reliable, maximum homogenizing quality,<br />

uniform for all billets<br />

Lowest labour costs, full automation<br />

Best log straightness, no <strong>de</strong>ep surface marks<br />

Extremly reliable operation, little down-time,<br />

low repair costs<br />

Lowest energy consumption, low power ratings<br />

Flexibility of plant layout<br />

More than 80 plants in operation<br />

E-mail: info@hertwich.com<br />

Internet: www.hertwich.com<br />

MEETING your EXPECTATIONS


Volker Karow<br />

Chefredakteur<br />

Editor in Chief<br />

pro domo:<br />

Kontinuität im<br />

Wan<strong>de</strong>l<br />

pro domo:<br />

Change with<br />

continuity<br />

Die erste Ausgabe <strong>de</strong>r ALUMINIUM<br />

unter neuer redaktioneller Leitung<br />

und dann gleich in einem neuen<br />

„Look“: Das könnte schnell auch als<br />

inhaltlicher Bruch mit <strong>de</strong>r bisherigen<br />

Tradition <strong>de</strong>r Zeitschrift interpretiert<br />

wer<strong>de</strong>n, doch wäre dies ein Missverständnis.<br />

Der langjährige Chefredakteur<br />

Dr.-Ing. Peter Johne hat die ALUMI-<br />

NIUM in <strong>de</strong>n vergangenen mehr als<br />

zehn Jahren zu einer international<br />

renommierten Fachzeitschrift entwickelt,<br />

die sich durch fundierte und gut<br />

recherchierte Berichte aus Industrie,<br />

Forschung und Praxis auszeichnet.<br />

Diese Prägung, das ist <strong>de</strong>r Anspruch,<br />

soll natürlich fortgesetzt wer<strong>de</strong>n. Dabei<br />

liegt es in <strong>de</strong>r Natur <strong>de</strong>r Sache,<br />

dass ein gelernter Volkswirt einen<br />

etwas an<strong>de</strong>ren Blickwinkel als ein<br />

Ingenieur hat. Das mag hier und da<br />

mit einer leichten inhaltlichen Akzentverschiebung<br />

einhergehen, doch<br />

bleiben technische und wissenschaftliche<br />

Beiträge auch künftig zentrale<br />

Bausteine <strong>de</strong>r ALUMINIUM. Die neue<br />

Chefredaktion weiß sich dabei glücklich,<br />

auf die Expertise <strong>de</strong>s geschätzten<br />

Kollegen zurückgreifen zu können.<br />

Dr. Johne wird dieser Zeitschrift weiterhin<br />

zur Verfügung stehen: als Autor<br />

und auch als Herausgeber.<br />

Was nun die Überarbeitung <strong>de</strong>s<br />

Layouts betrifft: Der Leser wird beim<br />

Durchblättern <strong>de</strong>r neuen Ausgabe<br />

feststellen, dass <strong>de</strong>r Anteil <strong>de</strong>r farbigen<br />

Seiten erweitert wur<strong>de</strong>. Bei genauerem<br />

Hinsehen wird erkennbar,<br />

dass Struktur und Glie<strong>de</strong>rung <strong>de</strong>r<br />

ALUMINIUM mit Blick auf Übersichtlichkeit<br />

und Leserführung überarbeitet<br />

wur<strong>de</strong>n. Auch hinsichtlich <strong>de</strong>r<br />

Zweisprachigkeit von Artikeln waren<br />

Herausgeber und Redaktion bestrebt,<br />

aus Lesersicht Optimierungen vorzunehmen.<br />

Zu guter Letzt ging es auch<br />

darum, die Zeitschrift layouttechnisch<br />

abwechslungsreicher zu gestalten.<br />

Wir hoffen, dies ist uns gelungen<br />

und <strong>de</strong>r geneigte Leser sieht in <strong>de</strong>r<br />

Überarbeitung einen Gewinn.<br />

Jenseits gestalterischer Neuerungen<br />

bleibt die ALUMINIUM auch<br />

künftig eine die Branchenwelt abbil<strong>de</strong>n<strong>de</strong><br />

Fachzeitschrift und <strong>de</strong>n sich<br />

daraus ergeben<strong>de</strong>n Anfor<strong>de</strong>rungen<br />

verpflichtet.<br />

EDITORIAL<br />

One of the first things that will be<br />

noticed about this first issue of ALU-<br />

MINIUM un<strong>de</strong>r its new editorial management,<br />

is a “new look”. That might at<br />

first sight also lead to the expectation<br />

of a break from the previous tradition<br />

of the journal in terms of content, but<br />

this would be a misun<strong>de</strong>rstanding.<br />

Dr.-Ing. Peter Johne, Editor in<br />

Chief of ALUMINIUM for very many<br />

years, <strong>de</strong>veloped it over much more<br />

than a <strong>de</strong>ca<strong>de</strong> into an internationally<br />

renowned technical journal distinguished<br />

for its authoritative and<br />

well-researched reports on industry,<br />

research and practical applications.<br />

Naturally, we aim to maintain that<br />

reputation and image. It is only to be<br />

expected, however, that a trained political<br />

economist will see matters from<br />

a viewpoint somewhat different from<br />

that of an engineer. Here and there this<br />

may result in a slight shift of emphasis<br />

in the content, but technical and<br />

scientific contributions will as always<br />

remain cornerstones of ALUMINIUM<br />

in the future as well. The new Chief<br />

Editor is only too happy to make the<br />

most of the expertise of his esteemed<br />

colleague Dr. Johne, who will still lend<br />

his services to this journal, both as an<br />

author and as publisher.<br />

As regards the re<strong>de</strong>signed layout:<br />

rea<strong>de</strong>rs leafing through the new issue<br />

will note that the proportion of<br />

coloured pages has been increased.<br />

Careful observation will show that the<br />

structure and organisation of ALU-<br />

MINIUM have been modified with<br />

a view to greater clarity and rea<strong>de</strong>r<br />

guidance. In relation to the bilingual<br />

presentation of articles as well, the<br />

publisher and editor have striven to<br />

achieve optimisations from the rea<strong>de</strong>r’s<br />

standpoint. Last but not least, some<br />

further changes have had to be ma<strong>de</strong><br />

in or<strong>de</strong>r to provi<strong>de</strong> greater variety in<br />

the technical layout of the journal.<br />

We hope that we have managed this<br />

successfully and that sympathetically<br />

inclined rea<strong>de</strong>rs will find the changes<br />

beneficial. Notwithstanding its new<br />

<strong>de</strong>sign features, ALUMINIUM will in<br />

the future too remain a journal that<br />

faithfully portrays the world of the<br />

aluminium branch and does all that<br />

is necessary to fulfil the responsibility<br />

of doing so.<br />

ALUMINIUM · 1-2/2007 3


INHALT<br />

Neue Redaktionsanschrift<br />

New editorial office<br />

Volker Karow<br />

Franz-Meyers-Straße 16<br />

D-53340 Meckenheim<br />

Tel: +49(0)2225/8359643<br />

Fax: +49(0)2225/18458<br />

E-Mail: vkarow@online.<strong>de</strong><br />

4<br />

16<br />

30<br />

0<br />

EDITORIAL<br />

pro domo: Kontinuität im Wan<strong>de</strong>l ...........................................3<br />

AKTUELLES<br />

Personen, Unternehmen, Märkte ............................................6<br />

WIRTSCHAFT<br />

<strong>Alu</strong>miniumpreise .............................................................. 12<br />

Produktionsdaten <strong>de</strong>r <strong>de</strong>utschen <strong>Alu</strong>miniumindustrie .................. 14<br />

Die <strong>de</strong>utschen Hüttenbetriebe: technisch effizient, umweltpolitisch<br />

vorbildlich und ein wichtiges Glied in <strong>de</strong>r Wertschöpfungskette ..... 16<br />

European Coil Coating Kongress: Marktentwicklung, Technologietrends,<br />

Gesetzgebung .................................................................20<br />

<strong>SPECIAL</strong> 2007: DIE INTERNATIONALE<br />

ALUMINIUM-HÜTTENINDUSTRIE .......................... 30<br />

INTERNATIONALE BRANCHENNEWS .............62<br />

MARKT UND TECHNIK<br />

Signo<strong>de</strong>: Umreifungstechnik mit PET-Hochleistungsband .............. 70<br />

Alcutec Engineering rüstet russische Umschmelzhütte aus ............ 75<br />

Deutsche <strong>Alu</strong>miniumkonjunktur läuft <strong>de</strong>rzeit rund ...................... 78<br />

Audi für innovatives Karosseriekonzept ausgezeichnet ................ 84<br />

Kolbenschmidt Pierburg setzt auf AGR-Kühler aus <strong>Alu</strong>minium........ 86<br />

MARKTBERICHT: ALUMINIUM IM BAUWESEN<br />

Energieeffizientes Bauen im Fokus von Politik und Wirtschaft ........ 88<br />

Übergeordnete Trends im Fenster- und Fassa<strong>de</strong>nbau .................. 89<br />

Europäischer Architektur-Wettbewerb von Corus Bausysteme .........90<br />

Fenstermarkt im Plus ......................................................... 91<br />

Größtes <strong>de</strong>utsches Büroprojekt mit Wicona-Fassa<strong>de</strong>n ....................91<br />

RECYCLINGINDUSTRIE<br />

Vorbericht: 9. Internationaler <strong>Alu</strong>minium Recycling Kongress <strong>de</strong>r OEA 92<br />

Hydro vollen<strong>de</strong>t Metallkreislauf in Neuss ................................. 93<br />

FORSCHUNG<br />

Rührreibschweißen von artungleichen <strong>Alu</strong>miniumknet-<br />

und -druckgusslegierungen ................................................. 98<br />

VERANSTALTUNGEN<br />

22 nd ASK Metal Forming, Termine ........................................102<br />

Fortbildung ....................................................................103<br />

BDI-Umweltpreiswettbewerb 2007/08 ...................................104<br />

DOKUMENTATION<br />

Neue Bücher .......................................................................... 105<br />

Firmenschriften ...............................................................106<br />

Literaturhinweise .................................................................... 107<br />

Patente ................................................................................... 109<br />

Impressum ....................................................................129<br />

Vorschau ................................................................................ 130<br />

BEZUGSQUELLENVERZEICHNIS ........................... 111<br />

ALUMINIUM · 1-2/2007


EDITORIAL<br />

pro domo: Change with continuity ..........................................3<br />

NEWS IN BRIEF<br />

People, companies, markets ..................................................7<br />

ECONOMICS<br />

European Coil Coating Congress: market <strong>de</strong>velopment,<br />

technology trends, legislation .............................................. 20<br />

The Russians are coming: example Rusal ................................. 24<br />

Hydro maintains speed in aluminium repositioning ..................... 26<br />

Global roll-out of breakthrough Novelis Fusion technology .......... 27<br />

Alcoa joint venture with Sapa group ...................................... 28<br />

<strong>SPECIAL</strong> 2007: THE INTERNATIONAL<br />

ALUMINIUM SMELTING INDUSTRY<br />

Almeq electric preheater for catho<strong>de</strong> blocks .................................30<br />

Alprg: a software tool for aluminium smelting ..............................32<br />

Vittorio <strong>de</strong> Nora honoured by ECS ...............................................36<br />

Aumund cooling conveyor for hot bath material ............................38<br />

Advances in gas suspension calcination technology ........................40<br />

Ano<strong>de</strong> rod repair and manufacture ..............................................42<br />

Integrated continuous billet processing .........................................44<br />

De Nora inert metallic ano<strong>de</strong>: further <strong>de</strong>velopments ......................48<br />

Boron nitri<strong>de</strong> plus bin<strong>de</strong>r – a synonym for higher productivity ....... 53<br />

Thyristor rectifiers for aluminium plants with advanced<br />

free-wheeling control ........................................................ 56<br />

Moeller direct pot feeding technology .................................... 59<br />

COMPANY NEWS WORLDWIDE<br />

<strong>Alu</strong>minium smelting industry ............................................... 62<br />

Bauxite and alumina activities .............................................. 64<br />

Secondary aluminium smelting and recycling activities ................ 66<br />

<strong>Alu</strong>minium semis, Suppliers ................................................. 67<br />

On the move................................................................... 68<br />

MARKETS AND TECHNOLOGY<br />

Signo<strong>de</strong>: strapping technology with PET high-performance strip .... 70<br />

Alcutec: German know-how for Russian recycling complex ........... 74<br />

Positive mood in the German aluminium industry ...................... 78<br />

GDA participation at UN conference on sustainability .................. 80<br />

EAA launches new sustainability <strong>de</strong>velopment indicator results ...... 81<br />

Russia’s packaging market: aluminium processing technology at<br />

the forefront ................................................................... 82<br />

Audi takes award for innovative TT body concept ...................... 84<br />

Kolbenschmidt Pierburg successfully marketing its EGR system ...... 86<br />

Recent advances in coil coating technology .............................. 94<br />

RECYCLING INDUSTRY<br />

Preview of the 9 th International <strong>Alu</strong>minium Recycling<br />

Congress of the OEA ......................................................... 92<br />

EVENTS<br />

Dates, 22 nd ASK Metal Forming: “Forming the Future” ...............102<br />

DOCUMENTATION<br />

New books ............................................................................. 105<br />

company brochures .................................................................. 106<br />

Literature service .............................................................107<br />

Imprint .........................................................................129<br />

Preview ........................................................................130<br />

SOURCE OF SUPPLY LISTING .............................. 111<br />

ALUMINIUM · 1-2/2007<br />

Inserenten<br />

dieser Ausgabe<br />

List of advertisers<br />

CONTENTS<br />

88<br />

ABB AG, Schweiz 51<br />

Alcutec Engineering GmbH 93<br />

Böhler E<strong>de</strong>lstahl GmbH, Österreich 23<br />

Buss ChemTech AG, Schweiz 65<br />

BWG Bergwerk- und Walzwerk-<br />

Maschinenbau GmbH 13<br />

Coiltec Maschinenvertriebs GmbH 27<br />

Drache Umwelttechnik GmbH 81<br />

Dovebid, USA 63<br />

Edimet SpA, Italien 11<br />

Glama Maschinenbau GmbH 15<br />

Hartmann För<strong>de</strong>ranlagen GmbH 57<br />

Hertwich Engineering GmbH, Österreich 02<br />

High Performance Industrie-Technik GmbH,<br />

Österreich 17<br />

Innovatherm Prof. Dr. Leisenberg<br />

GmbH + Co. KG 37<br />

Inotherm Industrieofen- und<br />

Wärmetechnik GmbH 22, 78<br />

Moeller Materials Handling GmbH 61<br />

Moltech Sytems Ltd., Schweiz 132<br />

Pa<strong>de</strong>lttherm GmbH 55<br />

Precimeter Control AB, Schwe<strong>de</strong>n 19<br />

Bruno Presezzi Officine Meccaniche, Italien 59<br />

SMS Demag AG 131<br />

5


GDA<br />

WVM<br />

AKTUELLES<br />

<strong>Alu</strong>miniumbranche vor großen Herausfor<strong>de</strong>rungen<br />

Bun<strong>de</strong>swirtschaftsminister Michael Glos<br />

trifft Vertreter <strong>de</strong>r NE-Metallbranche<br />

Bun<strong>de</strong>swirtschaftsminister Michael<br />

Glos hat gegenüber Vertretern <strong>de</strong>r<br />

<strong>de</strong>utschen und europäischen NE-<br />

Metallindustrie auf die Be<strong>de</strong>utung<br />

<strong>de</strong>r Leicht- und Buntmetalle für <strong>de</strong>n<br />

technologischen Fortschritt und <strong>de</strong>n<br />

Exporterfolg <strong>de</strong>r <strong>de</strong>utschen Wirtschaft<br />

hingewiesen. Deutschland und<br />

die EU brauchen nach Ansicht <strong>de</strong>s<br />

Ministers auch in Zukunft „eine geschlossene<br />

Wertschöpfungskette“ bei<br />

<strong>de</strong>r Erzeugung und Verarbeitung von<br />

<strong>Alu</strong>minium, Kupfer, Zink und <strong>de</strong>n an<strong>de</strong>ren<br />

NE-Metallen. Beson<strong>de</strong>rs für die<br />

Autoindustrie und die Luftfahrt seien<br />

sie von steigen<strong>de</strong>r Be<strong>de</strong>utung.<br />

Energiepolitik ist nach Aussage<br />

<strong>de</strong>s Ministers ein wichtiger Bau-<br />

v.l.n.r.: Guy Thiran, Geschäftsführer Eurometaux; Martin<br />

Kneer, Hauptgeschäftsführer WVM; Bun<strong>de</strong>sminister für<br />

Wirtschaft und Technologie, Michael Glos; Ulrich Grillo,<br />

Vorstandsvorsitzen<strong>de</strong>r Grillo-Werke AG; Javier Targhetta,<br />

Geschäftsführer Atlantic Copper S.A.<br />

GDA-Präsi<strong>de</strong>nt Gerhard Bud<strong>de</strong>nbaum<br />

(Foto) auf <strong>de</strong>r Jahrespressekonferenz<br />

<strong>de</strong>s Gesamtverban<strong>de</strong>s <strong>de</strong>r<br />

<strong>Alu</strong>miniumindustrie im November<br />

2006: „Die <strong>Alu</strong>miniumindustrie ist<br />

heute, mehr noch als viele an<strong>de</strong>re<br />

Branchen, ein internationales, globales<br />

Geschäft. Rohstoffe, Hüttenstandorte,<br />

Verarbeitungsstandorte und<br />

Verbrauch sind breit gestreut und zunehmend<br />

eng miteinan<strong>de</strong>r vernetzt.<br />

Unsere Branche steht vor hohen<br />

Herausfor<strong>de</strong>rungen. Dass man auch<br />

in Deutschland produzieren kann,<br />

beweist die <strong>Alu</strong>miniumindustrie seit<br />

Jahren, allerdings insbeson<strong>de</strong>re bei<br />

Produkten mit hoher Wertschöpfung.<br />

stein, um Deutschland international<br />

wettbewerbsfähig zu halten. Er unterstrich<br />

die Be<strong>de</strong>utung international<br />

wettbewerbsfähiger Strompreise<br />

und funktionieren<strong>de</strong>r nationaler und<br />

europäischer Märkte für die energieintensive<br />

Industrie. Über die angespannte<br />

Lage auf <strong>de</strong>n internationalen<br />

Rohstoffmärkten müsse man im Rahmen<br />

<strong>de</strong>r Rohstoff- und Han<strong>de</strong>lspolitik<br />

intensiv sprechen, so Glos. Es gehe<br />

darum, Han<strong>de</strong>lshemmnisse zu beseitigen<br />

und alle politischen Instrumente<br />

zu nutzen, um zu einem zu gleichen<br />

Bedingungen funktionieren<strong>de</strong>n Rohstoffmarkt<br />

zu kommen.<br />

WVM-Präsi<strong>de</strong>nt Ulrich Grillo<br />

ver<strong>de</strong>utlichte zusammen mit nationalen<br />

und internationalen<br />

Vertretern <strong>de</strong>r NE-Metallindustrie<br />

die zentralen<br />

Herausfor<strong>de</strong>rungen <strong>de</strong>r<br />

im globalen Wettbewerb<br />

stehen<strong>de</strong>n Branchenunternehmen.<br />

Neben <strong>de</strong>r Energie-<br />

und Rohstoffpolitik<br />

gehöre hierzu ein Umweltund<br />

Klimaschutz, <strong>de</strong>r das<br />

industrielle Engagement<br />

und die internationale<br />

Wettbewerbsfähigkeit berücksichtige.<br />

Die Industrie<br />

stehe zu <strong>de</strong>n Verpflich-<br />

Dem Wettbewerbsdruck <strong>de</strong>r Niedriglohnlän<strong>de</strong>r<br />

setzen unsere Unternehmen<br />

ein hohes Qualitätsniveau,<br />

absolute Zuverlässigkeit und große<br />

Flexibilität entgegen. Die europäische<br />

<strong>Alu</strong>miniumindustrie wird sich nur<br />

durch ihre eigene Innovationskraft<br />

langfristig an <strong>de</strong>n Märkten behaupten.<br />

Nur wenn sich die Branche auf<br />

die Herstellung von Produkten konzentriert,<br />

die Marktnähe brauchen,<br />

eine hohe Wertschöpfung aufweisen<br />

und viel Know-how und gut ausgebil<strong>de</strong>tes<br />

Personal verbun<strong>de</strong>n mit hohen<br />

Serviceleistungen benötigen, hat<br />

Europa als Produktionsstandort eine<br />

Zukunft.“ (s. S. 78f)<br />

tungen <strong>de</strong>r Nachhaltigkeit, erwarte<br />

aber zugleich bei allem politischen<br />

Han<strong>de</strong>ln die Gleichrangigkeit von<br />

Ökonomie, Ökologie und Sozialem.<br />

Trimet<br />

M. Rosenbaum neuer<br />

Automotive-Vorstand<br />

Matthias Rosenbaum ist neuer Vorstand<br />

<strong>de</strong>s Geschäftsbereichs Automotive<br />

bei <strong>de</strong>r Trimet <strong>Alu</strong>minium AG.<br />

Er übernimmt die Verantwortung <strong>de</strong>r<br />

Werke in Harzgero<strong>de</strong> (Sachsen-Anhalt)<br />

und Sömmerda (Thüringen) und<br />

folgt damit auf Uwe Pränger, <strong>de</strong>r <strong>de</strong>n<br />

Geschäftsbereich sechs Jahre geleitet<br />

hat.<br />

Rosenbaum, geboren in Recklinghausen,<br />

studierte an <strong>de</strong>r RWTH Aachen<br />

Elektrotechnik. Bevor er im<br />

Herbst 2006 zur Trimet wechselte,<br />

war er unter an<strong>de</strong>rem für die Motorola<br />

AIEG (Automotive and Industrial<br />

Electronics Group), als Sprecher <strong>de</strong>r<br />

Geschäftsführung <strong>de</strong>r KS Kolbenschmidt<br />

GmbH und als European<br />

Sales Manager bei General Motors<br />

Delco Remy tätig. Matthias Rosenbaum<br />

ist 52 Jahre alt.<br />

6 ALUMINIUM · 1-2/2007


Alcoa appoints Presi<strong>de</strong>nt<br />

of Flexible Packaging<br />

Alcoa has named Jeff Kellar Presi<strong>de</strong>nt<br />

of its Alcoa Flexible Packaging business,<br />

succeeding Bimal Kalvani. Kellar<br />

joins Richmond, Virginia-based<br />

Alcoa Flexible Packaging from Tetra<br />

Pak of Chicago, where he was Vice<br />

Presi<strong>de</strong>nt of strategic <strong>de</strong>velopment<br />

and marketing.<br />

Shell Lubricants have opened a<br />

state-of-the-art rolling oils production<br />

facility in Dortmund, Germany<br />

to <strong>de</strong>velop and produce rolling oils,<br />

thus incorporating proven Controlled<br />

Particle Size (CPS) technology to<br />

meet the increasing <strong>de</strong>mands of the<br />

metals industry. This new facility will<br />

enable Shell lubricants companies<br />

to provi<strong>de</strong> a one-stop-shop for the<br />

metals industry, offering high quality<br />

factory plant maintenance lubricants,<br />

speciality greases and rolling oils, on<br />

a global basis.<br />

Following the acquisition of Croda<br />

Chemicals International’s (CCI) rolling<br />

fluid and production engineering<br />

business in January 2006, Shell<br />

Lubricants have now successfully<br />

integrated CCI’s range of rolling oils<br />

into their metals product portfolio. As<br />

ALUMINIUM · 1-2/2007<br />

V. <strong>de</strong> Nora<br />

honoured by ECS<br />

Vittorio <strong>de</strong> Nora has been honoured as<br />

the recipient of The Electrochemical<br />

Society (ECS) 2006 Edward Goodrich<br />

Acheson Award. The award was established<br />

in 1928 to recognise distinguished<br />

contributions which advance<br />

objects, purposes or activities of ECS.<br />

De Nora has <strong>de</strong>dicated his career to<br />

scientific research in the field of elec-<br />

Aston Martin trochemistry, including<br />

in particular<br />

the fields of<br />

chlorine-alkali<br />

and aluminium<br />

production. His<br />

research achievements<br />

centre on<br />

his efforts to find<br />

a feasible inert ano<strong>de</strong>.<br />

More about<br />

<strong>de</strong> Nora’s career<br />

on page 36 of this<br />

issue.<br />

The Aston Martin V8 Vantage Roadster was revealed at the 2006 Los Angeles Auto<br />

Show end of November. The Roadster shares the unique-to-Aston Martin bon<strong>de</strong>d<br />

aluminium VH (Vertical Horizontal) architecture – the backbone to all mo<strong>de</strong>rn Aston<br />

Martins. Adding to this structure sophisticated materials such as lightweight alloys,<br />

magnesium and advanced composites are used for the body, further contributing to<br />

the car‘s low weight and high rigidity. Body specification: <strong>Alu</strong>minium alloy, steel, composite,<br />

and magnesium alloy body. Extru<strong>de</strong>d aluminium si<strong>de</strong> impact bars and integral<br />

rollover bars. Suspension: In<strong>de</strong>pen<strong>de</strong>nt double aluminium wishbones, coil over aluminium<br />

monotube dampers and anti-roll bar.<br />

NEWS IN BRIEF<br />

Shell Lubricants with new rolling oils production facility<br />

well as producing Croda specification<br />

rolling oils, the new facility will house<br />

a product <strong>de</strong>velopment team that will<br />

continue to upgra<strong>de</strong> and extend the<br />

rolling oils portfolio.<br />

The production of rolling oils at the<br />

new facility is proof of Shell’s commitment<br />

to the metals industry. In the<br />

last 12 months, Shell Lubricants have<br />

introduced a number of products<br />

aimed at helping metals operators<br />

to increase productivity and reduce<br />

downtime. “In addition to the onestop-shop<br />

range of lubricants, metals<br />

operators will in future be able to benefit<br />

from having access to Shell lubricants<br />

experts at a local level to assist<br />

in reducing downtime and increasing<br />

productivity, said Roger Moulding,<br />

Vice Presi<strong>de</strong>nt Specialities for Shell<br />

Lubricants .”<br />

Norsk Hydro top focus<br />

on aluminium<br />

Hydro will focus on aluminium following<br />

the US$ 30 billion takeover of<br />

its oil and gas assets by Statoil. Following<br />

the completion of the recommen<strong>de</strong>d<br />

merger, Hydro will be the<br />

world’s third-largest listed aluminium<br />

company and is expected to be<br />

the fourth-largest company listed on<br />

the Oslo Stock Exchange in terms of<br />

market capitalisation. The company<br />

will continue to focus on its high performing<br />

primary production system<br />

and well-<strong>de</strong>veloped casthouse and<br />

remelter system in Europe and the<br />

United States. It will also pursue new<br />

alumina and metal growth opportunities<br />

in attractive areas.<br />

Novelis with new CEO<br />

Novelis has named Edward A. Blechschmidt,<br />

a member of its Board of<br />

Directors, to become Acting Chief<br />

Executive Officer, effective January<br />

2, 2007. Mr. Blechschmidt succeeds<br />

Board Chairman William T. Monahan,<br />

who has been Interim CEO since<br />

August 2006. Mr. Monahan remains<br />

Chairman of the Novelis Board. Novelis<br />

will continue its search for a permanent<br />

CEO.<br />

Roger Moulding (left) and Peter Rommerskirchen<br />

from Shell Lubricants inaugurating<br />

production of rolling oils in Dortmund,<br />

Germany<br />

Shell Lubricants<br />

7


Max-Planck-Institut<br />

AKTUELLES<br />

Mikrochip-Forschung<br />

<strong>Alu</strong>minium lässt Nanodrähte wachsen<br />

Eingefärbte Aufnahme von<br />

Silizium-Nanodrähten (Ø 40 nm).<br />

Silizium-Nanodrähte können helfen,<br />

Mikrochips weiter zu verkleinern.<br />

Wissenschaftler <strong>de</strong>s Max-Planck-Instituts<br />

für Mikrostrukturphysik in<br />

Halle haben nun erstmals einkristalline<br />

Silizium-Nanodrähte gezüchtet,<br />

die wichtige Voraussetzungen dafür<br />

erfüllen: Sie haben <strong>Alu</strong>minium als<br />

Katalysator verwen<strong>de</strong>t, um die Nanodrähte<br />

wachsen zu lassen. Bislang<br />

setzten Wissenschaftler zu diesem<br />

Zweck vor allem Gold ein. Doch<br />

schon Spuren <strong>de</strong>s E<strong>de</strong>lmetalls beeinträchtigen<br />

die Funktion von Halbleiterbauteilen<br />

drastisch.<br />

<strong>Alu</strong>minium dagegen beeinträchtigt<br />

die Chipeigenschaften nicht und lässt<br />

im Gegensatz zu an<strong>de</strong>ren Metallen<br />

schon bei relativ niedriger Temperatur<br />

von rund 450 °C Silizium-Nanodrähte<br />

von beson<strong>de</strong>rs hoher Qualität<br />

sprießen - eine Voraussetzung, um<br />

die Kosten <strong>de</strong>s Prozesses zu begrenzen.<br />

„Das neue Verfahren erfüllt die<br />

wichtigsten Bedingungen, um Silizium-Nanodrähte<br />

industriell einsetzen<br />

zu können“, erläuterte Stephan Senz,<br />

einer <strong>de</strong>r beteiligten Wissenschaftler.<br />

Um <strong>Alu</strong>minium in so kleine Partikel<br />

zu zerlegen, dass sich an ihm<br />

die feinen Drähte bil<strong>de</strong>n, erhitzen die<br />

Forscher eine dünne Schicht davon<br />

auf einer Silizium-Unterlage. Die Folie<br />

zerreißt dann in lauter winzige Teilchen.<br />

Anschließend gehen die Wissenschaftler<br />

wie in schon bekannten<br />

Verfahren vor: Sie dampfen Silan, ein<br />

siliziumhaltiges Gas, auf die Oberfläche,<br />

das sich am Katalysatorpartikel<br />

in elementares Silizium umwan<strong>de</strong>lt.<br />

Das Silizium löst sich daraufhin in<br />

<strong>de</strong>m <strong>Alu</strong>minium-Teilchen. Wenn<br />

dieses kein weiteres Silizium aufnehmen<br />

kann, kristallisiert es an <strong>de</strong>r Unterseite<br />

<strong>de</strong>s Partikels wie<strong>de</strong>r aus. So<br />

wächst ein einkristalliner Silizium-<br />

Nanodraht von etwa 40 Nanometern<br />

Durchmesser heran, <strong>de</strong>r an <strong>de</strong>r Spitze<br />

ein Katalysatorteilchen trägt.<br />

Die viel versprechen<strong>de</strong> Forschung<br />

an Halbleiter-Nanodrähten bewegt<br />

sich an <strong>de</strong>r Schnittstelle von Grundlagenforschung<br />

und technischer Anwendung.<br />

„Neben ihrem <strong>de</strong>nkbaren<br />

Einsatz in <strong>de</strong>r Halbleiterindustrie<br />

sind die Nanodrähte sehr interessant<br />

für die physikalische Grundlagenforschung,<br />

da über ihre Eigenschaften<br />

und ihr Wachstum noch nicht viel<br />

bekannt ist“, so Senz.<br />

Um die Kerosin- und Wartungskosten<br />

zu reduzieren, wird <strong>de</strong>r Flugzeugrumpf<br />

<strong>de</strong>s neuen Airbus A350<br />

XWB erstmals mit kohlefaserverstärkten<br />

Kunststoffen anstelle von <strong>Alu</strong>minium<br />

ausgestattet. Die Flugzeugzelle<br />

Bun<strong>de</strong>sumweltministerium för<strong>de</strong>rt<br />

innovative Recyclinganlage<br />

Bun<strong>de</strong>sumweltminister Sigmar Gabriel<br />

unterstützt die Errichtung eines innovativen<br />

Schmelzofens zur Herstellung von Kupfer in<br />

Osnabrück. Die KM Europa Metal AG plant,<br />

einen bisher nur in <strong>de</strong>r <strong>Alu</strong>miniumindustrie<br />

eingesetzten kippbaren Drehtrommelofen<br />

zu modifizieren und zum energieeffizienten<br />

Schmelzen und Raffinieren von Kupfer<br />

einzusetzen. Das Vorhaben wird vom<br />

Bun<strong>de</strong>sumweltministerium mit rund 1,3<br />

Millionen Euro aus <strong>de</strong>m Umweltinnovationsprogramm<br />

geför<strong>de</strong>rt.<br />

„Fortschritte bei <strong>de</strong>r Energieeffizienz<br />

in energieintensiven Industrien tragen<br />

in beson<strong>de</strong>rem Maße zum Erreichen <strong>de</strong>r<br />

Emissionsmin<strong>de</strong>rungsziele bei <strong>de</strong>n Treibhausgasen<br />

bei“, so Gabriel. Die Durchführung<br />

<strong>de</strong>s Vorhabens sei jedoch nicht nur<br />

Leserreise zur<br />

„Expo <strong>Alu</strong>minio<br />

Eine Leserreise <strong>de</strong>r Extraklasse: Der<br />

Giesel Verlag, Isernhagen, organisiert in<br />

Zusammenarbeit mit Reed Exhibition in<br />

<strong>de</strong>r Zeit vom 20. bis 25. Mai 2007 einen<br />

Besuch <strong>de</strong>r „Expo <strong>Alu</strong>minio“ in Sao Paulo<br />

(22. bis 24. Mai). Auf <strong>de</strong>m „Business“-<br />

Programm stehen <strong>de</strong>r Messebesuch sowie<br />

Besuche bei brasilianischen <strong>Alu</strong>miniumunternehmen.<br />

Eine gute Gelegenheit,<br />

Kontakte zu wichtigen Firmen und Behör<strong>de</strong>n<br />

zu knüpfen. Ein Flug nach Rio <strong>de</strong><br />

Janeiro mit Stadtrundfahrt und Besuch<br />

von Zuckerhut o<strong>de</strong>r Christusstatue auf<br />

<strong>de</strong>m Corcovado run<strong>de</strong>n das Programm<br />

ab. Neugierig gewor<strong>de</strong>n? Detailfragen<br />

beantwortet Jutta Illhardt, Tel: 0511 /<br />

7304-126, Fax: 0511 / 7304-157, E-Mail:<br />

Illhardt@giesel.<strong>de</strong>.<br />

Neuer Airbus A350 mit CFK-Außenhaut<br />

wird zu über 60 Prozent aus neu<br />

entwickelten Werkstoffen bestehen.<br />

Die Aufnahme <strong>de</strong>s Flugbetriebs <strong>de</strong>s<br />

neuen A350 XWB ist für das Jahr 2013<br />

vorgesehen.<br />

gut für die Umwelt, son<strong>de</strong>rn aufgrund <strong>de</strong>r<br />

Energieeinsparung auch aus wirtschaftlicher<br />

Sicht attraktiv.<br />

Im Rahmen <strong>de</strong>s Vorhabens soll erstmals<br />

ein kippbarer Drehtrommelofen aus <strong>de</strong>r<br />

<strong>Alu</strong>miniumindustrie zum Schmelzen und<br />

Raffinieren von Sekundärkupfer eingesetzt<br />

wer<strong>de</strong>n. Der neue Ofen verfügt im Gegensatz<br />

zu <strong>de</strong>n bisher in <strong>de</strong>r Kupferindustrie<br />

eingesetzten Drehtrommelöfen über nur<br />

eine Öffnung. Dadurch können Abgase optimal<br />

erfasst und diffuse Emissionen auf ein<br />

Minimum reduziert wer<strong>de</strong>n. Zu<strong>de</strong>m wird<br />

eine verbesserte Energieausnutzung gegenüber<br />

beidseitig offenen Drehtrommelöfen<br />

erreicht. Im Vergleich zu <strong>de</strong>n bisherigen<br />

Verfahren wer<strong>de</strong>n 10 bis 20 Prozent Energie<br />

eingespart.<br />

8 ALUMINIUM · 1-2/2007


Raw material prices remain high<br />

According to the branch report of IKB<br />

Deutsche Industriebank, the <strong>de</strong>velopment<br />

of international raw material<br />

prices has now excee<strong>de</strong>d its all-time<br />

high. Decisive for further price <strong>de</strong>velopment<br />

will be above all the future<br />

tra<strong>de</strong> environment. Owing to the relatively<br />

stable boundary conditions of<br />

the world economy it is unlikely that<br />

in the medium term there will be any<br />

appreciable downturn in the <strong>de</strong>mand<br />

for raw materials.<br />

The increasing access of <strong>de</strong>veloping<br />

countries, above all China, to raw<br />

material reserves will further boost<br />

worldwi<strong>de</strong> needs and therefore also<br />

maintain prices at a relatively high<br />

level. This applies to steel and NF<br />

metals such as aluminium as much as<br />

to oil and natural gas. All in all, it can<br />

be assumed that for metallic and also<br />

energy raw materials the low prices<br />

of the mid-1990s and the beginning<br />

of the present <strong>de</strong>ca<strong>de</strong> will for the time<br />

being not recur. As regards the price<br />

ALUMINIUM · 1-2/2007<br />

level of aluminium, IKB’s Research Department<br />

expects a medium-term <strong>de</strong>velopment<br />

within the range between<br />

2,000 and 2,500 US$/t. In the medium<br />

term the worldwi<strong>de</strong> enlargement of<br />

electrolysis capacities will relieve the<br />

situation. IKB also assumes that speculative<br />

<strong>de</strong>mand for aluminium by hedging<br />

funds will not increase further.<br />

Assuming a slight slowdown of<br />

the world economy, IKB in any event<br />

expects a si<strong>de</strong>ways movement of aluminium<br />

<strong>de</strong>mand. There is unlikely to<br />

be an appreciable fall in consumption<br />

in the future. The worldwi<strong>de</strong> trend towards<br />

lightweight construction in the<br />

transport sector (automotive, aviation),<br />

the growing need for packaging and the<br />

recovery of the building economy in<br />

Europe will be major driving forces.<br />

In the automotive industry aluminium<br />

and plastics are seen as the most<br />

important materials for reducing energy<br />

consumption and for meeting the<br />

objectives of the Kyoto protocol.<br />

NEWS IN BRIEF<br />

New Airbus A350<br />

With CFRP panelled<br />

fuselage skin<br />

Giesel Verlag übernimmt „APT International“<br />

und „APT News“<br />

Der Giesel Verlag aus Isernhagen bei<br />

Hannover, Verlagsheimat dieser Zeitschrift,<br />

hat zum 1. Januar 2007 die<br />

bei<strong>de</strong>n Publikationen „APT International“<br />

und „APT News“ übernommen.<br />

„Durch die Akquisition wird die vorhan<strong>de</strong>ne<br />

umfassen<strong>de</strong> Zeitschriftenreihe<br />

im Werkstoffbereich erweitert“,<br />

so Dietrich Taubert, Geschäftsführer<br />

<strong>de</strong>s Giesel Verlags. Gleichzeitig entsteht<br />

durch die Bün<strong>de</strong>lung <strong>de</strong>r Kräfte<br />

ein Verlag mit sehr großem Potenzial<br />

im <strong>Alu</strong>miniumbereich. Taubert: „Mit<br />

unserem Angebot an hochwertigen<br />

Publikationen können wir die Marktbedürfnisse<br />

<strong>de</strong>r <strong>Alu</strong>miniumbranche<br />

auf <strong>de</strong>n internationalen Märkten bedienen.“<br />

Der Giesel Verlag gibt mit <strong>de</strong>n bestehen<strong>de</strong>n<br />

Zeitschriften „ALUMINI-<br />

UM International Journal“, „<strong>Alu</strong>minium<br />

Praxis“, „METALL International<br />

Journal“ sowie „Composite Materials“<br />

und „Automotive Materials“ europaweit<br />

führen<strong>de</strong> Werkstoff-Fachpublikationen<br />

heraus. „Durch die Integration<br />

<strong>de</strong>r bei<strong>de</strong>n APT-Zeitschriften sind<br />

wir weltweit optimal aufgestellt und<br />

können global agieren<strong>de</strong>n Kun<strong>de</strong>n die<br />

passen<strong>de</strong> redaktionelle und Werbe-<br />

Plattform bieten“, sagte Taubert.<br />

John Travis wird weiterhin als<br />

Chefredakteur<br />

<strong>de</strong>r APT-Medien<br />

tätig sein. Der<br />

Giesel Verlag<br />

verantwortet Vertrieb,Anzeigenakquisition<br />

und<br />

Produktion. „Die<br />

Fokussierung auf<br />

die redaktionelle<br />

Tätigkeit und die<br />

Integration in die<br />

Strukturen eines<br />

führen<strong>de</strong>n Fachverlags<br />

sind wichtige<br />

Schritte bei<br />

<strong>de</strong>r konsequentenWeiterentwicklung<br />

dieser<br />

Zeitschriften“,<br />

To set new standards in fuel-efficiency<br />

and maintainability the new Airbus<br />

A350 XWB will feature the latest innovations<br />

in terms of advanced technologies.<br />

Amongst those is the use of<br />

all-new, easy to maintain and much<br />

lighter Carbon Fibre Reinforced Plastic<br />

panelled fuselage skins instead of<br />

aluminium.<br />

This innovation in manufacturing<br />

permits easier maintainability and<br />

reparability of individual airframe<br />

parts, while also allowing the structure<br />

of the panels to be much better<br />

optimized in terms of <strong>de</strong>sign to the<br />

stress and load requirements of each<br />

individual airframe part. Over 60 per<br />

cent of the airframe will be ma<strong>de</strong> of<br />

new materials.<br />

Entry into service of the first A350<br />

XWB is planned for 2013.<br />

erläuterte Travis. Über eine Vernetzung<br />

mit <strong>de</strong>n bisherigen Titeln <strong>de</strong>s<br />

Giesel Verlags ergeben sich für Leser<br />

und Anzeigenkun<strong>de</strong>n spürbare Symbiosen<br />

hinsichtlich Inhalt und Marketingmöglichkeiten.<br />

John Travis (l.) und Dietrich Taubert<br />

9


AKTUELLES<br />

Seit <strong>de</strong>m Jahr 2000 haben sich die Industriestrompreise mehr als verdoppelt<br />

Deckelung <strong>de</strong>r Energiekosten beschlossen<br />

Stromintensive Unternehmen wie <strong>Alu</strong>miniumhütten<br />

wer<strong>de</strong>n 2007 erneut<br />

bei ihren Energiekosten entlastet. Begünstigt<br />

sind laut Bun<strong>de</strong>sumweltministerium<br />

rund 330 Firmen <strong>de</strong>s produzieren<strong>de</strong>n<br />

Gewerbes, die um rund<br />

345 Mio. Euro entlastet wer<strong>de</strong>n. Im<br />

Auftrag <strong>de</strong>s Bun<strong>de</strong>sumweltministeriums<br />

hat das Bun<strong>de</strong>samt für Wirtschaft<br />

und Ausfuhrkontrolle (BAFA) En<strong>de</strong><br />

Dezember 2006 über die Anträge<br />

nach <strong>de</strong>r beson<strong>de</strong>ren Ausgleichsregelung<br />

<strong>de</strong>s Erneuerbaren-Energien-<br />

Gesetzes (EEG) entschie<strong>de</strong>n und zum<br />

Jahreswechsel die entsprechen<strong>de</strong>n<br />

Beschei<strong>de</strong> versandt. Durch eine zum<br />

1. Dezember 2006 in Kraft getretene<br />

Stromvertrag für Hamburger<br />

<strong>Alu</strong>miniumhütte perfekt<br />

Die Trimet <strong>Alu</strong>minium AG und <strong>de</strong>r Stromversorger<br />

RWE haben sich auf einen neuen<br />

Stromliefervertrag für die <strong>Alu</strong>miniumhütte<br />

in Hamburg (ehemals HAW) geeinigt.<br />

Der Vertrag hat ein Volumen von 2 TWh<br />

pro Jahr und gilt von 2008 bis min<strong>de</strong>stens<br />

2010. Trimet plant die schrittweise<br />

Wie<strong>de</strong>rinbetriebnahme ab April 2007. Die<br />

Produktion soll 2008 wie<strong>de</strong>r in vollem<br />

Umfang laufen. Der Anfahrbetrieb im Jahr<br />

2007 wird über flexible, kurzfristige Stromkontrakte<br />

sichergestellt. Der Liefervertrag<br />

nutzt alle Möglichkeiten <strong>de</strong>r liberalisierten<br />

Großhan<strong>de</strong>lsmärkte und kombiniert<br />

Än<strong>de</strong>rung <strong>de</strong>s EEG fällt die Entlastung<br />

<strong>de</strong>utlich höher als bisher aus. So beträgt<br />

die so genannte EEG-Umlage <strong>de</strong>r<br />

beson<strong>de</strong>rs stromintensiven Unternehmen<br />

künftig nur noch 0,05 ct/kWh.<br />

Die rückwirken<strong>de</strong> Anwendung <strong>de</strong>r<br />

Neuregelung ab <strong>de</strong>m 1. Januar 2006<br />

hat für die begünstigten Unternehmen<br />

zusätzlich einen Wert von etwa<br />

80 Mio. Euro. Im Antragsverfahren für<br />

2007 hat BAFA eine zu privilegieren<strong>de</strong><br />

Strommenge von insgesamt 72.040<br />

GWh ermittelt, die nicht mit vollem,<br />

son<strong>de</strong>rn begrenztem EEG-Anteil abzunehmen<br />

ist. Hiervon entfallen etwa<br />

94 % (67.826 GWh) auf Unternehmen<br />

<strong>de</strong>s produzieren<strong>de</strong>n Gewerbes.<br />

verschie<strong>de</strong>ne innovative Stromprodukte.<br />

So kommt das aus <strong>de</strong>r Finanzwirtschaft<br />

bekannte Optionsprodukt „Multi Period<br />

Extendible“ auch in <strong>de</strong>r Energiewirtschaft<br />

zur Anwendung. Es gewährt <strong>de</strong>m Kun<strong>de</strong>n<br />

<strong>de</strong>utliche Preisvorteile in <strong>de</strong>n frühen Lieferphasen,<br />

während <strong>de</strong>r Energieversorger<br />

gegen Preisverfall in <strong>de</strong>n späten Lieferphasen<br />

abgesichert ist. Außer<strong>de</strong>m ist <strong>de</strong>r<br />

von Trimet zu zahlen<strong>de</strong> Strompreis an <strong>de</strong>n<br />

<strong>Alu</strong>miniumpreis gekoppelt. Des Weiteren<br />

besteht die Möglichkeit, kurzfristig Lastabschaltungen<br />

vorzunehmen, die <strong>de</strong>m Stromversorger<br />

zusätzliche Flexibilität bieten.<br />

82m cans recycled<br />

The U.S. Conference of Mayors, Keep<br />

America Beautiful, Inc. and Novelis<br />

Inc. announced the winners in the<br />

2006 Cans for Cash: City Recycling<br />

Challenge on America Recycles Day.<br />

For the third year, the program challenged<br />

like-sized cities to compete<br />

against each other in aluminum can<br />

collection for monetary awards and<br />

to encourage recycling. During two<br />

weeks in September 2006, more than<br />

30 cities collected over 2.4 million<br />

pounds of aluminum cans which<br />

equates to over 82 million used beverage<br />

cans. The aluminum can is the<br />

country‘s most recycled beverage<br />

container and has been for more than<br />

20 years. In 2005, more than 100 billion<br />

aluminum beverage cans were<br />

produced in the United States and<br />

52% of them were recycled (a 1.0% increase<br />

over the previous year). Nearly<br />

the same amount - close to 50 billion<br />

cans or roughly US$ 1.5 billion worth<br />

of aluminum - was lost to landfill.<br />

Coperion übernimmt<br />

Hartmann För<strong>de</strong>ranlagen<br />

Mit Wirkung zum 1. Januar 2007 hat<br />

die Coperion Waeschle Beteiligungs<br />

GmbH die Geschäftsaktivitäten <strong>de</strong>r<br />

Hartmann För<strong>de</strong>ranlagen GmbH,<br />

Offenbach, übernommen. Das Unternehmen,<br />

ein führen<strong>de</strong>r Anbieter<br />

im Schüttguthandling von Toner<strong>de</strong>,<br />

wird innerhalb <strong>de</strong>r Coperion-Gruppe<br />

in <strong>de</strong>n Geschäftsbereich Materials<br />

Handling eingeglie<strong>de</strong>rt und künftig<br />

als Coperion Hartmann firmieren.<br />

Der Sitz <strong>de</strong>r Gesellschaft und die Arbeitsplätze<br />

<strong>de</strong>r Mitarbeiter bleiben<br />

erhalten. Eigentümer <strong>de</strong>r Coperion<br />

Gruppe ist die britische Private Equity<br />

Gesellschaft Lyceum Capital. Coperion<br />

Waeschle liefert für die Kunststoffherstellung<br />

die gesamte Prozesskette<br />

vom Reaktor bis zur Logistik. Erklärtes<br />

strategisches Ziel von Coperion ist es,<br />

auch in <strong>de</strong>r <strong>Alu</strong>miniumherstellung<br />

die komplette Prozesskette – von <strong>de</strong>r<br />

Rohmaterialannahme über das Lagern<br />

und Transportieren bis zur Beschickung<br />

<strong>de</strong>r Elektrolysezellen – mit<br />

Systemlösungen abzu<strong>de</strong>cken.<br />

10 ALUMINIUM · 1-2/2007


�������������������������<br />

�������������������<br />

� �� ������������������������<br />

��������������������������<br />

��������� ���������� ��������������������������<br />

������������ ����������������������<br />

���������� ��������������������������<br />

������������������������������<br />

����� ������������������������ ������<br />

����������� ����<br />

����������������<br />

�������������� ���������������������<br />

��������������������������������������������������������������������������������������������������������������������������������������


WIRTSCHAFT<br />

Quelle:<br />

Trimet AG, Düsseldorf<br />

Trimet <strong>Alu</strong>minium AG<br />

12 ALUMINIUM · 1-2/2007


��������������������������������<br />

������������������������������<br />

��������<br />

�������<br />

�����������������������<br />

�������������������������<br />

� ������������������������������<br />

� ������������������<br />

� ���������� �����<br />

� ������������������<br />

� ����������������������������������<br />

� ���������������������������������������������������<br />

� ��������������������������<br />

� ��������� � �����������������������������������������<br />

� ��������������������������������������������<br />

� ������������<br />

����������<br />

������������������<br />

����������<br />

��������<br />

����������������<br />

������������������� � ��������<br />

�����������������������<br />

�����������������<br />

��������������� � ��<br />

�����������������������<br />

����� ��������������<br />

��� ����������������<br />

����� �����������������


WIRTSCHAFT<br />

Produktionsdaten <strong>de</strong>r <strong>de</strong>utschen <strong>Alu</strong>miniumindustrie<br />

Primäraluminium Sekundäraluminium Walzprodukte > 0,2 mm Press- & Ziehprodukte**<br />

Produktion<br />

(in 1.000 t)<br />

+/in<br />

% *<br />

Produktion<br />

(in 1.000 t)<br />

+/in<br />

% *<br />

Produktion<br />

(in 1.000 t)<br />

+/in<br />

% *<br />

Produktion<br />

(in 1.000 t)<br />

+/in<br />

% *<br />

Okt 05 53,4 -6,0 61,2 5,9 153,1 9,4 43,2 0,9<br />

Nov 51,1 -7,1 65,3 6,7 150,7 -0,9 47,3 9,2<br />

Dez 47,6 -16,5 54,6 6,6 122,6 2,6 31,4 13,4<br />

Jan 06 42,9 -24,8 65,4 16,2 136,2 -4,2 45,4 10,7<br />

Feb 38,7 -25,5 65,1 9,6 145,5 5,8 46,0 8,6<br />

Mrz 43,1 -24,8 78,9 27,1 160,1 6,1 51,9 22,0<br />

Apr 42,4 -23,8 62,5 2,8 133,3 -12,9 42,8 -3,8<br />

Mai 43,4 -24,0 68,0 22,1 154,4 5,2 49,7 21,8<br />

Jun 43,2 -20,7 65,7 3,3 146,4 -2,4 47,8 0,1<br />

Jul 45,1 -17,9 64,0 4,6 148,8 -5,2 48,5 9,3<br />

Aug 45,2 -16,7 59,6 7,2 149,8 -6,0 48,1 9,1<br />

Sep 42,8 -19,4 66,9 6,9 144,2 -8,8 51,1 9,2<br />

Okt 44,1 -17,4 65,0 6,1 153,2 0,0 52,2 21,1<br />

* gegenüber <strong>de</strong>m Vorjahresmonat, ** Stangen, Profile, Rohre; Mitteilung <strong>de</strong>s Gesamtverban<strong>de</strong>s <strong>de</strong>r <strong>Alu</strong>miniumindustrie GDA, Düsseldorf<br />

Primäraluminium Sekundäraluminium<br />

Walzprodukte > 0,2 mm<br />

Press- und Ziehprodukte<br />

14 ALUMINIUM · 1-2/2007


WIRTSCHAFT<br />

Die <strong>de</strong>utschen <strong>Alu</strong>miniumhütten<br />

Technisch hoch effizient, umweltpolitisch vorbildlich<br />

und ein wichtiges Glied in <strong>de</strong>r Wertschöpfungskette<br />

Christian Wellner, Jörg H. Schäfer, Düsseldorf<br />

Die Konjunktur in Deutschland<br />

entwickelte sich 2006 mit einer<br />

Dynamik, wie sie lange nicht<br />

mehr gesehen war. Selbst aus <strong>de</strong>m<br />

Arbeitsmarkt kamen positive Meldungen.<br />

Kurzfristig stellt sich die<br />

Frage, inwieweit die jüngste Erhöhung<br />

<strong>de</strong>r Mehrwertsteuer zu einem<br />

konjunkturellen Dämpfer führen<br />

wird. Langfristig kann selbst die<br />

gute Konjunktur <strong>de</strong>s vergangenen<br />

Jahres nicht darüber hinwegtäuschen,<br />

dass seit Anfang <strong>de</strong>r 1990er<br />

Jahre zwei Millionen industrielle<br />

Arbeitsplätze in Deutschland verloren<br />

gegangen sind. Nach wie vor<br />

wan<strong>de</strong>rn zahlreiche Unternehmen<br />

mit Teilen ihrer Produktion ins<br />

Ausland, weil die wirtschaftlichen<br />

Rahmenbedingungen in unserem<br />

Land erhebliche Wettbewerbsnachteile<br />

generieren. Doch ohne eine<br />

breite industrielle Basis, auch von<br />

energieintensiven Branchen, wird<br />

das strukturelle Beschäftigungsproblem<br />

hierzulan<strong>de</strong> nicht zu lösen<br />

sein. Umso wichtiger ist es, <strong>de</strong>n<br />

Exodus von Industrien zu stoppen.<br />

Das schließt die <strong>Alu</strong>miniumindustrie<br />

ein.<br />

Noch Anfang 2006 sah es so aus, als<br />

hätte das Hüttensterben in Deutschland<br />

beschleunigte Fahrt aufgenommen.<br />

Die Schließung <strong>de</strong>s Hamburger<br />

<strong>Alu</strong>minium-Werks HAW En<strong>de</strong> 2005<br />

und das angekündigte Aus fürs Elbewerk<br />

in Sta<strong>de</strong> zum Jahresen<strong>de</strong><br />

2006 warfen die Frage auf, wann es<br />

schließlich die verbleiben<strong>de</strong>n Hüttenbetriebe<br />

treffen wür<strong>de</strong>. Dass HAW<br />

nun von <strong>de</strong>r Trimet <strong>Alu</strong>minium AG in<br />

Essen erworben wur<strong>de</strong> und die Elektrolyseöfen<br />

in <strong>de</strong>n nächsten Monaten<br />

wie<strong>de</strong>r hochgefahren wer<strong>de</strong>n, könnte<br />

als Indiz gewertet wer<strong>de</strong>n, dass sich<br />

die standortpolitischen Rahmenbedingungen<br />

in Deutschland zum Besseren<br />

gewen<strong>de</strong>t haben und es nun<br />

wie<strong>de</strong>r aufwärts geht mit <strong>de</strong>m Wirtschaftsstandort<br />

Deutschland.<br />

GDA<br />

Bei aller Euphorie kann jedoch nicht<br />

übersehen wer<strong>de</strong>n, dass die Zukunft<br />

für energieintensive Unternehmen in<br />

Deutschland nebelverhangen bleibt.<br />

Generell gilt dagegen: Die Energie-<br />

und insbeson<strong>de</strong>re die Strompreise<br />

sind im internationalen Maßstab nach<br />

wie vor sehr hoch. Auch die politisch<br />

bedingten Energiekosten belasten<br />

trotz regierungsseitig beschlossener<br />

Erleichterungen weiterhin.<br />

GDA-Geschäftsführer Christian Wellner:<br />

„Alle Bestrebungen zur Optimierung <strong>de</strong>s<br />

Elektrolysebetriebes zielen auf ...<br />

Planungssicherheit über Zeiträume,<br />

die sich in Jahrzehnten statt Jahren<br />

bemessen, gibt es somit nach wie vor<br />

nicht. Das belastet die Hüttenbetreiber<br />

mit erheblichen Risiken, wenn sie<br />

nötige Investitionen in ihre Anlagen<br />

planen – o<strong>de</strong>r sie wagen es gar nicht,<br />

was ein allmähliches En<strong>de</strong> <strong>de</strong>s Betriebs<br />

zur Konsequenz hat.<br />

Und all dies vor <strong>de</strong>m Hintergrund,<br />

dass die <strong>de</strong>utschen <strong>Alu</strong>miniumhütten<br />

heute technologisch und mit Blick auf<br />

die Umweltstandards international auf<br />

Augenhöhe produzieren, ja vorbildlich<br />

sind. All dies auch vor <strong>de</strong>m Hintergrund,<br />

dass wir es in <strong>de</strong>r Branche<br />

keineswegs mit einem Verdrängungswettbewerb<br />

in einem schrumpfen<strong>de</strong>n<br />

Markt zu tun haben. Im Gegenteil: Die<br />

Produktion von Primäraluminium<br />

stieg zwischen 2000 und 2005 welt-<br />

weit um rund 38 Prozent auf knapp<br />

34 Mio. jato und die Nachfrage nach<br />

<strong>Alu</strong>minium wird in <strong>de</strong>n kommen<strong>de</strong>n<br />

Jahren weiter steigen.<br />

Die Entwicklung <strong>de</strong>s<br />

Hüttenstandorts Deutschland<br />

Es ist eine Ironie <strong>de</strong>r Geschichte, dass<br />

die Standortprobleme in einem Land<br />

auftreten, das zu <strong>de</strong>n ältesten Hüttenstandorten<br />

für <strong>Alu</strong>minium zählt. Der<br />

erste Elektrolysebetrieb in Deutschland<br />

wur<strong>de</strong> schon 1898 in Rheinfel<strong>de</strong>n<br />

an <strong>de</strong>r Grenze zur Schweiz<br />

errichtet, wo dank <strong>de</strong>r Rheinfälle <strong>de</strong>r<br />

erfor<strong>de</strong>rliche Strom zur <strong>Alu</strong>miniumproduktion<br />

kostengünstig bereitgestellt<br />

wer<strong>de</strong>n konnte.<br />

Niedrige Strompreise sind für die<br />

Primärhütten seit jeher unabdingbar.<br />

Deshalb entstan<strong>de</strong>n ab 1917 große<br />

<strong>Alu</strong>miniumwerke am Nie<strong>de</strong>rrhein<br />

(Erftwerk) und in <strong>de</strong>r Lausitz (Lautawerk),<br />

bei<strong>de</strong> bezogen ihren Strom auf<br />

Basis günstiger Braunkohle. Mitte <strong>de</strong>r<br />

1920er Jahre wur<strong>de</strong> das Innwerk in<br />

Töging und in <strong>de</strong>n 1930er Jahren das<br />

Lippewerk in Lünen gebaut. Anfang<br />

<strong>de</strong>r 1960er Jahre wur<strong>de</strong> das Rheinwerk<br />

bei Neuss errichtet. Weitere<br />

Kapazitäten wur<strong>de</strong>n schließlich in<br />

Essen, Ludwigshafen, Voer<strong>de</strong>, Sta<strong>de</strong><br />

und Hamburg geschaffen.<br />

Die größte Anlagenkapazität in<br />

Deutschland gab es 1985/86 mit<br />

790.000 jato, als insgesamt neun <strong>Alu</strong>miniumhütten<br />

produzierten. Heute<br />

wird nur noch an wenigen <strong>de</strong>r<br />

genannten Standorte Primärmetall<br />

erzeugt. Das Erftwerk schloss seine<br />

Elektrolyse bereits 1978, die <strong>Alu</strong>miniumhütte<br />

in Ludwigshafen 1987, das<br />

Lippewerk 1989, die <strong>Alu</strong>miniumhütte<br />

in Rheinfel<strong>de</strong>n 1991 und das Innwerk<br />

1996. Das Elbewerk in Sta<strong>de</strong> hat seine<br />

Tore vor wenigen Wochen (70.000<br />

jato) geschlossen.<br />

War es früher eher eine zu geringe<br />

Betriebsgröße bzw. ineffiziente Produktion,<br />

die zum Aus für eine Hütte<br />

16 ALUMINIUM · 1-2/2007


führte, haben sich seit <strong>de</strong>r Jahrtausendwen<strong>de</strong><br />

vor allem die erheblich gestiegenen<br />

Energiekosten zum Existenz<br />

bedrohen<strong>de</strong>n Kriterium verschlimmert.<br />

Dies wirft die Frage auf, wie<br />

lange die heute in Deutschland noch<br />

produzieren<strong>de</strong>n Elektrolysen betrieben<br />

wer<strong>de</strong>n können. Stromverträge<br />

zwischen <strong>de</strong>n Energieversorgern und<br />

<strong>de</strong>n Hütten wer<strong>de</strong>n nur noch kurzfristig<br />

für einige Jahre abgeschlossen,<br />

so dass das Damoklesschwert einer<br />

Betriebsschließung permanent über<br />

<strong>de</strong>n Unternehmen und ihren Beschäftigten<br />

hängt – obwohl, wie erwähnt,<br />

die <strong>de</strong>utschen Anlagen hoch effizient<br />

produzieren und technisch international<br />

wettbewerbsfähig sind.<br />

Elektrolyseprozess <strong>de</strong>utlich<br />

effizienter<br />

Das Prinzip <strong>de</strong>r <strong>Alu</strong>miniumgewinnung<br />

ist in <strong>de</strong>n vergangenen 100<br />

Jahren zwar weitgehend unverän<strong>de</strong>rt<br />

geblieben, doch wur<strong>de</strong>n in <strong>de</strong>n vergangenen<br />

Jahrzehnten Mo<strong>de</strong>rnisierungen<br />

durchgeführt, die die heutige<br />

Produktion wesentlich effizienter<br />

macht als früher. Alle Bestrebungen<br />

zur Optimierung <strong>de</strong>s Elektrolysebetriebes<br />

zielen auf eine hohe Stromausbeute,<br />

einen niedrigen spezifischen<br />

Energieverbrauch <strong>de</strong>r Zellen und einen<br />

geringen Ano<strong>de</strong>nverbrauch. Auf<br />

diese Weise konnten die Produktivität<br />

enorm gesteigert und schädliche Umweltwirkungen<br />

minimiert wer<strong>de</strong>n.<br />

Die im Laufe <strong>de</strong>r vergangenen<br />

Jahrzehnte getroffenen Maßnahmen<br />

dazu sind vielfältig: Alle Öfen in<br />

Deutschland sind seit Jahrzehnten<br />

komplett gekapselt und bleiben auch<br />

während <strong>de</strong>r Oxidzufuhr geschlossen.<br />

Die Ent<strong>de</strong>ckung, dass <strong>de</strong>r spezifische<br />

Elektrolytwi<strong>de</strong>rstand mit <strong>de</strong>m Oxidgehalt<br />

korreliert, war zwar schon<br />

ALUMINIUM · 1-2/2007<br />

länger bekannt. Dennoch hat es erst<br />

die Entwicklung einer Technologie<br />

zur präzisen Dosierung von Toner<strong>de</strong><br />

durch Prozesskontrollrechner, die sogenannte<br />

Point-Fee<strong>de</strong>r-Metho<strong>de</strong>, ermöglicht,<br />

Ano<strong>de</strong>neffekte weitgehend<br />

zu vermei<strong>de</strong>n.<br />

Die Betriebsführung mit hohen<br />

Stromstärken sowie durch computergestützte<br />

Steuerungssysteme und<br />

Dosiereinrichtungen machen die<br />

Schmelzflusselektrolyse hoch effizient<br />

und umweltverträglich. Der Reinheitsgehalt<br />

<strong>de</strong>s <strong>Alu</strong>miniums liegt bei<br />

99,7 Prozent. Die Stromausbeute beträgt<br />

bei <strong>de</strong>n mo<strong>de</strong>rnen Hochstrom-<br />

Elektrolysezellen rund 95 Prozent.<br />

Der spezifische Strombedarf liegt in<br />

<strong>de</strong>utschen Hütten um die 14 kWh/kg<br />

<strong>Alu</strong>minium – ein erheblicher Fortschritt<br />

gegenüber 50 kWh/kg zu Beginn<br />

<strong>de</strong>r industriellen <strong>Alu</strong>miniumerzeugung<br />

um 1900 und 20 kWh/kg<br />

in <strong>de</strong>n 1970er Jahren. Mit <strong>de</strong>n Prozessoptimierungen<br />

<strong>de</strong>r vergangenen<br />

Jahre zeichnet sich zugleich ab, dass<br />

das technische Potenzial zu weiteren<br />

WIRTSCHAFT<br />

... eine hohe Stromausbeute, einen niedrigen spezifischen Energieverbrauch <strong>de</strong>r Zellen ...<br />

Verbrauchsabsenkungen weitgehend<br />

ausgeschöpft ist.<br />

Mo<strong>de</strong>rne Techniken <strong>de</strong>r<br />

Luftreinhaltung<br />

Corus <strong>Alu</strong>minium Voer<strong>de</strong>, Fotograf Thea Weires<br />

Die Maßnahmen zur Prozessverbesserung<br />

umfassten stets auch die Techniken<br />

zur Luftreinhaltung. Als Emissionen<br />

<strong>de</strong>r Elektrolyse, die gereinigt<br />

wer<strong>de</strong>n müssen, treten vor allem die<br />

Komponenten Staub und Fluorwasserstoff<br />

auf. Vor wenigen Jahrzehnten<br />

war die beste Metho<strong>de</strong> <strong>de</strong>r Staubabscheidung<br />

noch die Abtrennung mit<br />

Zyklonen, für die Fluoridabscheidung<br />

war es die Abgaswäsche mit Kalkmilch<br />

und anschließen<strong>de</strong>r Fällung und Abtrennung<br />

<strong>de</strong>s gebil<strong>de</strong>ten Calciumfluorids.<br />

Dieser Feststoff musste abfiltriert<br />

und <strong>de</strong>poniert wer<strong>de</strong>n. Allein für die<br />

Luftreinhaltung einer Elektrolyse von<br />

rund 78.000 jato be<strong>de</strong>utete dies einen<br />

Wassereinsatz von circa 100.000 m3 pro Jahr und ein Abfallaufkommen<br />

von rund 6.000 Tonnen Calciumfluoridschlamm.<br />

�<br />

17


Corus <strong>Alu</strong>minium Voer<strong>de</strong>, Fotograf Thea Weires<br />

WIRTSCHAFT<br />

Mitte <strong>de</strong>r 1980er Jahre kam eine innovative<br />

Technik auf <strong>de</strong>n Markt, die<br />

mit <strong>de</strong>r TA Luft 1986 schnell in die<br />

Hütten integriert wur<strong>de</strong>. Diese neue<br />

Technik nutzt aus, dass Toner<strong>de</strong> in<br />

<strong>de</strong>r Lage ist, gasförmige Stoffe zu absorbieren,<br />

also an ihrer Oberfläche<br />

anzulagern. Der Staub, <strong>de</strong>r durch die<br />

Zugabe von Toner<strong>de</strong> zur Absorption<br />

<strong>de</strong>r Fluorwasserstoffe im Rohgas entsteht,<br />

lässt sich mit einem Ge<strong>web</strong>efilter<br />

unproblematisch abreinigen. Die<br />

mit Fluori<strong>de</strong>n angereicherte Toner<strong>de</strong><br />

wird in die Elektrolyse zurückgeführt,<br />

was <strong>de</strong>n erfor<strong>de</strong>rlichen Einsatz von<br />

<strong>Alu</strong>miniumfluorid weiter reduziert.<br />

Insgesamt können die Fluori<strong>de</strong> mit<br />

einem Wirkungsgrad von über 99 Prozent<br />

aus <strong>de</strong>m Abgas entfernt wer<strong>de</strong>n.<br />

Die Vorteile dieses Verfahrens<br />

sind offensichtlich: Der hohe Abschei<strong>de</strong>grad<br />

von Fluorid entlastet die<br />

Umwelt, es wer<strong>de</strong>n wertvolle Einsatzstoffe<br />

zurückgewonnen, außer<strong>de</strong>m<br />

... und einen geringen Ano<strong>de</strong>nverbrauch.“<br />

wird Wasser eingespart und das Abfallaufkommen<br />

reduziert. Die damit<br />

verbun<strong>de</strong>nen Vorteile für die Umwelt<br />

gehen mit Kosteneinsparungen<br />

einher – eine i<strong>de</strong>ale Situation, in <strong>de</strong>r<br />

sich ökologische und ökonomische<br />

Vorteile gleichermaßen ergeben.<br />

Ano<strong>de</strong>neffekte minimiert<br />

Weitere umweltorientierte Maßnahmen<br />

zielten darauf, <strong>de</strong>n sogenannten<br />

Ano<strong>de</strong>neffekt zu minimieren. Er<br />

ist durch einen raschen Anstieg <strong>de</strong>r<br />

Spannung in <strong>de</strong>n Elektrolysezellen<br />

gekennzeichnet, die kurzfristig auf das<br />

6-fache ansteigen kann. Dabei kommt<br />

es infolge einer lokalen Verarmung<br />

an <strong>Alu</strong>miniumoxid zu einer Zersetzung<br />

<strong>de</strong>s Kryoliths und zur Bildung<br />

von Tetrafluormethan (CF 4 ) und Hexafluorethan<br />

(C 2 F 6 ). Die Ursache für<br />

das Entstehen eines Ano<strong>de</strong>neffektes<br />

kann eine abnehmen<strong>de</strong> Toner<strong>de</strong>konzentration<br />

im Schmelzbad o<strong>de</strong>r das<br />

Überschreiten <strong>de</strong>r kritischen Stromdichte<br />

in <strong>de</strong>r Elektrolysezelle sein:<br />

zum Beispiel verstopfte Point-Fee<strong>de</strong>r,<br />

das Wechseln <strong>de</strong>r Toner<strong>de</strong>sorte und<br />

damit verbun<strong>de</strong>ne Löslichkeitsprobleme,<br />

ein Ano<strong>de</strong>nwechsel o<strong>de</strong>r das<br />

Absaugen von Metall.<br />

CF 4 und C 2 F 6 sind nicht toxisch und<br />

für Menschen und Tiere unschädlich,<br />

gelten jedoch als Klimagase. Sie entstehen<br />

nur kurzfristig während <strong>de</strong>s<br />

Ano<strong>de</strong>neffektes und treten in relativ<br />

geringen Mengen auf.<br />

Die <strong>de</strong>utschen Primärhütten haben<br />

seit 1990 eine Menge getan, um<br />

<strong>de</strong>n Ano<strong>de</strong>neffekt und das Entste-<br />

hen dieser Gase zu unterbin<strong>de</strong>n. So<br />

wur<strong>de</strong>n 2005 in <strong>de</strong>n damals produzieren<strong>de</strong>n<br />

fünf <strong>de</strong>utschen Hütten<br />

insgesamt 270 Tonnen weniger CF 4<br />

emittiert als 1990. Die spezifischen<br />

Emissionen lagen durchschnittlich<br />

bei knapp 0,07 kg/t <strong>Alu</strong>minium. Die<br />

gegenüber <strong>de</strong>r Bun<strong>de</strong>sregierung abgegebene<br />

Selbstverpflichtung <strong>de</strong>r <strong>de</strong>utschen<br />

Primäraluminiumhütten, die<br />

CF 4 /C 2 F 6 -Emissionen zwischen 1990<br />

und 2005 absolut und auch spezifisch<br />

um die Hälfte zu vermin<strong>de</strong>rn, wur<strong>de</strong><br />

damit <strong>de</strong>utlich übererfüllt.<br />

Die <strong>de</strong>utschen <strong>Alu</strong>miniumhütten<br />

bewegen sich im weltweiten Vergleich<br />

bei <strong>de</strong>n CF 4 -Emissionen in einem ab-<br />

soluten Spitzenfeld. Sie liegen mit<br />

<strong>de</strong>n erwähnten 0,07 kg/t auch um fast<br />

zwei Drittel unter <strong>de</strong>m vom International<br />

<strong>Alu</strong>minium Institute (IAI) für das<br />

Jahr 2000 ermittelten internationalen<br />

Referenzwert von 0,22 kg/t CF 4 . Sogar<br />

<strong>de</strong>r IAI-Durchschnittswert speziell<br />

für Point-Fee<strong>de</strong>r-Anlagen von 0,11<br />

kg/t wird von <strong>de</strong>n <strong>de</strong>utschen Anlagen<br />

klar unterschritten. Bei diesem statistischen<br />

Vergleich ist wichtig anzumerken,<br />

dass technisch rückständige<br />

chinesischen und russischen Anlagen<br />

in <strong>de</strong>n IAI-Zahlen nicht einbezogen<br />

sind. Inzwischen ist das Mo<strong>de</strong>rnisierungspotenzial<br />

durch eine weiter verbesserte<br />

Ofensteuerung hierzulan<strong>de</strong><br />

technisch weitgehend ausgereizt. Da<br />

<strong>de</strong>r Treibhauseffekt eine globale Herausfor<strong>de</strong>rung<br />

ist, kommt es künftig<br />

verstärkt darauf an, dass die großen<br />

<strong>Alu</strong>miniumproduzenten Russland<br />

und China ihre veraltete Anlagentechnik<br />

mo<strong>de</strong>rnisieren. Mit Maßnahmen,<br />

wie sie in <strong>de</strong>n vergangenen Jahren in<br />

Deutschland umgesetzt wur<strong>de</strong>n, ließe<br />

sich ein enormes Potenzial zur Emissionsmin<strong>de</strong>rung<br />

erschließen.<br />

Energie- und standortpolitische<br />

Son<strong>de</strong>rlasten<br />

Die Errichtung neuer Hütten erfolgt<br />

heute außerhalb Europas an Standorten,<br />

die über preiswerte Energie verfügen,<br />

wie dies zum Beispiel in Katar<br />

<strong>de</strong>r Fall ist. Dort wird bis 2009 eine<br />

<strong>Alu</strong>miniumhütte mit einer Anfangskapazität<br />

von 570.000 Jahrestonnen<br />

errichtet, die über ein eigenes Kraftwerk<br />

verfügen wird.<br />

Dies ist keine Perspektive hierzulan<strong>de</strong>,<br />

doch sind Politik und Gesellschaft<br />

gefor<strong>de</strong>rt, die industriellen<br />

Rahmenbedingungen <strong>de</strong>r <strong>de</strong>utschen<br />

Volkswirtschaft so zu verbessern,<br />

dass die schleichen<strong>de</strong> Deindustrialisierung<br />

gestoppt wird und Wirtschaftswachstum<br />

und Beschäftigung<br />

<strong>de</strong>utlich gestärkt wer<strong>de</strong>n. Daher<br />

ist es unverzichtbar, je<strong>de</strong> Stufe <strong>de</strong>r<br />

Wertschöpfungskette durch eine<br />

Wirtschaftspolitik zu halten, die <strong>de</strong>n<br />

Standort Deutschland stärkt und <strong>de</strong>n<br />

fairen Wettbewerb mit <strong>de</strong>m Ausland<br />

ermöglicht.<br />

Die <strong>de</strong>utsche Energiepolitik muss<br />

dazu ebenfalls einen Beitrag leisten,<br />

orientiert sich aber seit Jahren fast<br />

18 ALUMINIUM · 1-2/2007


ausschließlich an Klimazielen. Statt<br />

sich auf die wahren Herausfor<strong>de</strong>rungen<br />

zu konzentrieren, die sich aus<br />

<strong>de</strong>r langfristigen Entwicklung auf <strong>de</strong>n<br />

internationalen Energiemärkten ergeben,<br />

leistet sich die <strong>de</strong>utsche Energiepolitik<br />

<strong>de</strong>n Ausstieg aus <strong>de</strong>r Kernenergie<br />

ohne klares Bekenntnis zur<br />

Steinkohle als Ersatzenergie, gepaart<br />

mit einer massiven Subventionierung<br />

<strong>de</strong>r erneuerbaren Energien durch immer<br />

höhere Ökoabgaben und ergänzt<br />

um eine CO 2 -Zertifikatepolitik, die<br />

<strong>de</strong>n Stromkonzernen riesige Windfall<br />

Profits einbringt, die von Haushalts-<br />

und Industriekun<strong>de</strong>n gleichermaßen<br />

finanziert wer<strong>de</strong>n.<br />

Rechnet man die CF 4 -Reduktion<br />

(2005: 270 t) um, die die <strong>Alu</strong>miniumhütten<br />

durch erhebliche Investitionen<br />

an CO 2 -Menge eingespart haben, ergibt<br />

dies – gemessen an <strong>de</strong>n aktuellen<br />

Marktpreisen für Emissionszertifikate<br />

– eine Son<strong>de</strong>rleistung im Wert von<br />

mehreren Millionen Euro, mit <strong>de</strong>nen<br />

die <strong>de</strong>utschen <strong>Alu</strong>miniumhütten zum<br />

<strong>de</strong>utschen Klimaschutz für die Welt<br />

beigetragen haben.<br />

Wertschöpfungsglie<strong>de</strong>r eng<br />

verzahnt<br />

Die kostenlose Zuweisung von Emissionszertifikaten<br />

nach <strong>de</strong>m Nationalen<br />

Allokationsplan II wird die<br />

Strompreise weiter in die Höhe treiben,<br />

obwohl <strong>de</strong>r übergroße Teil <strong>de</strong>s<br />

produzierten Stroms vom Zertifikatepreis<br />

gar nicht beeinflusst wird. Für<br />

eine <strong>Alu</strong>miniumhütte, in <strong>de</strong>r über ein<br />

Drittel <strong>de</strong>r Produktionskosten vom<br />

Strompreis diktiert wird, ist eine solche<br />

Entwicklung katastrophal. Doch<br />

auch die weiterverarbeiten<strong>de</strong>n <strong>Alu</strong>miniumbetriebe<br />

sind auf kostengünstige<br />

Energie angewiesen und müssen<br />

fürchten, dass ihr Innovationsvorteil<br />

gegenüber wachsen<strong>de</strong>r globaler Konkurrenz<br />

durch weiter steigen<strong>de</strong> Mehrkosten<br />

aufgefressen wird, bis auch sie<br />

nicht mehr im Wettbewerb bestehen<br />

können.<br />

Wer heute meint, die energieintensive<br />

Grundstoffindustrie sei verzichtbar,<br />

muss sich morgen nicht wun<strong>de</strong>rn,<br />

wenn die verarbeiten<strong>de</strong>n Betriebe in<br />

dieser Wertschöpfungskette in <strong>de</strong>n<br />

Sog <strong>de</strong>r Produktionsverlagerung geraten.<br />

Und übermorgen die Forschungs-<br />

ALUMINIUM · 1-2/2007<br />

und Entwicklungszentren <strong>de</strong>r Unternehmen<br />

folgen, was am En<strong>de</strong> negative<br />

Rückwirkungen bis hin zum Dienstleistungssektor<br />

hätte.<br />

Die <strong>Alu</strong>miniumindustrie ist durch<br />

eine enge Verzahnung <strong>de</strong>r einzelnen<br />

Glie<strong>de</strong>r in <strong>de</strong>r Wertschöpfungskette<br />

Metallerzeugung, Halbzeugfertigung,<br />

Endprodukt geprägt. Dabei zeigt sich,<br />

dass optimale Produktlösungen sich<br />

gera<strong>de</strong> dann erzielen lassen, wenn<br />

zwischen <strong>de</strong>n einzelnen Wertschöpfungsglie<strong>de</strong>rn<br />

eine enge Zusammenarbeit<br />

besteht, in <strong>de</strong>r das gesamte<br />

Know-how und die Erfahrung aller<br />

Beteiligten zum Tragen kommen:<br />

von <strong>de</strong>r Werkstoff-, Fertigungs- und<br />

Entwicklungskompetenz bis hin zur<br />

Qualitätssicherung, Logistik und <strong>de</strong>m<br />

Service.<br />

In diesem Kompetenzverbund<br />

könnte die räumliche Nähe zwischen<br />

<strong>de</strong>n einzelnen Fertigungsstufen, kurze<br />

Kommunikations- und Logistikwege<br />

zwischen Kun<strong>de</strong> und Lieferant<br />

im internationalen Wettbewerb ein<br />

Standortvorteil sein, wenn die wirtschaftlichen<br />

Rahmenbedingungen einen<br />

fairen Wettbewerb mit <strong>de</strong>m Ausland<br />

zuließen. <strong>Alu</strong>minium ist eben<br />

längst kein 08/15-Produkt mehr. Viele<br />

Walz- und Strangpresswerke, Formgießereien<br />

und weitere Verarbeiter<br />

benötigen für ihre hochwertigen<br />

Produkte <strong>Alu</strong>miniumlegierungen<br />

mit <strong>de</strong>finierten Qualitäten. Eine<br />

Lithoplatte für <strong>de</strong>n Offsetdruck, ein<br />

Fahrwerksteil für Pkw, ein Außenhautblech<br />

für Flugzeuge und zahlreiche<br />

an<strong>de</strong>re Produkte stellen jeweils<br />

spezifische Anfor<strong>de</strong>rungen an<br />

<strong>de</strong>n Werkstoff – an seine Zugfestigkeit,<br />

an sein Umformvermögen, an<br />

seine Gefügeeigenschaften –, die<br />

oft in jahrzehntelang gewachsenen<br />

Kun<strong>de</strong>n-Lieferanten-Beziehungen<br />

zwischen <strong>Alu</strong>miniumproduzent und<br />

Verarbeiter gelöst wor<strong>de</strong>n sind. Diese<br />

Technologiepartnerschaft zwischen<br />

<strong>de</strong>n Wertschöpfungsglie<strong>de</strong>rn ist vielfach<br />

für die hohe Produktqualität und<br />

<strong>de</strong>n viel beschworenen Exporterfolg,<br />

auch von Unternehmen <strong>de</strong>r <strong>Alu</strong>miniumbranche,<br />

mitverantwortlich.<br />

In einer solchen Technologiepartnerschaft<br />

kommt <strong>de</strong>n Hütten als<br />

Basis <strong>de</strong>s Geschäfts eine wichtige<br />

ökonomische Funktion zu. In einer<br />

globalisierten Welt, in <strong>de</strong>r sogar mittelständische<br />

Unternehmen Produktionsstandorte<br />

in Osteuropa, Asien<br />

und Lateinamerika errichten, ist die<br />

Gefahr eines Domino-Effektes – „Erst<br />

gehen die Hütten, dann die Verarbeitung“<br />

– konkreter <strong>de</strong>nn je. Wenn<br />

logistische Vorteile, etwa durch die<br />

Versorgungsnähe zu <strong>de</strong>n Hüttenproduzenten,<br />

wegfallen und sich die<br />

Waage dadurch weiter zuungunsten<br />

<strong>de</strong>s Standorts Deutschland neigt, wer<strong>de</strong>n<br />

die Verarbeitungsbetriebe ihre<br />

Kosten-Nutzen-Rechnung neu aufstellen.<br />

Autoren<br />

WIRTSCHAFT<br />

Christian Wellner ist Geschäftsführer <strong>de</strong>s<br />

Gesamtverban<strong>de</strong>s <strong>de</strong>r <strong>Alu</strong>miniumindustrie<br />

(GDA), Düsseldorf.<br />

Jörg H. Schäfer ist Referent für Nachhaltigkeit<br />

beim GDA und leitet dort <strong>de</strong>n<br />

Fachbereich Metallpulver.<br />

World lea<strong>de</strong>r in<br />

molten metal level control<br />

PreciMeter Control AB, Swe<strong>de</strong>n<br />

phone +46 31 764 55 20 fax +46 31 764 55 29<br />

sales@precimeter.se www.precimeter.com<br />

19


WIRTSCHAFT<br />

Herbstkongress <strong>de</strong>r European Coil Coating Association<br />

Marktentwicklung, Technologietrends,<br />

Gesetzgebung<br />

Unter <strong>de</strong>m Motto „Reviewing the<br />

advantages of coil coating against<br />

competitive materials” bot die<br />

ECCA auf ihrem Herbst-Kongress<br />

in Brüssel En<strong>de</strong> 2006 einen Überblick<br />

über die Marktentwicklung,<br />

über neue Technologien bei <strong>de</strong>r<br />

Bandbeschichtung von <strong>Alu</strong>minium<br />

und Stahl sowie über die Weiterverarbeitung<br />

und Anwendung vorlackierter<br />

Bän<strong>de</strong>r.<br />

Die Ablieferungen an beschichteten<br />

<strong>Alu</strong>minium- und Stahlbän<strong>de</strong>rn durch<br />

die ECCA-Mitglie<strong>de</strong>r hatten 2004<br />

mit einer Gesamtmenge von über 1,4<br />

Mio. m 2 <strong>de</strong>n bisherigen Höchststand<br />

erreicht.<br />

Marktentwicklung<br />

Nach<strong>de</strong>m das Jahr 2005 leicht rückläufig<br />

war, kann für das erste Halbjahr<br />

2006 von einer Erholung auf<br />

<strong>de</strong>m Niveau von 2004 ausgegangen<br />

wer<strong>de</strong>n. Vergleichbare Zahlen aus <strong>de</strong>r<br />

European Coil Coating Association<br />

Die ECCA existiert seit 1967 als Vereinigung<br />

<strong>de</strong>r europäischen Coil Coating<br />

Industrie. Die <strong>de</strong>rzeit rund 200 Mitgliedsfirmen<br />

sind vor allem europäische, teils<br />

aber auch außereuropäische Bandhersteller<br />

und -veredler sowie Lackhersteller,<br />

Anlagenbauer, Zulieferer und Han<strong>de</strong>lsunternehmen.<br />

Ziel <strong>de</strong>r ECCA ist es, die Verwendung<br />

von vorlackierten Bän<strong>de</strong>rn und<br />

Blechen aus <strong>Alu</strong>minium und Stahl als<br />

umweltverträgliche, kosteneffiziente und<br />

qualitativ wertvolle Metho<strong>de</strong> zur Erzeugung<br />

von Fertigerzeugnissen zu för<strong>de</strong>rn.<br />

Dabei widmet sich <strong>de</strong>r Verband neben<br />

<strong>de</strong>m politischen Lobbying <strong>de</strong>r Entwicklung<br />

von Qualitätsstandards (verbun<strong>de</strong>n<br />

mit <strong>de</strong>r Entwicklung von Testmetho<strong>de</strong>n).<br />

Darüber hinaus führt er Trainingskurse<br />

durch, um die Verwendung vorlackierter<br />

Metalle bei Designern und Herstellern<br />

bekannt zu machen.<br />

nordamerikanischen und asiatischen<br />

Region liegen noch nicht vor. In Nordamerika<br />

ist jedoch davon auszugehen,<br />

dass <strong>de</strong>r rückläufige Trend weiter anhält.<br />

Ganz an<strong>de</strong>rs die Entwicklung in<br />

Asien, allen voran China und Indien.<br />

Dort sind neue Coil-Coating-Linien in<br />

Betrieb gegangen, die diesen Län<strong>de</strong>rn<br />

nicht nur eine partielle Unabhängigkeit<br />

von Importen ermöglichen. Bei<strong>de</strong><br />

Län<strong>de</strong>r haben zu<strong>de</strong>m bewiesen, dass<br />

sie, wenngleich noch mit geringen<br />

Mengen, durchaus zu Exporten in<br />

europäische Regionen wie Italien und<br />

Spanien fähig sind.<br />

Hauptanwen<strong>de</strong>r von Produkten<br />

aus organisch beschichteten <strong>Alu</strong>minium-<br />

und Stahlblechen und -bän<strong>de</strong>rn<br />

bleibt das Bauwesen mit zahlreichen<br />

Anwendungen im Außen- und Innenbau.<br />

Bei beschichteten <strong>Alu</strong>miniumbän<strong>de</strong>rn<br />

waren das rund 70 Prozent,<br />

bei Stahlbän<strong>de</strong>rn 67 Prozent <strong>de</strong>r 2005<br />

erzeugten 224 Mio. bzw. 1.141 Mio.<br />

m 2 .<br />

Die auf <strong>de</strong>m Kongress gezeigten<br />

Beispiele ästhetisch gelungener Anwendungen<br />

bei öffentlichen und Bürogebäu<strong>de</strong>n,<br />

aber auch zunehmend<br />

im privaten Hausbau spiegelten die<br />

unzähligen Variationsmöglichkeiten<br />

aus Form und Farbe wi<strong>de</strong>r. Im Segment<br />

Fassa<strong>de</strong>ntechnik wird weiteres<br />

Marktwachstum innerhalb bautechnischer<br />

Anwendungen erwartet. Dies<br />

gilt sowohl für Neubauten als auch für<br />

die Sanierung vorhan<strong>de</strong>ner Bausubstanz.<br />

Hierbei sollen Profilelemente<br />

und Sandwichplatten zunehmend<br />

konventionelle Werkstoffe wie Beton,<br />

Backstein, Holz und Glas ersetzen.<br />

Gepunktet wird dabei mit <strong>de</strong>n langfristigen<br />

Kostenvorteilen dank Wartungsfreiheit<br />

und mit Kriterien wie<br />

Umweltverträglichkeit, Brandschutz<br />

und mo<strong>de</strong>rnes Design bandbeschichteter<br />

Substrate. Ein weiterer Trend ist,<br />

dass immer mehr Architekten neben<br />

Form und Funktion die Wirkung <strong>de</strong>r<br />

Farbe ent<strong>de</strong>cken.<br />

Weitere wichtige Einsatzgebiete für<br />

bandbeschichtetes <strong>Alu</strong>minium und<br />

Autumn congress of the ECCA<br />

Market <strong>de</strong>velopment,<br />

technology trends,<br />

legislation<br />

Un<strong>de</strong>r the heading “Reviewing the<br />

advantages of coil coating against<br />

competitive materials”, at its autumn<br />

congress in Brussels at the<br />

end of 2006 the ECCA presented<br />

a review of market <strong>de</strong>velopments,<br />

new technologies for the coil coating<br />

of aluminium and steel, and<br />

the further processing and uses of<br />

pre-painted strip.<br />

In 2004 <strong>de</strong>liveries of coated aluminium<br />

and steel strips by ECCA members<br />

amounted to 1.4 million m 2 , more that<br />

ever before.<br />

Market <strong>de</strong>velopment<br />

Following a slight downturn in 2005,<br />

it is expected that there was a recovery<br />

in the first half-year of 2006 to<br />

the level of 2004. Comparable figures<br />

from the North American and Asiatic<br />

regions are not yet available, but it can<br />

be assumed that in North America the<br />

recessionary trend is still persisting.<br />

The <strong>de</strong>velopment in Asia is quite the<br />

opposite, most of all in China and India<br />

where new coil-coating lines have<br />

come into operation, which have ma<strong>de</strong><br />

those countries more than partially in<strong>de</strong>pen<strong>de</strong>nt<br />

of imports. Both countries<br />

have indicated that, although still in<br />

small quantities, they are fully capable<br />

of exporting to European countries<br />

such as Italy and Spain.<br />

The largest user of products ma<strong>de</strong><br />

from organically coated aluminium<br />

and steel sheets and strips is still the<br />

building industry, with numerous outdoor<br />

and indoor applications. In the<br />

case of coated aluminium strips these<br />

accounted for some 70 per cent, and<br />

in the case of steel strips 67 per cent<br />

of the respective total productions of<br />

224 million and 1,141 million m 2 in<br />

2005.<br />

The examples exhibited at the<br />

congress, showing aesthetically successful<br />

applications in public and<br />

office buildings but to an increasing<br />

extent also in the building of private<br />

20 ALUMINIUM · 1-2/2007


esi<strong>de</strong>nces, reflected the countless<br />

possible variations of shape and colour.<br />

In the sector of faça<strong>de</strong> technology<br />

further market growth in the field of<br />

building applications is anticipated.<br />

This applies both to new buildings<br />

and in the refurbishment of existing<br />

structures. Section elements and<br />

sandwich plates will increasingly replace<br />

conventional materials such<br />

as concrete, brick, wood and glass.<br />

This is encouraged by long-term cost<br />

benefits thanks to low maintenance<br />

requirements, and by criteria such as<br />

environment-friendliness, fire protection<br />

and the mo<strong>de</strong>rn <strong>de</strong>signs that can<br />

be produced from strip-coated substrates.<br />

A further trend is that more<br />

and more architects are discovering<br />

the effects of colour in addition to<br />

shape and functionality.<br />

Other important fields of use for<br />

strip-coated aluminium and steel,<br />

which come next although with respective<br />

shares of less than 10%, are<br />

vehicle engineering and the household<br />

appliances industry. Whereas<br />

finish-painted strips have been used<br />

as standard for years in the appliances<br />

industry, automobile engineers still<br />

restrict themselves to the use of sheets<br />

with functional coatings, including<br />

chemical treatments to improve adhesion<br />

and lubricants for <strong>de</strong>formation<br />

processes. The use of finish-painted<br />

steel or aluminium for auto bodies is<br />

still held back by many problems, for<br />

example the cut edge corrosion protection<br />

or joining methods compatible<br />

with the paint and which are suitable<br />

for use in automobiles. As a result,<br />

in the future too automobiles will be<br />

given their final paint treatment only<br />

after assembly of the body shell.<br />

Technology trends<br />

Technological <strong>de</strong>velopment, both for<br />

coating and for the further processing<br />

of coated strips and sheets, is continually<br />

being taken further by both<br />

manufacturers and users. The core<br />

theme of a series of presentations<br />

was the <strong>de</strong>velopment of new coating<br />

products. Improved property profiles<br />

of products and processes are orientated<br />

towards economy, environment<br />

protection, technology and aesthetics.<br />

ALUMINIUM · 1-2/2007<br />

Stahl, die mit Anteilen von unter zehn<br />

Prozent folgen, sind <strong>de</strong>r Fahrzeugbau<br />

und die Hausgeräteindustrie. Während<br />

bei Hausgeräten fertig lackierte<br />

Bän<strong>de</strong>r seit Jahren als Stand <strong>de</strong>r Technik<br />

verwen<strong>de</strong>t wer<strong>de</strong>n, beschränken<br />

sich die Automobilhersteller nach wie<br />

vor auf <strong>de</strong>n Einsatz funktionsbeschichteter<br />

Bleche. Hier spielen chemische<br />

Behandlungen zur Verbesserung <strong>de</strong>r<br />

Haftvermittlung und Schmierstoffe<br />

für die Umformung eine Rolle. Der<br />

Einsatz von fertig lackiertem Stahl<br />

o<strong>de</strong>r <strong>Alu</strong>minium in <strong>de</strong>r Karosserie<br />

scheitert bislang noch an vielerlei<br />

Problemen: zum Beispiel am Korrosionsschutz<br />

<strong>de</strong>r Schnittkanten o<strong>de</strong>r an<br />

einer lackverträglichen, automobilgerechten<br />

Fügetechnik. Dies hat zur<br />

Folge, dass Autos auch in Zukunft<br />

ihre Endlackierung erst an <strong>de</strong>r zusammengebauten<br />

Karosserie erhalten<br />

wer<strong>de</strong>n.<br />

Technologie-Trends<br />

Die technologische Entwicklung sowohl<br />

bei <strong>de</strong>r Beschichtung als auch<br />

bei <strong>de</strong>r Weiterverarbeitung beschichteter<br />

Bän<strong>de</strong>r und Bleche wird von<br />

Herstellern und Anwen<strong>de</strong>rn stetig<br />

vorangetrieben. Kernthemen <strong>de</strong>r Vortragsreihe<br />

galten <strong>de</strong>r Entwicklung<br />

neuer Produkte für die Beschichtung.<br />

Verbesserte Eigenschaftsprofile von<br />

Produkten und Prozessen sind auf<br />

Wirtschaftlichkeit, Umweltschutz,<br />

Technologie und Ästhetik ausgerichtet.<br />

Seitens <strong>de</strong>r Beschichter gehen die<br />

For<strong>de</strong>rungen in Richtung Automatisierung,<br />

Einführung schnellerer Verfahren<br />

und verbesserte Prozessstabilität.<br />

Die Entwicklung neuer Lacke für<br />

bautechnische Anwendungen, die zur<br />

Abstrahlung <strong>de</strong>r Sonnenenergie konzipiert<br />

sind, zielen darauf, <strong>de</strong>n Energieverbrauch<br />

zur Gebäu<strong>de</strong>kühlung<br />

<strong>de</strong>utlich zu reduzieren. Für die Entwicklung<br />

solcher Lacke wird von <strong>de</strong>n<br />

Herstellern eine spezielle Software<br />

eingesetzt, welche die Umgebungseinflüsse<br />

unterschiedlicher Orte simuliert.<br />

Nach wie vor bleiben chromfreie<br />

Vorbehandlungen und Lacke ein<br />

Schwerpunkt <strong>de</strong>r Entwicklung. Die<br />

mittlerweile verfügbaren Produkte<br />

entsprechen hinsichtlich Korrosionsbeständigkeit<br />

und Lackhaftung <strong>de</strong>n<br />

Fata Hunter<br />

ECONOMICS<br />

Fata Hunter: Eine von zwei nach China<br />

gelieferten Bandbeschichtungslinien<br />

Fata Hunter: One of two parallel coil<br />

coating lines supplied to China<br />

Eigenschaften bisher verwen<strong>de</strong>ter<br />

chrombasierter Erzeugnisse.<br />

Weitere Entwicklungsziele gelten<br />

<strong>de</strong>m Korrosionsschutz <strong>de</strong>r Schnittkanten<br />

ohne Primereinsatz. Der Einsatz<br />

von Antikorrosionslacken auf<br />

unbeschichtete Substrate wird noch<br />

einige Jahre auf sich warten lassen.<br />

Die Adphos AG berichtete über<br />

ihre Weiterentwicklungen bei <strong>de</strong>r<br />

NIR-Aushärtung von organischen<br />

Beschichtungen. NIR steht für „Near<br />

Infra Red“ und beschreibt ein Verfahren,<br />

mit <strong>de</strong>m im nahen Infrarotbereich<br />

mittels speziellen Hochleistungsstrahlern,<br />

die eine Energiedichte von bis zu<br />

3.000 kW pro Quadratmeter besitzen,<br />

eine sehr schnelle direkte Aufheizung<br />

<strong>de</strong>r organischen Beschichtung erreicht<br />

wird. Die Folge sind sehr kurze<br />

Prozesszeiten in <strong>de</strong>r Größenordnung<br />

von ein bis drei Sekun<strong>de</strong>n, verglichen<br />

mit <strong>de</strong>n 15 bis 25 Sekun<strong>de</strong>n bei konventionellen<br />

Öfen. Dank <strong>de</strong>r unmittelbaren<br />

Trocknung und Aushärtung<br />

durch NIR wird ein sehr schneller<br />

und nahezu schrotten<strong>de</strong>nfreier Farb-<br />

� �<br />

21


Siemens VAI<br />

WIRTSCHAFT<br />

Siemens VAI: Eingangsbereich einer Bandbeschichtungsanlage in Polen<br />

Siemens VAI: Entry section of a coil coating line in Poland<br />

wechsel bei Coil-Coating-Linien,<br />

aber auch bei kombinierten Verzinkungs-<br />

und Beschichtungslinien erreicht.<br />

Die NIR-Technik ermöglicht<br />

eine wirtschaftliche und flexible Verarbeitung<br />

auch kleinster Losgrößen<br />

und kommt damit <strong>de</strong>m kun<strong>de</strong>norientierten<br />

Trend zu immer enger gestuften<br />

Farbnuancen entgegen. Bei <strong>de</strong>r<br />

Mo<strong>de</strong>rnisierung vorhan<strong>de</strong>ner Anlagen<br />

gestattet die kurze Bauweise <strong>de</strong>r<br />

NIR-Trockner <strong>de</strong>n Einbau weiterer<br />

Coater für einen mehrschichtigen<br />

Lackauftrag in einem Banddurchlauf.<br />

Bauteile aus fertig lackierten Bän<strong>de</strong>rn<br />

und Blechen wer<strong>de</strong>n durch unterschiedliche<br />

mechanische Bearbeitungsvorgänge<br />

wie Stanzen, Biegen,<br />

Tiefziehen o<strong>de</strong>r Walzprofilieren in<br />

ihre endgültige Form gebracht. Viele<br />

dieser Bearbeitungen erfor<strong>de</strong>rn vom<br />

Beschichter das Aufbringen von Folien<br />

zum Schutz <strong>de</strong>r lackierten Oberflächen<br />

während <strong>de</strong>r Bearbeitung.<br />

Die holländische Firma Wemo stellte<br />

Werkzeuge vor, mit <strong>de</strong>nen auch ungeschützte<br />

Lackflächen ohne Beschädigung<br />

bearbeitet wer<strong>de</strong>n können. Die<br />

so genannte „swivel bending technology“<br />

verwen<strong>de</strong>t gelenkig betätigte<br />

Balken, die mit einer Relativbewegung<br />

und damit kratzerfrei mit ge-<br />

ringen Radien abkanten. Neben <strong>de</strong>m<br />

Umformen widmet sich das Unternehmen<br />

auch Metho<strong>de</strong>n zum Fügen<br />

bandbeschichteter Bleche: je nach<br />

Blechdicke und Verwendungszweck<br />

durch Wi<strong>de</strong>rstands-Buckelschweißen<br />

o<strong>de</strong>r punktuelles Durchsetzfügen.<br />

Gesetzgebung<br />

Mehr For<strong>de</strong>rungen als <strong>de</strong>rzeit bekannte<br />

konkrete Umsetzungen enthielt<br />

die Information über die europäische<br />

REACH-Verordnung (Registration,<br />

Evaluation, Authorization of Chemicals).<br />

Klar ist, dass auf die Hersteller,<br />

Importeure und Anwen<strong>de</strong>r von chemischen<br />

Substanzen und damit auf<br />

die gesamte mit <strong>de</strong>m Coil Coating befasste<br />

Industrie neue Verordnungen<br />

zukommen. Derzeit am konkretesten<br />

ist <strong>de</strong>r Zeitplan für die stufenweise<br />

Einführung: Auf erste Schritte zur<br />

Einführung ab April 2007 folgt von<br />

April 2008 bis April 2010 eine Erfassungsperio<strong>de</strong>.<br />

Weitere Meilensteine<br />

im Hinblick auf die mengenmäßige<br />

Relevanz sind <strong>de</strong>r April 2010 und <strong>de</strong>r<br />

April 2013 bis zur vollen Wirksamwerdung<br />

ab April 2018.<br />

Was be<strong>de</strong>utet das für Produzenten<br />

und Anwen<strong>de</strong>r? Neue Vorschriften<br />

für <strong>de</strong>n Umgang mit Gefahrenstoffen<br />

wer<strong>de</strong>n zur Substitution von Stoffen<br />

führen. Dies wird die unternehmerische<br />

Tätigkeit stark berühren. Die<br />

Empfehlung an die Unternehmen<br />

lautet, frühzeitig einen vorausschauen<strong>de</strong>n<br />

Ansatz für organisatorische<br />

Anpassungen zu verfolgen, um so <strong>de</strong>n<br />

Ersatz von Substanzen und mögliche<br />

Än<strong>de</strong>rungen <strong>de</strong>r gesamten Prozesskette<br />

möglichst reibungslos zu bewirken<br />

– zumal die Umsetzungsphase<br />

relativ kurz ist.<br />

B. Rieth<br />

�������� ���������������������<br />

��������������������������������<br />

�������������������<br />

���������������������<br />

������� �����������������<br />

������� �����������������<br />

������ ���������������������<br />

�������� ��������������������<br />

22 ALUMINIUM · 1-2/2007


From the coater’s standpoint what is<br />

nee<strong>de</strong>d is more automation, the introduction<br />

of more rapid processes,<br />

and improved process stability. The<br />

<strong>de</strong>velopment of new paints for building<br />

applications, which are <strong>de</strong>signed<br />

to reflect back solar energy, aim to<br />

reduce consi<strong>de</strong>rably the energy consumed<br />

for the cooling of buildings.<br />

For the <strong>de</strong>velopment of such paints<br />

manufacturers use special software<br />

which simulates the influence of the<br />

surroundings at a variety of locations.<br />

As before, chromium-free pretreatments<br />

and paints are at the focus of<br />

<strong>de</strong>velopment. The products that have<br />

meanwhile become available match<br />

the properties of the previously used,<br />

chromium-based products in relation<br />

to corrosion resistance and paint adhesion.<br />

A further <strong>de</strong>velopment objective is<br />

cut edge corrosion protection without<br />

the use of a primer. The use of anticorrosion<br />

paints on uncoated substrates<br />

is still a few years off. Adphos<br />

AG reported its further <strong>de</strong>velopments<br />

in the NIR har<strong>de</strong>ning of organic coatings.<br />

NIR stands for “Near Infra Red”<br />

and <strong>de</strong>scribes a process in which highpowered<br />

radiators operating with an<br />

energy <strong>de</strong>nsity of up to 3,000 kW/m 2<br />

in the near infra-red range are used<br />

for the very rapid direct heating of the<br />

organic coating. This results in very<br />

short process times of the or<strong>de</strong>r of 1<br />

to 3 seconds, instead of the 15 to 25<br />

second in conventional ovens. Thanks<br />

to the direct drying and har<strong>de</strong>ning by<br />

NIR very rapid colour modification almost<br />

without scrap offcuts is achieved<br />

on coil-coating lines, but also on combined<br />

galvanising and coating lines.<br />

The NIR technique enables economical<br />

and flexible processing even of<br />

very small batch sizes, and is there-<br />

ALUMINIUM · 1-2/2007<br />

fore well suited to satisfy the increasing<br />

<strong>de</strong>mand by customers for ever<br />

more subtle colour nuances. When<br />

existing plants are being mo<strong>de</strong>rnised,<br />

the compact structure of NIR driers<br />

enables further coaters to be fitted in<br />

for multi-layer paint application during<br />

a single pass of the strip.<br />

Articles ma<strong>de</strong> of finish-painted<br />

strips and sheets are given their final<br />

shape by a variety of mechanical<br />

processes such as stamping, bending,<br />

<strong>de</strong>ep-drawing or roll-profiling. Many<br />

of these methods require the coater to<br />

apply foils in or<strong>de</strong>r to protect the pain<br />

surface during processing. The Dutch<br />

company Wemo <strong>de</strong>scribed tools with<br />

which even unprotected painted surfaces<br />

can be worked without damage.<br />

The so-termed “swivel bending<br />

technology” uses articulated beams<br />

that can bend through tight radii with<br />

a relative movement and therefore<br />

without scratching. Besi<strong>de</strong>s shaping<br />

methods, the company also focuses<br />

on methods for joining strip-coated<br />

sheets: <strong>de</strong>pending on the sheet thickness<br />

and the inten<strong>de</strong>d use, by resistance<br />

stud welding or point to point<br />

penetration welding.<br />

Legislation<br />

The report concerning the European<br />

REACH (Registration, Evaluation and<br />

Authorisation of Chemicals) Directive<br />

gave notice of more requirements<br />

than there are at present known and<br />

concrete conversion provisions. What<br />

is clear, is that there are new directives<br />

to come, which will affect the<br />

manufacturers, importers and users of<br />

chemical substances and therefore the<br />

entire range of industry that has to do<br />

with coil coating. The most concrete<br />

aspect at present is the timetable for<br />

ECONOMICS<br />

European Coil Coating Association<br />

The ECCA has existed since 1967 as the<br />

Association for the European coil coating<br />

industry. Its 200 members are mainly European<br />

companies but also inclu<strong>de</strong> from<br />

outsi<strong>de</strong> Europe a number of strip producers<br />

and finishers as well as paint manufacturers,<br />

plant engineering companies,<br />

suppliers and trading companies. ECCA is<br />

to promote the use of pre-painted strips<br />

and sheets of aluminium and steel, as<br />

environmentally safe, cost-effective and<br />

qualitatively high-gra<strong>de</strong> means for the<br />

production of finished goods. For this,<br />

the ECCA engages in political lobbying<br />

and in the <strong>de</strong>velopment of quality<br />

standards (combined with the <strong>de</strong>velopment<br />

of test methods). Furthermore, it<br />

organises training courses to familiarise<br />

<strong>de</strong>signers and manufacturers with the<br />

uses of pre-painted metals.<br />

gradual implementation: after the first<br />

introduction step from April 2007 onward,<br />

between April 2008 and April<br />

2010 there will be a period of adaptation.<br />

Other milestones of quantitative<br />

relevance are April 2010 and April<br />

2013, until the Directive comes fully<br />

into effect from April 2018.<br />

What does this mean for producers<br />

and users? New prescriptions for<br />

operating with hazardous substances<br />

will lead to substance substitutions.<br />

This will greatly affect company activities.<br />

The recommendation for<br />

companies is to be prompt in planning<br />

anticipatory action for organisational<br />

adaptations, so as to implement<br />

substance replacements and possible<br />

modifications of the entire process<br />

chain with as few problems as possible<br />

– especially since the conversion<br />

phase is relatively short. B. Rieth<br />

23


ECONOMICS<br />

The Russians are coming: example Rusal<br />

R. P. Pawlek, Sierre<br />

Russian companies have hit the<br />

headlines recently, surprising the<br />

established business world with<br />

their sud<strong>de</strong>n emergence as major<br />

global players. From steelmaker<br />

Severstal, to aluminium producer<br />

Rusal and energy giants Lukoil<br />

and Gazprom, these emerging<br />

Russian multinationals are building<br />

on successful acquisition<br />

sprees, at home and abroad, to<br />

stake a claim for global market<br />

lea<strong>de</strong>rship.<br />

Western companies need to take a<br />

fresh look at these rapidly changing,<br />

emerging multinationals and recognise<br />

that they are primarily driven<br />

by commercial logic and competitive<br />

advantage. Equally, the emerging<br />

Russian giants need to focus on improving<br />

their image by systematically<br />

institutionalising international best<br />

practice standards in key areas such<br />

as transparency, corporate governance,<br />

accounting and environmental<br />

standards.<br />

The emergence of new multinationals<br />

in Russia is part of a broa<strong>de</strong>r<br />

global phenomenon. In<strong>de</strong>ed, Russia is<br />

now the third biggest foreign investor<br />

among emerging markets. Emerging<br />

Russian multinationals span the<br />

entire spectrum from state-owned<br />

giant to privately owned conglomerates<br />

holding former state assets and<br />

to newly established companies with<br />

international sharehol<strong>de</strong>rs.<br />

Russian global corporate expansion<br />

is still largely limited to a handful<br />

of companies in the oil and gas, metals<br />

and mining, and telecommunications<br />

sectors. Most Russian multinationals<br />

still have a regional bias, but are now<br />

looking to invest more heavily in the<br />

mature markets of Europe, the US and<br />

Australia. The expansion drive began<br />

in the CIS and Eastern Europe, and is<br />

now moving rapidly into Africa.<br />

Russian investors have generally<br />

been welcomed in the CIS and Africa,<br />

while facing a strong <strong>de</strong>gree of suspicion<br />

in most parts of Eastern Europe<br />

and in the <strong>de</strong>veloped world. The rapid<br />

pick-up in Russian investment abroad<br />

is driven by a wi<strong>de</strong> range of factors:<br />

gaining critical mass to survive consolidation;<br />

getting access to new<br />

markets, raw materials, technology<br />

transfer and management know-how;<br />

coping with excess liquidity and lack<br />

of expansion opportunities at home.<br />

Globalising Russian companies<br />

enjoy a number of significant competitive<br />

advantages over established<br />

global players. In particular they have<br />

emerging markets know-how as well<br />

as a powerful but flexible corporate<br />

structure, together with liquidity and<br />

enormous ambition. But many Russian<br />

companies also have a number<br />

of substantial weaknesses, including<br />

complicated ownership structures,<br />

a lack of transparency in corporate<br />

culture, shallow management capacities<br />

and a poor un<strong>de</strong>rstanding of mo<strong>de</strong>rn<br />

environmental, health and safety<br />

standards.<br />

Governance weaknesses, in particular,<br />

have sullied the international<br />

image of Russian companies, adding<br />

to an already murky reputational legacy<br />

from the 1990s and remnants of<br />

post-Soviet cold war prejudice. Tackling<br />

these weaknesses must become<br />

a priority task for Russia’s emerging<br />

multinationals.<br />

Russia’s largest aluminium producer<br />

Rusal has assets in 13 countries<br />

in the CIS, Eastern Europe, Africa,<br />

Latin America and Australia and has<br />

raised US$ 2 billion in a syndicated<br />

loan in 2006 to finance further investments.<br />

Following the current merger<br />

with its Russian rival Sual and Swiss<br />

commodities group Glencore, due to<br />

be finalised by April 2007, the new<br />

Rusal will be self-sufficient in raw materials.<br />

Its aim: to become the world’s<br />

largest diversified energy and metals<br />

corporation.<br />

Russia is rapidly becoming one of<br />

the leading foreign investors among<br />

emerging countries although they<br />

tend to keep a low profile about this.<br />

First, most Russian companies are<br />

privately owned and disclose little<br />

information. Secondly, a high pro-<br />

portion of investment is carried out<br />

indirectly through offshore vehicles<br />

and registered in host countries as<br />

investment from Cyprus, the British<br />

Virgin Islands and Luxembourg.<br />

Until recently, the bulk of Russia’s<br />

outward foreign investment went to<br />

the CIS. As a result, Russian companies<br />

now by far dominate foreign<br />

investment in these difficult markets.<br />

Rusal, for example, resuscitated Armenia’s<br />

massive aluminium company,<br />

now known as Armenal, which had<br />

been forced to stop production following<br />

the collapse of the Soviet Union.<br />

Rusal invested over US$ 100 million<br />

to mo<strong>de</strong>rnize the plant, guaranteeing<br />

a supply of raw materials, and introducing<br />

new standards of labour.<br />

If the CIS is the near-abroad for<br />

Russian companies, Central and<br />

South-Eastern Europe are also familiar<br />

territory, but one with a far more<br />

ambivalent attitu<strong>de</strong> towards Russian<br />

investors. Russia’s leading metal companies,<br />

like Evraz, Rusal and Sevestal,<br />

are far less politicised than Gazprom,<br />

but they are products of the oligarch<br />

era, when well-connected entrepreneurs<br />

were able to buy up state assets<br />

cheaply and then consolidate them to<br />

forge huge corporate empires. While<br />

these owners still play a key role in<br />

strategic direction, the businesses they<br />

own are changing rapidly, absorbing<br />

international business practices as<br />

they expand and acquire listing on<br />

international exchanges. If Russian<br />

investors frequently face suspicion in<br />

24 ALUMINIUM · 1-2/2007


arms in Africa. <strong>Alu</strong>minium producer<br />

Rusal, for example, is constantly looking<br />

for opportunities to strengthen its<br />

raw material base, aiming to become<br />

self-sufficient by 2013. One of its first<br />

moves was to move into Guinea, taking<br />

over the management of the Compagnie<br />

<strong>de</strong>s Bauxites <strong>de</strong> Kindia (CBK)<br />

for a 25-year period. Guinea holds<br />

two-thirds of the world’s bauxite reserves<br />

and the company was already<br />

a traditional supplier of bauxite to the<br />

Nikolaev <strong>Alu</strong>mina Refinery in Ukraine,<br />

which Rusal bought in 2000.<br />

With a long history of economic<br />

ties between Russia and Guinea, Rusal<br />

soon expan<strong>de</strong>d its operations there,<br />

taking over the management of the<br />

<strong>Alu</strong>mina Company of Guinea, one of<br />

the largest employers in the country,<br />

which it is buying as the company is<br />

privatised. Rusal has a good reputation<br />

for doing more than just extracting resources.<br />

Rusal is now implementing<br />

a US$ 300 milion mo<strong>de</strong>rnisation programme<br />

to double the alumina company’s<br />

refining capacity over the next<br />

three years and to improve the transport,<br />

water and energy infrastructure<br />

for both the refinery and the town.<br />

With the Guinean authorities looking<br />

for value-ad<strong>de</strong>d processing to remain<br />

in-country, Rusal is also consi<strong>de</strong>ring<br />

the construction of a new bauxite<br />

and alumina complex, including an<br />

aluminium smelter.<br />

When Rusal bought into Australia’s<br />

Queensland <strong>Alu</strong>mina from the<br />

financially distressed Houston-based<br />

Kaiser Group, its value to the Australian<br />

company was three-fold: Rusal<br />

was a major customer for alumina,<br />

Rusal Europe, they are welcomed with open<br />

Primary aluminium production at Rusal<br />

ALUMINIUM · 1-2/2007<br />

it brought new competition into the<br />

alumina market and it wiped out Kaiser’s<br />

US$ 60 million <strong>de</strong>bt, in addition<br />

to paying US$ 401 million for a 20%<br />

stake. With Australia holding up to<br />

30% of global alumina production and<br />

bauxite reserves, Rusal is now in talks<br />

with the government to <strong>de</strong>velop power-generating<br />

capacities and to build a<br />

new aluminium smelter in the country.<br />

Rusal’s investment had to obtain<br />

approval from the country’s Foreign<br />

Investment Review Board as well as<br />

from two existing sharehol<strong>de</strong>rs, rival<br />

aluminium giants Alcan and Comalco.<br />

It took 18 months to finalise the <strong>de</strong>al<br />

after Rusal’s bid won in 2004.<br />

The rapid rise in Russia’s outward<br />

investment is driven in part by global<br />

consolidation pressures, which are especially<br />

strong in the natural resource<br />

industries and the telecommunication<br />

sector. The globalisation process<br />

can only be un<strong>de</strong>rstood in the context<br />

of Russia’s unique path of transition.<br />

During the Soviet era, Russia’s huge<br />

state-owned enterprises acted much<br />

like vertically integrated multinationals,<br />

enjoying almost complete control<br />

of the supply chain across the network<br />

of satellite states. This structure<br />

was pulled apart by the disintegration<br />

of the Comecon tra<strong>de</strong> agreement and<br />

the Soviet Union. As a result, one of<br />

the major challenges facing Russian<br />

companies ever since transition began<br />

has been how to restore the value<br />

chain and how to find new markets to<br />

utilise their vast excess capacity.<br />

The energy companies quickly<br />

moved abroad to restore their markets<br />

and improve their pricing power,<br />

taking control of distribution channels<br />

ECONOMICS<br />

across the CIS and Eastern Europe.<br />

The metals industry focused initially<br />

more on consolidation at home, buying<br />

up assets to re-create a vertically<br />

integrated supply chain, from raw<br />

materials to processing and distribution.<br />

Global acquisitions are now part<br />

of a complex strategy of securing raw<br />

materials, expanding capacities and<br />

opening access to new customers.<br />

Russian companies are now looking<br />

for long-term competitive advantage<br />

and better margins. By buying established<br />

companies, they get not only<br />

technological patents, but also market<br />

access for specialised high valuead<strong>de</strong>d<br />

products.<br />

Most of Russia’s leading companies<br />

have a strategy for joining the<br />

world’s leading players in their sector.<br />

They are steadily putting the<br />

pieces in place to make it possible<br />

– expanding capacity, opening up<br />

markets, distributing networks and<br />

access to raw materials. They are<br />

not seen as world-class competitors<br />

yet. Nevertheless, Russian companies<br />

possess three characteristics that give<br />

them a significant advantage over established<br />

players. Emerging markets<br />

know-how; liquidity; and strong, but<br />

flexible structures.<br />

As Russian multinationals shift<br />

their global expansion plans up a<br />

gear and start taking their international<br />

competitors head on, their biggest<br />

obstacle will be image. Russian<br />

companies cannot yet take over large<br />

foreign companies, because the competition<br />

for these assets is intense and<br />

public companies still have a negative<br />

image of Russian businesses.<br />

In an Economist Intelligence Unit<br />

survey more than 300 international<br />

business executives around the world<br />

were interviewed to explore these<br />

perceptions. Three key findings came<br />

out of the survey:<br />

� Overall international business perceptions<br />

of Russia are negative – as a<br />

market, an investment location and as<br />

a source of investment.<br />

� The level of international business<br />

knowledge about Russia and Russian<br />

companies is very low.<br />

� International executives with experience<br />

in the Central and East European<br />

region and knowledge of Rus-<br />

�<br />

25


ECONOMICS<br />

sian companies have more nuanced<br />

views – but not always more positive<br />

ones.<br />

For Russian companies, the survey’s<br />

message is clear. The process<br />

has already begun, prompted by the<br />

need to secure international financing<br />

and work to with international<br />

partners. Several Russian companies<br />

have now set up new corporate<br />

governance structures. Rusal has <strong>de</strong>veloped<br />

an 18-month corporate governance<br />

programme with the help of<br />

EBRD and IFC and has appointed an<br />

in<strong>de</strong>pen<strong>de</strong>nt board, among a series of<br />

other measures. It has also started the<br />

Hydro is well-positioned for<br />

long-term profitable growth in its<br />

upstream aluminium operations,<br />

the Norwegian-based company<br />

said at its Capital Markets Day.<br />

Following the recommen<strong>de</strong>d merger<br />

of Hydro’s oil and gas activities<br />

with Statoil Hydro will continue<br />

as one of the world’s leading,<br />

integrated aluminium companies.<br />

The ongoing restructuring of the<br />

downstream aluminium portfolio<br />

is expected to be completed in<br />

2007.<br />

“Hydro is stronger than ever. Our<br />

technology, competence and financial<br />

strength, together with a broa<strong>de</strong>r<br />

portfolio of <strong>de</strong>velopment and exploration<br />

projects beyond 2010, give me<br />

great confi<strong>de</strong>nce in our strategy for<br />

future growth,” said Eivind Reiten,<br />

Hydro‘s Presi<strong>de</strong>nt and Chief Executive<br />

Officer. “We are manoeuvring<br />

in an increasingly challenging global<br />

landscape but our talented organisation,<br />

proven project execution skills<br />

and our experience in cooperating<br />

with partners are more valuable than<br />

ever.”<br />

Hydro‘s Capital Markets Day presentation<br />

as to the aluminium business<br />

inclu<strong>de</strong>d the following highlights:<br />

Primary aluminium production is<br />

expected to be 1.7 million tonnes in<br />

2007 and 2 million tonnes in 2010.<br />

process of disclosing information on<br />

its ownership structure as well as data<br />

on consolidated accounts.<br />

The progress from the pioneering<br />

days of the 1990s is substantial<br />

and has continued over the past few<br />

years as companies learn from business<br />

partners and list on international<br />

exchanges. However, if Russian companies<br />

are to become global players,<br />

it is not enough to talk of a rhetoric<br />

change – companies will now have to<br />

show that they run their business in<br />

line with international norms.<br />

As this happens, the international<br />

business community will be forced to<br />

Divestment of Hydro‘s 49 per cent<br />

share in Meridian Technologies for<br />

73.7 million euros and divestment of<br />

Automotive Castings for 454.3 million<br />

euros are key steps to reduce the<br />

engagement in the downstream aluminium<br />

business. Investments and<br />

exploration expenditures in 2007 are<br />

expected to be 491.1 million euros in<br />

<strong>Alu</strong>minium Metal.<br />

<strong>Alu</strong>minium Metal on track<br />

to reposition and grow<br />

Demand for primary aluminium is<br />

expected to increase by 15 million<br />

tonnes, or about 4 per cent annually,<br />

by 2020. Rising costs is an industry<br />

challenge but the increase has been<br />

more than offset by higher aluminium<br />

prices. Restructuring of <strong>Alu</strong>minium<br />

Metal is on track with approx. 110,000<br />

tonnes of annual capacity to be closed<br />

down by the end of 2006 and during<br />

2007, thereby completing the closure<br />

program of 180,000 tonnes of highcost<br />

primary production capacity.<br />

The measures will significantly improve<br />

Hydro‘s smelter cost position.<br />

The company is well positioned with<br />

long-term power contracts extending<br />

up to 2020 and alumina equity coverage<br />

increasing to 75 per cent in 2010.<br />

Operational excellence remains a top<br />

priority.<br />

Hydro is pursuing a number of<br />

take a much closer look at their Russian<br />

counterparts. Emerging multinationals<br />

are already competing hard<br />

for customers, talent and resources,<br />

taking the more complacent global<br />

players by surprise. Those Russian<br />

companies that are able to transform<br />

themselves into world-class competitors<br />

will be able to <strong>de</strong>termine the<br />

shape of international business in<br />

their sectors.<br />

This is a summary of a paper edited by Rusal<br />

in November 2006 entitled: “The Russians<br />

are coming: un<strong>de</strong>rstanding emerging multinationals”;<br />

in cooperation with The Economist<br />

Intelligence Unit, 2006<br />

Hydro maintains speed in aluminium repositioning<br />

Hydro is about to exit Automotive Components,<br />

but will continue to focus on the<br />

sectors Rolled Products, Extrusion Europe,<br />

Extrusion Overseas, Building Systems and<br />

Precision Tubing<br />

growth opportunities in alumina and<br />

metal. The planned Qatalum smelter,<br />

a 50/50 joint venture between Qatar<br />

Petroleum and Hydro, is on track with<br />

construction start scheduled for fall<br />

2007 and start-up of production in<br />

late 2009. The capital expenditure estimate<br />

has been increased from 2.3 to<br />

3.4 billion euros, on a 100 per cent basis,<br />

as a result of general cost increases<br />

for key materials and construction, a<br />

weaker USD/EUR exchange rate as<br />

well as <strong>de</strong>sign changes. Final cost estimate<br />

and build <strong>de</strong>cision are scheduled<br />

for summer 2007.<br />

�<br />

26 ALUMINIUM · 1-2/2007<br />

Norsk Hydro, Dag Jenssen


Novelis<br />

Novelis Korea invests in multi-alloy casting<br />

Investment continues global roll-out of<br />

breakthrough Novelis Fusion technology<br />

Novelis Inc. announced that its<br />

joint venture in Korea, Novelis Korea<br />

Ltd., will invest US$ 4.1 million<br />

to install Novelis Fusion casting<br />

technology in its Ulsan, South<br />

Korea, plant.<br />

The Korean investment continues the<br />

global roll-out of the breakthrough<br />

technology which first went into production<br />

in March 2006 at the Company‘s<br />

plant in Oswego, New York. In<br />

September 2006, Novelis announced<br />

that it will invest US$ 32 million in the<br />

construction of a Novelis Fusion cast-<br />

A crane lifts a Novelis Fusion multi-alloy<br />

aluminum ingot from the casting pit at the<br />

company’s Oswego, N.Y., facility<br />

Executing <strong>Alu</strong>minium Products<br />

portfolio restructuring<br />

Cash generation in <strong>Alu</strong>minium Products<br />

has been solid during the first<br />

nine months of 2006, but profitability<br />

remains unsatisfactory. Operational<br />

improvements have been achieved<br />

in most areas, and the outlook for<br />

Extrusion and Building Systems is<br />

good. In addition to the agreements<br />

to divest Automotive Castings and<br />

Meridian Technologies, the process<br />

for divesting Automotive Structures<br />

has started.<br />

ALUMINIUM · 1-2/2007<br />

house at its Sierre, Switzerland, facility.<br />

The Novelis Fusion casting centre<br />

at Ulsan is expected to be operational<br />

by mid-2007 and will have an initial<br />

annual capacity of more than 25,000<br />

tonnes. “The existing configuration<br />

of the Ulsan casting facilities allows<br />

a rapid and cost-efficient conversion<br />

to the Novelis Fusion process,” said<br />

Martha Brooks, Chief Operating Officer<br />

for Novelis Inc. And ad<strong>de</strong>d, “This<br />

investment is further evi<strong>de</strong>nce of our<br />

confi<strong>de</strong>nce in the Novelis Fusion technology<br />

and the positive response we<br />

are receiving from the marketplace.”<br />

In North America, Novelis has converted<br />

virtually all of its traditional<br />

“clad” material to the new technology.<br />

“We are working with dozens of<br />

customers around the globe on the<br />

<strong>de</strong>velopment of applications in markets<br />

such as automotive, architecture,<br />

electronics and household appliances,”<br />

said Martha Brooks.<br />

Traditional multi-alloy aluminium<br />

ingots are produced using a manual<br />

cladding process, and are limited to a<br />

small range of alloys. Novelis Fusion<br />

technology <strong>de</strong>livers both process and<br />

product improvements, including the<br />

ability to cast previously impossible<br />

combinations of alloys.<br />

“Commercially, this investment<br />

will open the door to a new range of<br />

high-end product offerings in Asia,”<br />

Hydro‘s magnesium plant in Canada<br />

will be closed during first half of<br />

2007, and the remaining magnesium<br />

remelting plants will be divested.<br />

said Jacquie Bartlett, Vice Presi<strong>de</strong>nt,<br />

Sales and Marketing, for Novelis Korea.<br />

“With the Novelis Fusion technology,<br />

we will start by offering a full<br />

range of high-quality brazing sheet<br />

and fin stock products to local customers<br />

that today must rely on imports.”<br />

It was Novelis‘ second major investment<br />

in South Korea last year. In<br />

March 2006, the company announced<br />

that it will invest US$ 30 million over<br />

a two-year period to increase production<br />

capacity at its Yeongju rolling<br />

mill by 100,000 tonnes and expand<br />

its capability in the beverage can end<br />

market.<br />

About Novelis Korea<br />

ECONOMICS<br />

Novelis Korea Limited is a joint venture<br />

company between Novelis Inc.<br />

(68%), Taihan Electric Wire Co. Ltd.<br />

(31%), and Hyundai Group (1%). Its<br />

plants in Yeongju and Ulsan were<br />

commissioned in 1993 to meet the<br />

growing <strong>de</strong>mand for rolled aluminium<br />

products principally in Korea, China<br />

and Southeast Asia. Including its corporate<br />

office in Seoul, Novelis Korea<br />

has more than 1,200 employees who<br />

supply a broad range of high quality<br />

products and services to its customers<br />

in Asia.<br />

�<br />

Rolled Products <strong>de</strong>livers consistently<br />

strong cash flow, but industrial challenges<br />

remain.<br />

�<br />

27


Alcoa E CONOMICS<br />

Alcoa to reposition downstream operations<br />

Soft alloy extrusion joint venture<br />

with Sapa group announced<br />

Alcoa is to relocate several of its<br />

downstream operations in or<strong>de</strong>r<br />

to further improve returns and<br />

profitability through a targeted restructuring<br />

of operations and the<br />

creation of a soft alloy extrusion<br />

joint venture. The joint venture<br />

will become a global lea<strong>de</strong>r in the<br />

aluminium extrusion business,<br />

with an estimated turnover of US$<br />

4 billion in 2006.<br />

Following an extensive review of its<br />

downstream operations, Alcoa has<br />

signed a letter of intent with Norwegian<br />

Orkla ASA’s Sapa group to create<br />

a joint venture that would combine<br />

its soft alloy extrusion business with<br />

Sapa’s profiles extru<strong>de</strong>d aluminium<br />

business, with the intention of eventually<br />

offering an IPO of the combined<br />

entity. The new venture will be majority<br />

owned by Orkla and operated by<br />

Sapa. It is anticipated that the joint<br />

venture will be formed by the end of<br />

the first quarter 2007.<br />

Alcoa’s soft alloy extrusion business<br />

encompasses 22 facilities in eight<br />

countries and about 6,400 employees.<br />

In 2005, total soft alloy extrusion shipments<br />

amounted to around 585,000<br />

t, with revenues of approx. US$ 2.1<br />

billion. Sapa’s extrusion business encompasses<br />

18 facilities in 12 countries<br />

and about 6,000 employees. In 2005<br />

section shipments were 275,000 t and<br />

revenues amounted to US$ 1.3 billion.<br />

Alcoa will continue to operate its hard<br />

alloy extrusion business which serves<br />

the aerospace, automotive, and se-<br />

Corporate centre of Alcoa, Pittsburgh<br />

lected other markets. Separately, the<br />

concern will begin the process to divest<br />

the three soft alloy facilities not<br />

inclu<strong>de</strong>d in the joint venture located<br />

in Warren, Ohio, in Tifton, Georgia,<br />

and in Plant City, Florida.<br />

Alcoa Chairman and CEO Alain<br />

Belda said, “The combination of<br />

these two operations provi<strong>de</strong>s many<br />

opportunities to improve profitability<br />

by leveraging the scale of a broa<strong>de</strong>r<br />

global manufacturing system.” He<br />

ad<strong>de</strong>d, “Our overall downstream operations<br />

have continued to improve<br />

their financial performance the past<br />

few years. We have leading positions<br />

in key flat-rolled product segments<br />

where we have grown 14% annually<br />

since 2002 and where we are also in<br />

a strong position to capture further<br />

growth in China and Russia.” Other<br />

downstream operations such as Alcoa<br />

Howmet and Alcoa Fastening Systems<br />

improved profitability by more<br />

than 60% in 2005. “And our forgings,<br />

global building and construction and<br />

hard alloy extrusion businesses are<br />

solid performers. This move and our<br />

continued focus upon continually<br />

maximising returns should serve our<br />

downstream operations well for the<br />

next several years,” said Belda.<br />

Savings of US$ 125m<br />

before taxes expected<br />

As part of the review of its overall<br />

downstream operations, Alcoa also<br />

plans a targeted restructuring programme<br />

in or<strong>de</strong>r to further increase<br />

efficiency as well<br />

as profitability. The<br />

restructuring will<br />

encompass plant<br />

closures and consolidations<br />

that will<br />

affect some 6,700<br />

positions across the<br />

concern’s global businesses<br />

in 2007.<br />

This programme is<br />

expected to save<br />

around US$ 125 million before taxes<br />

on an annualised basis. Through the<br />

first three quarters of 2006, Alcoa<br />

generated more earnings than in any<br />

full year of the company’s history. “In<br />

or<strong>de</strong>r to continue to move forward,<br />

we now need to take the difficult but<br />

necessary restructuring steps that<br />

will continue to maximise profitability<br />

across the company,” said Belda.<br />

Inclu<strong>de</strong>d in the fourth quarter 2006<br />

restructuring are the following major<br />

components:<br />

Flat rolled products (FRP): Restructuring<br />

of the company’s can stock operations<br />

resulting in the elimination<br />

of approx. 320 jobs, including the closure<br />

of the Swansea can stock facility<br />

in UK. Conversion of the idle rolling<br />

mill in San Antonio, Texas, into a temporary<br />

flat rolled products technical<br />

facility serving Alcoa’s global FRP<br />

business.<br />

Extru<strong>de</strong>d and end products: Optimisation<br />

of the company‘s global<br />

hard alloy extrusion production operations<br />

which serve the aerospace,<br />

automotive and industrial products<br />

markets. This will result in the elimination<br />

of around 370 jobs in the US<br />

and Europe.<br />

Engineered solutions: Restructuring<br />

and consolidation of the company’s<br />

automotive and light vehicle<br />

wire harness and component operations,<br />

including closure of the manufacturing<br />

operations of the AFL Seixal<br />

plant in Portugal and restructuring of<br />

the AFL light vehicle and component<br />

operations in the US and Mexico.<br />

These measures will affect more than<br />

4,800 jobs.<br />

Packaging and consumer: Consolidation<br />

of selected operations within<br />

the company‘s global packaging production<br />

to increase productivity, resulting<br />

in the elimination of around<br />

470 jobs.<br />

Primary metals and alumina: Cuts<br />

within the company’s global primary<br />

metals and alumina operations by approx.<br />

330 jobs to further strengthen<br />

the company’s position on the global<br />

cost curve. �<br />

28 ALUMINIUM · 1-2/2007


ALUMINIUM SMELTING INDUSTRY<br />

Almeq electric preheater for catho<strong>de</strong> blocks<br />

J. D. Hansen, Langhus<br />

The electromagnetic stability of<br />

the liquid aluminium pad <strong>de</strong>pends<br />

on the uniformity of the electric<br />

current passing through it from<br />

above and below. Therefore, just<br />

as every ano<strong>de</strong> needs good electrical<br />

connection to an ano<strong>de</strong> rod, so<br />

every catho<strong>de</strong> block needs good<br />

electrical connection to a steel<br />

catho<strong>de</strong> collector conductor bar.<br />

Since it cannot be repaired in<br />

service, the catho<strong>de</strong> connection<br />

must reliably last the lifetime of<br />

the pot, and its fabrication is a vital<br />

step in pot assembly.<br />

The steel bar is sealed into the catho<strong>de</strong><br />

blocks using a paste, glue or cast<br />

iron. To improve the electrical connection,<br />

this catho<strong>de</strong> block must be<br />

preheated to about 700 °C. Traditionally<br />

this has been done by flame heating<br />

the assembly from outsi<strong>de</strong>. This<br />

is not very efficient or convenient: it<br />

involves substantial fuel costs, noise,<br />

and fumes. Also, it requires close supervision,<br />

as it tends to oxidise carbon<br />

from the catho<strong>de</strong> blocks, there is a risk<br />

of gas explosions. To overcome these<br />

problems, Almeq invented an electric<br />

30<br />

All illustrations: Almeq<br />

Fig. 2: Clamping system<br />

preheater for catho<strong>de</strong> elements before<br />

the rodding. Its key elements are<br />

illustrated as follows.<br />

A patent covers the principle of<br />

electric resistance heating of catho<strong>de</strong><br />

blocks. The carbon blocks with steel<br />

conductor bars are placed in an insulated<br />

chamber, where the steel bars<br />

are connected to an electric current of<br />

between 4 kA and 7 kA. This uniformly<br />

and heats the steel bar in programmed<br />

Fig. 1: Patented electric preheater for catho<strong>de</strong> blocks<br />

stages to 700 °C; the catho<strong>de</strong> blocks<br />

reach 400 °C and do not need more,<br />

as they are already calcined. The fully<br />

automated process has an accurate<br />

clamping mechanism to introduce the<br />

heating current. To avoid overheating<br />

the copper clamps, these are water<br />

cooled. If the catho<strong>de</strong> consists of a<br />

split steel bar, the preheater station is<br />

equipped with an electrical contact in<br />

the middle to bridge the gap.<br />

ALUMINIUM · 1-2/2007


<strong>SPECIAL</strong><br />

Fig. 3: Process control<br />

The process is controlled by thermocouples<br />

monitoring the temperature<br />

in the steel bar and carbon catho<strong>de</strong><br />

block. The exact temperatures are set<br />

according to the customer’s specification.<br />

Different methods are available for<br />

feeding the carbon and steel assemblies<br />

to the preheater. Alternatives<br />

range from a single loading wagon<br />

to complete arrangements including<br />

shot blasting and casting station.<br />

Results in service<br />

Four machines are in service, totalling<br />

17 years of experience:<br />

The first machine installed replaced<br />

propane gas heating at Isal, Iceland, in<br />

1997, and it gave the following results:<br />

yearly saving in energy: 1.28 GWh,<br />

elimination of CO 2 : 360,000 kg/year,<br />

saving in manpower: 2 men.<br />

Five years later, a duplicate machine<br />

was installed at SØRAL, Norway,<br />

which uses i<strong>de</strong>ntical catho<strong>de</strong><br />

blocks to Isal. In 2003, Almeq <strong>de</strong>livered<br />

an improved system to Dubai<br />

<strong>Alu</strong>minium (Dubal). To increase productivity,<br />

this system has two trolleys<br />

to prepare the catho<strong>de</strong> blocks. Due to<br />

changes in catho<strong>de</strong> <strong>de</strong>sign, the Dubal<br />

preheater will be modified to handle<br />

the new, bigger blocks. The latest installation<br />

was <strong>de</strong>livered to Nordural,<br />

Iceland for the Phase III expansion<br />

project. The system has been running<br />

for a year and has heated 6,000<br />

catho<strong>de</strong> blocks. The results from the<br />

system are as follows:<br />

Previously, 400 kg of propane was<br />

required to heat 6 catho<strong>de</strong> blocks. The<br />

estimated cost of propane is 0.40 euros<br />

per kg. With the electric preheater for<br />

catho<strong>de</strong>s the required electrical consumption<br />

is 600 kWh with an estimated<br />

cost of electricity of 0.04 euros per<br />

kWh (In Iceland, the cost of electricity<br />

is less than 1/3 of this). The savings for<br />

heating 6 catho<strong>de</strong> blocks:<br />

Country Place Customer Year<br />

Iceland Hafnafjordur Icelandic <strong>Alu</strong>minium Company 1997<br />

Norway Husnes Sør-Norge <strong>Alu</strong>minium 2002<br />

UAE Dubai Dubai <strong>Alu</strong>minium Company 2003<br />

Iceland Grundartangi Nordural 2005<br />

Fig. 4: Feeding<br />

ALUMINIUM SMELTING INDUSTRY<br />

Propane €0.40 x 400 = €160.00<br />

Electricity €0.04 x 600 = €24.00<br />

Saving per heating €136.00.<br />

Besi<strong>de</strong>s this direct cost comparison,<br />

experience in service confirms a<br />

range of advantages for the automated<br />

system:<br />

• High power factor (cost )<br />

• No supervision nee<strong>de</strong>d during<br />

procedure<br />

• No hazard to personnel nor<br />

facilities<br />

• Low energy consumption<br />

(1:5 reduction)<br />

• No noise<br />

• Negligible carbon oxidation<br />

• Uniform temperatures in the steel<br />

bars and in the carbon blocks<br />

• I<strong>de</strong>ntical conditions prior to<br />

each casting<br />

• Fully automated feeding<br />

• No exhaust gases.<br />

Summary and Conclusion<br />

Before catho<strong>de</strong>s blocks are assembled<br />

into electrolysis pots, the steel conductor<br />

bars must be sealed into them,<br />

and then heated to ensure a<strong>de</strong>quate<br />

electrical conductivity.<br />

Compared to the external gas or<br />

oil burners traditionally used for this<br />

preheating, electric resistance heating<br />

from within is safe, clean, and reliable.<br />

Experience in four smelters proves<br />

that this automated system is amortised<br />

by the fuel, operator and other<br />

costs it saves.<br />

Author<br />

Jan D. Hansen is General Manager of Almeq<br />

Norway AS, based in Langhus, Norway.<br />

31 ALUMINIUM · 1-2/2007<br />

ALUMINIUM · 1-2/2007 31


ALUMINIUM SMELTING INDUSTRY<br />

AlPrg: a software tool for aluminium smelting<br />

P. M. Entner, Sierre<br />

AlPrg is a collection of computer<br />

programmes (modules) for PCs<br />

using interactive graphics to display<br />

the results of calculations<br />

concerning aluminium production<br />

by electrolysis. The user applies<br />

these modules among other<br />

things to visualise how varying<br />

the parameters will affect pot<br />

operation. He can then choose<br />

the best values to operate the<br />

electrolytic cells of a potroom so<br />

as to optimise the most important<br />

technical and economic results.<br />

This paper reports on the use of<br />

one of these modules, namely the<br />

Electrolyte Properties Module.<br />

This module calculates the physical<br />

and chemical properties of the<br />

cryolite electrolyte as a function<br />

of its composition and temperature.<br />

The Electrolyte Properties<br />

Diagram Pane shows plots of these<br />

bath properties in function of the<br />

electrolyte parameters. This plot<br />

predicts the behaviour of the bath<br />

after a parameter change, and so<br />

i<strong>de</strong>ntifies the optimal bath composition<br />

and bath temperature to<br />

operate the electrolytic cells.<br />

AlPrg was <strong>de</strong>veloped with the aim of<br />

helping people occupied with aluminium<br />

production by electrolysis. AlPrg<br />

contains several modules that the<br />

user selects <strong>de</strong>pending on the tasks<br />

he wants to study. For instance, if he<br />

wants to know how much aluminium<br />

a potroom is producing in one month,<br />

then he uses the aluminium production<br />

module. If he needs to find the set<br />

value of the pot voltage, the alumina<br />

fee<strong>de</strong>r setting or how much aluminium<br />

fluori<strong>de</strong> to add, he will apply the<br />

corresponding, obviously more complex,<br />

modules of AlPrg. Finally if the<br />

user wants to improve the economic<br />

performance of the aluminium smelting<br />

plant, the profitability analysis<br />

modules will help him to <strong>de</strong>termine<br />

those operational parameters to run<br />

the plant in a better way.<br />

This paper <strong>de</strong>als with the electrolyte<br />

properties module of AlPrg.<br />

All illustrations: Entner<br />

Fig. 1: Layout of the User Interface of AlPrg. The figure shows 3 tab groups with the calculation<br />

pages Technical Profitability Analysis, <strong>Alu</strong>minium Production and Pot Parameters<br />

being selected. Two diagram panes namely the Pot Voltage Diagram Pane and the Electrolyte<br />

Composition/Properties Diagrams Pane are docked on the programme user interface.<br />

This module shows the physical and<br />

chemical properties of the cryolite<br />

electrolyte, like the liquidus temperature<br />

or electrical conductivity. AlPrg<br />

<strong>de</strong>termines these values in relation<br />

to the chemical composition and the<br />

temperature of the electrolytic bath.<br />

The electrolyte properties diagram<br />

pane shows diagrams of these bath<br />

properties in function of various plots.<br />

These plots predict the behaviour of<br />

the bath after a parameter change and<br />

so help to <strong>de</strong>termine the optimal bath<br />

composition and bath temperature.<br />

Programme layout<br />

When the author of this paper worked<br />

with <strong>Alu</strong>suisse and later with Alcan he<br />

<strong>de</strong>veloped ElysePrg [1] a precursor of<br />

AlPrg. AlPrg is, however, a completely<br />

new concept for this application, especially<br />

regarding the program features<br />

and program layout. AlPrg consists<br />

of pages and diagram panes. In the<br />

windows the user changes numerical<br />

values in input fields, and then AlPrg<br />

calculates the corresponding results.<br />

The diagrams (plots) show graphical<br />

representation of properties <strong>de</strong>pend-<br />

ing on various parameters. Formed as<br />

graphical user interfaces (GUIs), the<br />

plots allow the user to change values<br />

on the plot by dragging their size representation<br />

with the mouse pointer.<br />

AlPrg calculates the corresponding<br />

new resulting values and updates the<br />

relevant pages and plot panes.<br />

The user selects pages or plot<br />

panes by clicking on the corresponding<br />

menu or tab items. He can arrange<br />

several pages on the programme user<br />

interface and see them simultaneously<br />

so as to study the calculation<br />

results. The diagram panes can float<br />

on the computer screen or they can<br />

be docked, i.e. ad<strong>de</strong>d on the AlPrg<br />

user interface. The next figure (Fig. 1)<br />

<strong>de</strong>picts an example of the AlPrg user<br />

interface containing three tab groups<br />

and two diagram panes. From the tab<br />

groups the user has selected the technical<br />

profitability analysis page, the<br />

aluminium production page and the<br />

pot parameter page. In addition he has<br />

docked the pot voltage diagram pane<br />

and the electrolyte composition/properties<br />

pane on the user interface.<br />

The user finds more information<br />

about AlPrg in the conventional ac-<br />

32 ALUMINIUM · 1-2/2007


<strong>SPECIAL</strong><br />

companying help system. He may also<br />

consult the corresponding <strong>web</strong>site [2]<br />

that contains practically the same user’s<br />

gui<strong>de</strong> and theoretical background<br />

information.<br />

The Electrolyte Composition/<br />

Properties Page<br />

Fig. 2 shows the electrolyte composition/properties<br />

page. In the upper<br />

part of the page the user changes the<br />

concentration values of the electrolyte<br />

components of aluminium fluori<strong>de</strong><br />

(AlF 3 ), calcium fluori<strong>de</strong> (CaF 2 ), aluminium<br />

oxi<strong>de</strong> (alumina Al 2 O 3 ), lithi-<br />

Fig. 2: Electrolyte Composition/Properties Page. In the upper part<br />

of the page the user may change the concentration values in the<br />

input fields. The lower part contains the property values. The<br />

user may select the authors of the corresponding equations that<br />

AlPrg uses to calculate the properties.<br />

um fluori<strong>de</strong> (LiF), magnesium fluori<strong>de</strong><br />

(MgF 2 ) and potassium fluori<strong>de</strong> (KF).<br />

The bath ratio is the weight ratio of<br />

sodium fluori<strong>de</strong> over aluminium fluori<strong>de</strong>.<br />

<strong>Alu</strong>minium oxi<strong>de</strong> at ano<strong>de</strong> effect<br />

is the alumina concentration when<br />

the ano<strong>de</strong> effect occurs. The user can<br />

suppress this parameter by inactivating<br />

the check box.<br />

The lower part of the page contains<br />

the values of the electrolyte properties,<br />

namely the liquidus temperature,<br />

Fig. 3: Drop Down Combo Box to select the authors of<br />

the relations that AlPrg uses to calculate the liquidus temperature.<br />

The user has chosen the equation of Solheim<br />

[3] by clicking on the name with the mouse pointer.<br />

the electrical conductivity, the maximum<br />

alumina solubility, the total vapour<br />

pressure, the <strong>de</strong>nsities and vis-<br />

ALUMINIUM SMELTING INDUSTRY<br />

cosities of the electrolytic bath and of<br />

the aluminium metal.<br />

The bath temperature can be expressed<br />

as the liquidus temperature<br />

plus the superheat. The user selects<br />

as input value either the superheat<br />

(as shown in Fig. 2) or the electrolyte<br />

temperature. Selecting a value as input<br />

means that it is constant for the<br />

following calculations (the superheat<br />

in Fig. 2) and the other <strong>de</strong>pending<br />

value (the bath temperature in Fig. 2)<br />

is calculated correspondingly.<br />

To <strong>de</strong>termine the liquidus temperature,<br />

the electrical conductivity or the<br />

<strong>de</strong>nsities the user can choose between<br />

several relationships<br />

published by<br />

different authors.<br />

Fig. 2 shows a Drop<br />

Down Combo Box<br />

where the user has<br />

selected the equations<br />

of Solheim [3].<br />

He could alternatively<br />

also click on<br />

the names of Røs-<br />

tum [4], Peterson<br />

[5], Bullard [6], Lee<br />

[7] or Dewing [8] to<br />

choose the corresponding<br />

relations.<br />

The theoretical part of the AlPrg<br />

<strong>web</strong>site [9] contains all the relations<br />

and equations that AlPrg uses for its<br />

calculations.<br />

The Electrolyte Composition/<br />

Properties Plot<br />

Fig. 4 shows the electrolyte composition/properties<br />

plot pane together<br />

with the electrolyte composition/<br />

properties page.<br />

Icon plots<br />

The i<strong>de</strong>a of this plot pane<br />

is to show a property of the<br />

electrolytic bath in <strong>de</strong>pen<strong>de</strong>nce<br />

of the bath composition<br />

and the bath temperature.<br />

The plot pane of Fig.<br />

4 consists of small icon-like<br />

plots of the liquidus temperature<br />

against the concentrations<br />

of aluminium fluori<strong>de</strong>, calcium<br />

fluori<strong>de</strong>, aluminium oxi<strong>de</strong> etc. From<br />

these plots the user can visualise how<br />

Fig. 4: The Electrolyte Composition/Properties Diagram Pane<br />

docked on the AlPrg user interface. Small icon-like plots<br />

represent the selected electrolyte property (the liquidus<br />

temperature in this figure) in function of the electrolyte<br />

components. The user has selected the liquidus temperature<br />

vs. aluminium fluori<strong>de</strong> content to be shown in the larger<br />

property plot. The circles represent the current values of<br />

the electrolyte composition.<br />

the liquidus temperature <strong>de</strong>pends on<br />

these variables, the other parameters<br />

staying constant. The small circles<br />

represent these constant concentration<br />

values shown on the electrolyte<br />

composition/properties page.<br />

Property plot<br />

If the user wants to study an iconplot<br />

more profoundly he clicks on<br />

the icon-plot with the mouse pointer<br />

and the icon-plot expands to replace<br />

the larger property plot. In Fig. 4 the<br />

Fig. 5: Liquidus temperature vs. <strong>Alu</strong>mina Concentration<br />

Property Plot. The user has clicked on the Al 2 O 3 icon-plot<br />

and the property plot shows the liquidus temperature vs.<br />

the alumina concentration. The gray areas are the regions<br />

where the alumina concentration is lower than ano<strong>de</strong> effect<br />

concentration (on the left si<strong>de</strong>) or higher than the maximum<br />

alumina solubility (right si<strong>de</strong>).<br />

user has clicked on the aluminium<br />

fluori<strong>de</strong> concentration icon-plot, and<br />

consequently the property plot shows<br />

the liquidus temperature in <strong>de</strong>pen<strong>de</strong>nce<br />

of the aluminium fluori<strong>de</strong> con-<br />

33 ALUMINIUM · 1-2/2007<br />

ALUMINIUM · 1-2/2007 33<br />


ALUMINIUM SMELTING INDUSTRY<br />

centration between 0 and 30 weight<br />

%. The circle represents the liquidus<br />

temperature of 953.7 °C at the aluminium<br />

fluori<strong>de</strong> concentration of 12<br />

weight %.<br />

Gray areas in the icon or property<br />

plots are regions where values are not<br />

available or not possible. Fig. 5 shows<br />

the property plot of the liquidus temperature<br />

vs. the alumina content. The<br />

grey regions show where the alumina<br />

concentration is smaller than the ano<strong>de</strong><br />

effect concentration (on the left<br />

si<strong>de</strong>) or greater than the maximum<br />

solubility of alumina in the electrolyte.<br />

Electrolyte and aluminium<br />

<strong>de</strong>nsities<br />

As an example the following chapter<br />

discusses the <strong>de</strong>nsities of the electrolyte<br />

and of the liquid aluminium<br />

metal. In the electrolytic production<br />

of aluminium the <strong>de</strong>nsity values es-<br />

Fig. 6: <strong>Alu</strong>minium and Electrolyte Densities Plot Pane. The<br />

user has clicked on the aluminium fluori<strong>de</strong> icon-plot, so that<br />

the property plot shows the aluminium and electrolyte <strong>de</strong>nsity<br />

vs. the aluminium fluori<strong>de</strong> concentration.<br />

pecially the <strong>de</strong>nsity difference between<br />

aluminium and electrolyte affects<br />

the separation of the produced<br />

aluminium metal from the bath. This<br />

difference should be larger than 0.2<br />

g/cm 3 in or<strong>de</strong>r to prevent mixing and<br />

to maintain good separation between<br />

the metal pad and the electrolyte layer.<br />

In the electrolyte and aluminium<br />

<strong>de</strong>nsity plot pane AlPrg shows simultaneously<br />

the <strong>de</strong>nsities of the liquid<br />

aluminium metal and the liquid electrolyte.<br />

In this way the user sees immediately<br />

the influence of parameter<br />

changes on the <strong>de</strong>nsity difference.<br />

Dragging<br />

If the mouse pointer is over the property<br />

plot and the user presses the right<br />

mouse button a so-called value line<br />

Fig. 7: Dragging of the Value Line. When the user holds down the right mouse button AlPrg<br />

draws the so-called value line. When the user drags this line by moving the mouse, AlPrg<br />

registers a new input value and plots new <strong>de</strong>nsity values in the property and icon plots.<br />

is drawn. When the user displaces<br />

the mouse (dragging) the value line<br />

follows this motion on the property<br />

plot. AlPrg registers this new concentration<br />

input value (5% aluminium<br />

fluori<strong>de</strong> in Fig. 7) and calculates the<br />

corresponding new <strong>de</strong>nsity values in<br />

the icon and property plots (and electrolyte<br />

composition/properties page).<br />

If the user wants to change another<br />

parameter, the lithium fluori<strong>de</strong> concentration,<br />

the procedure is the same.<br />

The user clicks on the lithium fluori<strong>de</strong><br />

icon plot. This icon plot is then selected,<br />

i.e. AlPrg shows this plot in the<br />

main property plot. By again dragging<br />

the value line with the mouse pointer,<br />

the user changes then the lithium<br />

fluori<strong>de</strong> concentration,<br />

and AlPrg calculates the<br />

corresponding <strong>de</strong>nsity<br />

values.<br />

Temperature plots<br />

The superheat, i.e. the<br />

temperature difference<br />

between the electrolyte<br />

temperature and the<br />

liquidus temperature, is<br />

a very important value for everyday<br />

pot operation. Sometimes some quite<br />

puzzling events are observed, namely<br />

that the superheat might be negative<br />

(the electrolytic bath should be<br />

solid) even for a rather long time period.<br />

This effect is called the liquidus<br />

enigma [10].<br />

If the superheat (�T) is selected as<br />

input value on the electrolyte composition/properties<br />

page (see Fig. 2, 3<br />

and 4), then the electrolyte composition/properties<br />

diagram pane shows<br />

two icon-plots, namely the superheat<br />

plot (<strong>de</strong>nsities vs. superheat on Fig.<br />

6, 7) and the electrolyte temperature<br />

plot (bath temperature vs. aluminium<br />

fluori<strong>de</strong> on Fig. 6, 7).<br />

Clicking on the superheat iconplot<br />

(�T) AlPrg draws the corresponding<br />

property plot, namely aluminium<br />

and electrolyte <strong>de</strong>nsity vs. superheat.<br />

By dragging the value circles, the user<br />

can modify the input value of the superheat.<br />

Since the last selected composition<br />

icon plot was the <strong>de</strong>nsities vs.<br />

aluminium fluori<strong>de</strong> icon-plot, AlPrg<br />

shows in the bath temperature icon<br />

plot how the electrolyte temperature<br />

<strong>de</strong>pends on aluminium fluori<strong>de</strong> concentration.<br />

Fig. 9: Property Plot of Densities vs. Superheat. The user has<br />

selected the superheat icon-plot of Fig. 6 and so AlPrg draws<br />

the corresponding property plot <strong>de</strong>nsities vs. superheat.<br />

If the electrolyte temperature is<br />

selected as input value on the electrolyte<br />

composition/properties page<br />

(see Fig. 2, 3 and 4), then the electrolyte<br />

composition/properties diagram<br />

pane shows the <strong>de</strong>nsities vs. electrolyte<br />

temperature icon-plot (Fig. 11). By<br />

clicking on this icon plot, the user instructs<br />

AlPrg to show the corresponding<br />

aluminium and electrolyte <strong>de</strong>nsity<br />

vs. bath temperature property plot, as<br />

well as the electrolyte temperature<br />

plot (bath temperature vs. aluminium<br />

fluori<strong>de</strong> on Fig. 6, 7).<br />

34 ALUMINIUM · 1-2/2007


<strong>SPECIAL</strong><br />

Fig. 10: Property Plot of Bath Temperature vs. <strong>Alu</strong>minium Fluori<strong>de</strong> Concentration. The user<br />

has selected the bath temperature icon-plot of Fig. 6, and so AlPrg draws the corresponding<br />

property plot bath temperature vs. aluminium fluori<strong>de</strong> concentration.<br />

Conclusions<br />

This paper <strong>de</strong>scribes the calculation<br />

page and the diagram pane of the electrolyte<br />

properties module of AlPrg. In<br />

the calculation page the user enters<br />

or modifies in a rather conventional<br />

way values in the corresponding input<br />

fields, and AlPrg then <strong>de</strong>termines the<br />

corresponding electrolyte properties,<br />

like liquidus temperature, electrical<br />

conductivity etc. The diagram pane<br />

shows graphical representations, i.e.<br />

small icon-plots, of how a selected<br />

property (the liquidus temperature,<br />

for instance) <strong>de</strong>pends on the electrolyte<br />

composition values and the<br />

bath temperature. The user selects<br />

an icon-plot to be drawn in the larger<br />

and more precise property plot. This<br />

ALUMINIUM SMELTING INDUSTRY<br />

plot is a graphical user interface, i.e.<br />

the user can change input values by<br />

dragging the so called values line with<br />

the mouse pointer to a new position<br />

and value.<br />

The user investigates in this way<br />

the behaviour not only of those electrolyte<br />

properties already <strong>de</strong>scribed in<br />

this paper (liquidus temperature and<br />

<strong>de</strong>nsities), but also the electrical conductivity<br />

(interesting for pot voltage<br />

settings), maximal alumina solubility<br />

(used for point fee<strong>de</strong>r setting) , vapour<br />

Fig. 11: Densities vs. Electrolyte Temperature Property Plot. The user has selected the electrolyte<br />

temperature as input value on the electrolyte composition/properties page. AlPrg<br />

then shows the <strong>de</strong>nsities vs. electrolyte temperature icon- and property plot after appropriate<br />

selection by the user. The sha<strong>de</strong>d area is the region where the bath temperature is<br />

lower or higher than the liquidus temperature +/- the maximum superheat (±50 °C).<br />

pressure (necessary for environmental<br />

issues) and the viscosities of the<br />

liquid aluminium pad and electrolyte<br />

(used for hydrodynamic studies).<br />

This paper <strong>de</strong>scribes the electrolyte<br />

properties module as a standalone<br />

programme. This module is<br />

however also incorporated into other<br />

modules where it is nee<strong>de</strong>d, for instance<br />

into pot voltage or the profitability<br />

module. It works there in the<br />

same interactive way as <strong>de</strong>scribed in<br />

this paper; this means the user can<br />

change an input value either from the<br />

key board on the electrolyte property<br />

page, or else by dragging on the corresponding<br />

property plot. AlPrg then<br />

recalculates other parameters and<br />

updates the corresponding pages or<br />

plot panes.<br />

References<br />

[1] P. M. Entner, “New Feature of ElyseSem/<br />

ElysePrg”, <strong>Alu</strong>minium 75 (1999) 12, 1064-<br />

1072<br />

[2] http://www.peter-entner.com.<br />

[3] A. Solheim, S. Rolseth, E. Skybakmoen,<br />

L. Støen, Å. Sterten, T. Støre, “Liquidus<br />

Temperature and <strong>Alu</strong>mina Solubility in<br />

the System Na AlF -AlF -LiF-CaF -MgF ”,<br />

3 6 3 2 2<br />

Light Metals (1995), 451-460.<br />

[4] A. Røstum, A. Solheim, A. Sterten, “Phase<br />

Diagram Data in the System Na AlF -Li-<br />

3 6<br />

3AlF6-AlF3-Al2O . Part I: Liquidus Temper-<br />

3<br />

atures for Primary Cryolite Crystallisation”,<br />

Light Metals (1990), 311-316.<br />

[5] R. D. Peterson, A. T. Tabereaux, “Liquidus<br />

Curves for the Cryolite-AlF -CaF - 3 2<br />

Al O System in <strong>Alu</strong>minum Cell Electroly-<br />

2 3<br />

tes”, Light Metals (1987), 383-388.<br />

[6] G. L. Bullard, D. D. Przybycien, “DTA Determination<br />

of Bath Liquidus Temperatures:<br />

Effect of LiF”, Light Metals (1986), 437-443.<br />

[7] S. S. Lee, K.-S. Lei, P. Xu, J. J. Brown<br />

Jr., “Determination of Melting Temperatures<br />

and Al O Solubilities for Hall Cell<br />

2 3<br />

Electrolyte Compositions”, Light Metals<br />

(1984), 841-855.<br />

[8] E. W. Dewing, “The Chemistry of the<br />

<strong>Alu</strong>mina Reduction Cell”, Can. Metallurgical<br />

Quarterly (1974), 13 (No.4), 607-618;<br />

JOM 53 (2001) 5, pp. 29-34.<br />

[9] http://www.peter-entner.com/e/theory/thcontents.htm.<br />

[10] B. P. Moxnes, A. Solheim, T. Støre, B.<br />

E. Aga, L. Støen, “The 'Liquidus Enigma'<br />

revisited”, Light Metals (2006), 285-290.<br />

Author<br />

Peter M. Entner has studied chemistry at<br />

the University of Vienna. He pursued his<br />

studies at the University of Pennsyslvania<br />

and University of Geneva (high temperature<br />

electrochemistry and crystallography).<br />

He joined then <strong>Alu</strong>suisse that later became<br />

Alcan to work on research and <strong>de</strong>velopment<br />

projects about aluminium smelting.<br />

Being retired, Peter’s passion for bytes and<br />

pixels keeps him busy to work on software<br />

that might be useful for the members of the<br />

aluminium smelting community.<br />

35 ALUMINIUM · 1-2/2007<br />

ALUMINIUM · 1-2/2007 35


ALUMINIUM SMELTING INDUSTRY<br />

Honoured by The Electrochemical Society<br />

Vittorio <strong>de</strong> Nora receives 2006 Acheson<br />

Award for lifetime career achievements<br />

Vittorio <strong>de</strong> Nora has been honoured<br />

as the recipient of The<br />

Electrochemical Society (ECS)<br />

2006 Edward Goodrich Acheson<br />

Award. The Acheson Award was<br />

established in 1928 to recognise<br />

distinguished contributions which<br />

advance objects, purposes or activities<br />

of ECS. Requirements for<br />

receiving the award are distinguished<br />

services to the Society,<br />

as well as distinguished scientific<br />

discoveries or inventions in electrochemical<br />

or solid state science<br />

and technology.<br />

Vittorio <strong>de</strong> Nora has <strong>de</strong>dicated his<br />

career to scientific research in the<br />

field of electrochemistry, including<br />

in particular the fields of chlorine-alkali<br />

and aluminium production. Dr. <strong>de</strong><br />

Nora’s research achievements centre<br />

on his efforts to find a feasible inert<br />

ano<strong>de</strong>, that is an ano<strong>de</strong> that operates<br />

in a cell without becoming corro<strong>de</strong>d<br />

as part of the electrochemical process,<br />

and which could be used to replace<br />

carbon ano<strong>de</strong>s in electrochemical<br />

cells. He succee<strong>de</strong>d, first with the<br />

Dimensionally Stable Ano<strong>de</strong> (DSA)<br />

that revolutionised chlorine-alkali<br />

production and other electrochemical<br />

industries. By saving electrical<br />

energy, improving cell operation and<br />

eliminating or substantially reducing<br />

pollution, the DSA has contributed to<br />

a predominant position for electrochemistry<br />

worldwi<strong>de</strong>.<br />

Recently, Dr. <strong>de</strong> Nora and his<br />

scientific team based in the mo<strong>de</strong>rn<br />

laboratories purpose-built in the<br />

Swiss Valais, have <strong>de</strong>veloped the prototype<br />

of a <strong>de</strong> Nora inert ano<strong>de</strong> for<br />

aluminium production. Inert ano<strong>de</strong>s<br />

not only eliminate serious pollution<br />

problems, including carbon dioxi<strong>de</strong>,<br />

carbon monoxi<strong>de</strong> and perfluorocarbon<br />

emissions from carbon ano<strong>de</strong>s,<br />

but also improve energy efficiency of<br />

inert ano<strong>de</strong>s in electrowinning cells<br />

and also significantly reduce operating<br />

costs.<br />

Moltech<br />

Biographical Note<br />

Vittorio <strong>de</strong> Nora was born in Altamura,<br />

Italy, on 11 November 1912.<br />

He atten<strong>de</strong>d middle school, graduating<br />

in 1929, and was admitted to the<br />

Royal Politecnico Institute of Milan in<br />

October of the same year, where he<br />

received a doctorate in Electrochemical<br />

Engineering with full honours in<br />

1935. In 1936, he was chosen to be<br />

Professor of Physical Chemistry and<br />

Electrochemistry at the Royal Politecnico<br />

Institute but he <strong>de</strong>ci<strong>de</strong>d to spend<br />

two years to carry out research at<br />

King’s College, University of London,<br />

with the famous Professor Allmand.<br />

Vittorio <strong>de</strong> Nora<br />

Later, at the Hochschule of Dres<strong>de</strong>n,<br />

he worked for one year with Professor<br />

Muller, who <strong>de</strong>ci<strong>de</strong>d to <strong>de</strong>lay his<br />

retirement in or<strong>de</strong>r to accept the challenge<br />

of working with <strong>de</strong> Nora.<br />

Leaving Dres<strong>de</strong>n in 1937, Vittorio<br />

<strong>de</strong> Nora went to the United States,<br />

where he enrolled at Lehigh University<br />

in Pennsylvania. While at Lehigh,<br />

he became one of the first members<br />

of ECS, and today he has the distinction<br />

of being the Society member with<br />

the longest membership record. He<br />

chose Lehigh in or<strong>de</strong>r to work with<br />

Professor Butts and the results of his<br />

research earned him a Ph.D. in Physi-<br />

cal Chemistry in just nine months.<br />

Vittorio <strong>de</strong> Nora is a Volta Fellow, a<br />

Weston Fellow and a Case Centennial<br />

Scholar. He was elected an Honorary<br />

Member of ECS in 1982, and he became<br />

a Fellow of the Society in 1992<br />

in recognition of his contributions<br />

to science and electrochemical engineering.<br />

Case Western University,<br />

Lehigh University and the University<br />

of Cincinnati have conferred on him<br />

the honorary <strong>de</strong>gree of Doctor of Science.<br />

He was one of the five foun<strong>de</strong>rs<br />

of International Physicians for the<br />

Prevention of Nuclear War (IPPNW),<br />

to whose activities he contributes as<br />

the only non-medical foun<strong>de</strong>r. IPP-<br />

NW received the Nobel Peace Prize<br />

in 1985.<br />

Vittorio <strong>de</strong> Nora has inspired<br />

noteworthy technical achievements<br />

by encouraging research in electrochemistry<br />

through his endowment of<br />

the annual Electrochemical Society<br />

Vittorio <strong>de</strong> Nora Award for distinguished<br />

contributions in the field.<br />

He is the author of hundreds of<br />

worldwi<strong>de</strong> patents related to industrial<br />

electrochemistry. His most important<br />

patents in the chlorine-alkali<br />

field inclu<strong>de</strong> not only the DSA itself,<br />

but also the great advantage of a new<br />

membrane cell <strong>de</strong>sign, which directly<br />

produced concentrated salt-free<br />

caustic and also eliminated pollution,<br />

particularly by eliminating mercury<br />

catho<strong>de</strong>s and asbestos diaphragms.<br />

De Nora companies have also <strong>de</strong>veloped<br />

the bi-polar chlorine cell,<br />

built plants producing one-third of<br />

the world‘s chlorine production,<br />

including the largest chlorine cell<br />

(450,000 A), still the largest electrochemical<br />

cell ever built, and have also<br />

constructed the world‘s largest water<br />

electrolysis plant having heavy water<br />

as a by-product. �<br />

For subscribers<br />

www.alu-archiv.<strong>de</strong><br />

Knowledge with<br />

a lasting impact!<br />

36 ALUMINIUM · 1-2/2007


ALUMINIUM SMELTING INDUSTRY<br />

Aumund cooling conveyor for<br />

hot bath material<br />

M. Coopmann, Rheinberg<br />

In the course of more than 80<br />

years the Aumund Group has<br />

earned its reputation as a specialist<br />

in supplying equipment for raw<br />

material handling in the cement<br />

industry, in the iron and steel as<br />

well as in the primary aluminium<br />

industry. From its headquarters<br />

in Rheinberg, Germany, the Aumund<br />

Group has integrated the<br />

companies Scha<strong>de</strong> Lagertechnik<br />

GmbH at Herne in Germany, and<br />

B&W Handling Ltd. at Ely, UK, in<br />

the last years. With more than<br />

10.000 machines installed in over<br />

100 countries, the Group continuously<br />

faces market challenges and<br />

tries new solutions. Especially the<br />

handling of hot and abrasive bulk<br />

materials in the steel and primary<br />

aluminium industry puts severe<br />

requirements on the conveying<br />

technique. Aumund already secured<br />

an entry into the Guinness<br />

world record book for supplying<br />

of the longest bucket apron conveyor<br />

for the transport of 900 °C<br />

hot direct reduced iron.<br />

To solve a particular problem in conveying<br />

technique Aumund invented<br />

a customer-specific solution in 1995<br />

for the aluminium smelting plant<br />

SØR Norge <strong>Alu</strong>minium in Norway.<br />

It was <strong>de</strong>veloped with the manager<br />

of the engineering <strong>de</strong>partment of the<br />

smelting plant at that time and with<br />

a Norwegian specialist for hot material<br />

crushers, and it became the first<br />

economical and efficient solution for<br />

the clean handling of 850 °C hot bath<br />

material. Since then this concept has<br />

meanwhile been successfully used for<br />

five units in other European smelting<br />

plants.<br />

Problem<br />

When using the prebake technology,<br />

ano<strong>de</strong> butts are removed together with<br />

a substantial quantity of hot bath material.<br />

This fluori<strong>de</strong>-rich material has<br />

All illustrations: Aumund<br />

Fig. 1: Fluori<strong>de</strong> emissions<br />

usually been collected in containers<br />

and allowed to cool naturally. Due to<br />

the thickness of the layer of hot bath<br />

material in these containers, there is<br />

no guarantee that the bath lumps will<br />

have cooled below 100 °C even after<br />

24 hours of cooling time. However,<br />

before further processing, the material<br />

must cool down to below 70 to<br />

80 °C. Special coolers have been tried<br />

to cool down the bath material to the<br />

required temperature – but without<br />

success.<br />

In or<strong>de</strong>r to give the new ano<strong>de</strong> good<br />

starting conditions, the solid bath surface<br />

has to be cleared from un<strong>de</strong>r it.<br />

This allows high current efficiency<br />

and stable pot operation. Previously,<br />

point feeding prebake technology did<br />

not employ si<strong>de</strong> breaking operation,<br />

so this bath material was stored in the<br />

service area of the pot. The crust with<br />

alumina and bath material was then<br />

later broken into the liquid bath by<br />

the tools of the crust breaker vehicle,<br />

while fluori<strong>de</strong> gases escaped uncontrolled.<br />

Solution and functional<br />

<strong>de</strong>scription<br />

For <strong>de</strong>fined cooling of bath material,<br />

Aumund <strong>de</strong>veloped a solution <strong>de</strong>signed<br />

to cool down hot bath material<br />

from 850 °C to 80 °C within a period<br />

of time not longer than 12 hours. Prior<br />

to this cooling on an Aumund <strong>de</strong>epdrawn<br />

pan conveyor, a specially <strong>de</strong>signed<br />

hot bath crusher from SMV A/S<br />

receives up to 850 °C hot bath material<br />

and crushes it down to a lump size<br />

of about 200 mm. Directly un<strong>de</strong>rneath<br />

the hot bath crusher, the Aumund<br />

cooling conveyor is connected and re-<br />

Fig. 2: Covered conveyor connected to dry<br />

scrubbing system<br />

ceives the red-hot bath material. With<br />

a variable speed between 0.15 m/min<br />

and 0.5 m/min the conveyor works<br />

like a moveable storage and is able to<br />

adapt to the discontinuous operation<br />

of a smelting plant. After a distance<br />

of 95 m, approximately 3 tonnes per<br />

hour bath material is finally cooled<br />

down on a 1400 mm wi<strong>de</strong> conveyor to<br />

approximately 80 °C and is ready for<br />

38 ALUMINIUM · 1-2/2007


<strong>SPECIAL</strong><br />

further processing in the bath treatment<br />

plant.<br />

Research on the process of<br />

conveying hot bath material<br />

HF-emissions un<strong>de</strong>r control<br />

HF-measurements at SØR Norge <strong>Alu</strong>minium<br />

in 2005 have shown that the<br />

HF-gases evaporate into the environment<br />

at temperatures above approx.<br />

400 °C material temperature and thus<br />

risk damaging the health of employees<br />

in the potroom. At the tipping<br />

point already, where the 850 °C hot<br />

Fig. 3: Conveyor section with heat<br />

protection box and data logger insi<strong>de</strong><br />

bath material is fed into the crusher,<br />

there is a suction point which leads<br />

the emitting HF-gases into the existing<br />

dry scrubbing system. As the cooling<br />

process progresses, the emissions of<br />

the HF-gases progressively <strong>de</strong>crease,<br />

until they finally become negligible<br />

small for a bath material temperature<br />

below 400 °C (Fig. 1).<br />

Moreover, the cooling conveyor is<br />

covered by a hood and connected to<br />

the existing dry scrubbing system via<br />

several suction points (Fig. 2). Measurements<br />

show that the suction system<br />

absorbs approx. 60 g per tonne<br />

of bath emissions on average during<br />

a 3-shift operation.<br />

Investigations of the cooling<br />

characteristics of hot bath<br />

material<br />

In contrast to capacity needs in 1995<br />

to cool 2.5 t/h of bath material, Aumund<br />

nowadays receives inquiries<br />

calling for up to 36 t/h bath material<br />

cooling and conveying capacity.<br />

Calculating such applications in the<br />

conventional way would lead to uneconomical<br />

solutions for our custom-<br />

ALUMINIUM SMELTING INDUSTRY<br />

ers, and thus to higher investments in<br />

infrastructure, civil work, etc.<br />

Based on these requirements, Aumund<br />

started investigations at the primary<br />

aluminium smelter of Slovalco<br />

in 2006. Since 2002 an Aumund cooling<br />

conveyor had already been operating<br />

at the Slovalco plant to handle<br />

hot bath material. At our works in<br />

Germany a new conveyor section<br />

was equipped with a Data logger and<br />

six thermocouples (Fig. 3) and then<br />

installed in the conveyor operating at<br />

Slovalco.<br />

The measurements taken during<br />

the normal daily operation of the primary<br />

aluminium smelter provi<strong>de</strong>d us<br />

with valuable data for further investigations<br />

and led to a new Thermodynamical<br />

Calculation Software (TCS).<br />

This new TC-Software (Fig. 4) has<br />

now replaced the old conventional<br />

way of <strong>de</strong>signing cooling conveyors<br />

and is based on the following parameters:<br />

• material layer height<br />

• air flow above the conveyor<br />

• number of suction points<br />

• conveyor width<br />

• conveyor speed<br />

• lump size of bath material.<br />

As a theoretical reflection, we used<br />

the new TC-Software to recalculate<br />

our first installation at SØR Norge<br />

<strong>Alu</strong>minium. Compared with our<br />

original figures, the result would<br />

have allowed a reduction in length<br />

by 1/3 while doubling the conveyor<br />

speed and reducing by half the layer<br />

height of bath material. An additional<br />

advantage of the new TC-Software is<br />

the option to adapt and incorporate<br />

Fig. 4: Cooling curve of bath material<br />

restrictions in conveyor length or air<br />

flow capabilities, according to our<br />

customers’ references.<br />

Benefits and advantages of the<br />

Aumund cooling system<br />

• Reduction of investment cost in<br />

infrastructure, such as avoiding<br />

the need for a building to store<br />

bath skips while the bath is cooling<br />

prior to crushing;<br />

• No need for skips to cool bath<br />

• Reduction of operating cost<br />

(no double handling of the skips<br />

and associated vehicles and<br />

operators)<br />

• Increased rate of automation<br />

• Clean bath handling<br />

• Defined cooling of bath material<br />

• Fluori<strong>de</strong> gases removed by<br />

controlled suction;<br />

• Significantly increased safety and<br />

health conditions in the potrooms<br />

• Improved environmental<br />

conditions.<br />

References<br />

1995 SØR Norge <strong>Alu</strong>minium, Norway<br />

2002 SØR Norge <strong>Alu</strong>minium, Norway<br />

2002 Slovalco <strong>Alu</strong>minium, Slovakia<br />

2002 Alcan Icelandic <strong>Alu</strong>minium,<br />

Iceland<br />

2006 Nordural <strong>Alu</strong>minium, Iceland<br />

2006 Fjardaál Smelter, Iceland<br />

2007 Trimet <strong>Alu</strong>minium, Germany<br />

Author<br />

Marco Coopmann is Sales Manager, Division<br />

Metallurgy of Aumund För<strong>de</strong>rtechnik<br />

based in Rheinberg, Germany.<br />

39 ALUMINIUM · 1-2/2007<br />

ALUMINIUM · 1-2/2007 39


All illustrations: F.L.Smidth<br />

ALUMINIUM SMELTING INDUSTRY<br />

Advances in gas suspension calcination technology<br />

B. E. Raahauge, Copenhagen<br />

The principle of the gas suspension<br />

calciner (GSC) was <strong>de</strong>veloped<br />

by F. L. Smidth & Co. in the<br />

early 1970s for pre-calcination<br />

of cement raw meal (d50 = 10 to<br />

20 μm), as feed to the rotary kiln<br />

burning the final cement clinker.<br />

Following the successful commissioning<br />

of the first 4,600 tpd rotary<br />

kiln with pre-calciner in 1976, F.<br />

L. Smidth <strong>de</strong>ci<strong>de</strong>d to <strong>de</strong>velop the<br />

GSC technology for application<br />

within the alumina industry. The<br />

state of the art of the GSC technology<br />

in commercial operation<br />

producing smelter gra<strong>de</strong> alumina<br />

(SGA) covers a capacity range<br />

from 820 to 4,500 tpd of SGA.<br />

The economics of bag house versus<br />

electrostatic precipitators for meeting<br />

environmental requirements have<br />

changed over the past 20 years. This<br />

paper <strong>de</strong>scribes <strong>de</strong>velopments since<br />

the first 850 tpd GSC unit for alumina<br />

was started up in 1986.<br />

GSC for smelter gra<strong>de</strong> alumina<br />

(SGA) production<br />

The GSC furnace comprises a cylindrical<br />

vessel with a conical bottom to<br />

let in pressurized air or gas, as well<br />

as a hot cyclone to separate of solids<br />

Fig. 1: Gas suspension calciner furnace and<br />

cyclone (HFO: heavy fuel oil; SGA: smelter<br />

gra<strong>de</strong> alumina)<br />

40<br />

Fig. 2: Principle flow sheet for gas suspension calciner unit bag house and booster fan<br />

from the outlet gas. A series of cooling<br />

cyclones recover heat from the<br />

calcined SGA to preheat air and fuel,<br />

while a series of heating cyclones<br />

recover heat from the combustion<br />

gases to dry, preheat, and pre-calcine<br />

the hydrate feed. The GSC furnace is<br />

refractory lined and operates at a temperature<br />

in the 950 to 1150 °C range.<br />

Preheated alumina enters the GSC<br />

furnace at a temperature ranging from<br />

320 to 370 °C in a direction parallel<br />

to the conical bottom of the furnace.<br />

Preheated air enters from the cooler<br />

at a temperature of 700 to 800 °C and<br />

is used to burn the fuel. The operating<br />

temperature chosen for the GSC<br />

furnace and hot cyclone <strong>de</strong>pends on<br />

what <strong>de</strong>gree of calcination the alumina<br />

requires and on how long it stays hot<br />

in the equipment downstream of the<br />

hot separation cyclone. The operating<br />

temperature can be lowered when<br />

the GSC furnace and hot cyclone is<br />

retrofitted behind a rotary kiln to act<br />

as cooler (GSC retrofit), or if the hot<br />

separation cyclone is equipped with<br />

a fluidized holding vessel. The higher<br />

operating temperature range is used<br />

when alumina from the hot cyclone<br />

discharges into a four (4) stage cyclone<br />

cooler. The GSC units are <strong>de</strong>signed<br />

for an overall pressure drop of<br />

8 to 11 kPa before the gas <strong>de</strong>dusting<br />

equipment. The specific power con-<br />

sumption of 20 to 24 kWh per tonne<br />

alumina <strong>de</strong>pends on the type of gas<br />

<strong>de</strong>-dusting equipment, the type of<br />

fuel used, and whether a forced draft<br />

booster fan is installed on the clean air<br />

si<strong>de</strong>. The specific heat consumption is<br />

about 3.2 to 3.4 GJ per tonne alumina,<br />

<strong>de</strong>pending on moisture content in the<br />

hydrate feed and on the type of fuel<br />

used.<br />

Thermal energy options for<br />

calcination<br />

The GSC units in operation today use<br />

either heavy fuel oil (HFO), natural<br />

gas, or coal gas as fuel. Since all the<br />

combustion air is preheated by cooling<br />

the alumina, the air flow through<br />

a calciner, and thus the excess air<br />

factor, has little impact on the energy<br />

requirements. If more air enters the<br />

cooling section, then more energy<br />

will be recovered from the alumina,<br />

but this is mostly offset by an increase<br />

in the volume of hot gas lost to the<br />

stack.<br />

However, when using coal gas,<br />

the losses to the stack will be higher<br />

than for heavy fuel oil and for natural<br />

gas, because coal gas produces a<br />

much greater volume of combustion<br />

gases per unit of combustion heat.<br />

This means that large volumes of coal<br />

gas must be heated to calcining tem-<br />

ALUMINIUM · 1-2/2007


<strong>SPECIAL</strong><br />

perature, further reducing the energy<br />

efficiency. The relatively low volume<br />

of air for burning coal gas results in<br />

a relatively higher loss of potentially<br />

recoverable heat to the cooling water<br />

(less recovery of heat from the alumina).<br />

Compared to natural gas, heavy<br />

fuel oil has the disadvantage of requiring<br />

a significant investment in storage<br />

and oil heating equipment. This, along<br />

with the potential restrictions regarding<br />

sulfur emissions, makes heavy fuel<br />

oil less attractive than natural gas as<br />

a fuel for alumina calciners, although<br />

the latter’s higher heating value (HHV)<br />

is 4 to 5% less per unit heat utilized by<br />

combustion (LHV). Overall, coal gas<br />

increases the specific heat consumption<br />

of GSC units with 6 to 7% when<br />

compared to GSC units using heavy<br />

fuel oil or natural gas.<br />

Fuel type<br />

Typical lower<br />

heating value<br />

(LHV)<br />

However, at today’s high energy<br />

cost ranging from 3.3 euros per GJ for<br />

coal to 7.5 euros per GJ for oil, coal<br />

gas may be a viable economic alternative<br />

to natural gas and HFO as fuel for<br />

new GSC units wherever coal is readily<br />

available. This is the case in many<br />

countries such as China, where most<br />

of the GSC units installed use coal gas<br />

as fuel. Preliminary economic analysis<br />

suggests that the pay-back time for<br />

a coal gasification plant is about one<br />

year.<br />

Finally it should be noted that coal<br />

gas produces 16 to 17 per cent more<br />

combustion gas volume when compared<br />

to natural gas and heavy fuel<br />

oil, which requires relatively larger<br />

equipment for <strong>de</strong>dusting the calciner<br />

exhaust gases to an acceptable emission<br />

level.<br />

Trends in air pollution control:<br />

bag house versus electrostatic<br />

precipitator<br />

The trend towards increasing environmental<br />

awareness worldwi<strong>de</strong><br />

ALUMINIUM SMELTING INDUSTRY<br />

requires any<br />

particulate<br />

filter technology<br />

to achieve<br />

higher cleaning<br />

efficiency<br />

and on-line<br />

availability, as<br />

the allowed<br />

emission level<br />

is lowered<br />

year by year.<br />

Most aluminacalciners<br />

<strong>de</strong>cured<br />

environmental<br />

Fig. 3: 3 x 4500 tpd GSC units at Queensland <strong>Alu</strong>mina Ltd.<br />

equipped with bag houses<br />

compliance by using electrostatic precorrect start and stop procedures. The<br />

cipitators (ESP), which until recently table below compares process data, a<br />

were the state-of-the-art equipment. fabric filter and an ESP to achieve the<br />

However, the bag house, or fabric filter,<br />

is now consi<strong>de</strong>red an attractive<br />

same level of emissions for a specific<br />

economic alternative. The electrostat- Gas flow [Nm3 /min] 10,9<br />

Temperature [°C] 155-240<br />

Combustion air<br />

theoretical volume<br />

(Nm 3 / GJ)<br />

Combustion gas<br />

theoretical volume<br />

(Nm 3 / GJ)<br />

41 ALUMINIUM · 1-2/2007<br />

ALUMINIUM · 1-2/2007 41<br />

HHV/<br />

LHV<br />

Heavy fuel oil 40.485 MJ/kg 264 279 1.061<br />

Natural gas 37.345 MJ/Nm 3 253 281 1.107<br />

Coal gas 6.530 MJ/Nm 3 208 326 1.058<br />

Tab. 1: Properties for alternative fuels used in calciner operation<br />

ic precipitator loses competitiveness<br />

at lower outlet emission levels. This is<br />

because it needs more electrical fields<br />

in the filter, which increases the associated<br />

total installed cost.<br />

On the other hand, the total installed<br />

cost of a fabric filter will generally<br />

not change when the required<br />

emission is lowered. This is because<br />

the outlet emission do not <strong>de</strong>pend<br />

very much on the air to cloth ratio.<br />

The major environmental advantage<br />

of the fabric filter is its ability<br />

to maintain envi-<br />

ronmentalcompliance even when<br />

the high voltage<br />

power supply fails.<br />

The electrostatic<br />

filter has, however,<br />

a higher <strong>de</strong>gree of<br />

robustness in case<br />

of <strong>de</strong>viations from<br />

normal process parameters,<br />

whereas<br />

the fabric filter is<br />

sensitive to excess<br />

temperature and in-<br />

Capex (capital expenditure) US$<br />

Supply cost<br />

Installation cost<br />

Total capex, US$ Flange/Flange<br />

Opex (operational expenditure)<br />

Bag life: assumed to be 3 years, cage life<br />

is assumed to be 2 set of bags<br />

Pressure drop, mm WG<br />

Power consumption, fan, kW<br />

Power consumption, hopper heaters, kW<br />

Power consumption, T/R set, kW<br />

Power consumption, compressor, kW<br />

Total opex, US$/year,<br />

based on 0.06 US$/kWh<br />

Outlet emission [mg/Nm 3 , dry] 30<br />

Tab. 2: Overall process data for a typical<br />

gas suspension calciner filter plant<br />

GSC unit. Both technologies have<br />

been selected to meet the same environmental<br />

performance for the same<br />

process conditions (i.e. flow, temperature<br />

and pressure) when applying the<br />

same local conditions (i.e. wind load,<br />

earthquake load).<br />

The table below shows that the<br />

fabric filter is lower in capex (initial<br />

investment cost) compared with the<br />

ESP. However the opex (operational<br />

cost) for the fabric filter is higher than<br />

the opex cost for the ESP. The opex for<br />

the fabric filter <strong>de</strong>pends on the type<br />

of filter media used and obviously on<br />

its lifetime. This data for capex and<br />

opex has been entered into a NPV (net<br />

Fabric<br />

1,320,000<br />

656<br />

1,976,000<br />

150<br />

302<br />

24<br />

NA<br />

25<br />

Electrostatic<br />

1,334,000<br />

1,407,000<br />

2,741,000<br />

25<br />

50<br />

58<br />

184<br />

NA<br />

230,000 138,000<br />

Tab. 3: Capex and opex for a fabric filter versus electrostatic<br />

precipitator �


ALUMINIUM SMELTING INDUSTRY<br />

present value) cost analysis ma<strong>de</strong> for<br />

a 20 year period.<br />

The result is a break-even point<br />

after approximately nine years before<br />

the ESP becomes the lower cost alternative.<br />

Anyway, the major environmental<br />

advantage of the fabric filter is its abil-<br />

42<br />

ity to maintain environmental compliance<br />

even in situations when the high<br />

voltage power supply fails. And this<br />

feature may overrule any economic<br />

disadvantage over the long term, as<br />

the local population will not allow any<br />

temporary dust emissions, whatever<br />

the cause.<br />

Author<br />

Ano<strong>de</strong> rod repair and manufacture<br />

D. Mad<strong>de</strong>n and B. Dalton, Gladstone<br />

The ano<strong>de</strong> rod was <strong>de</strong>veloped to<br />

coinci<strong>de</strong> with the introduction<br />

of the prebaked ano<strong>de</strong> and the<br />

advent of prebake cell technology.<br />

The early <strong>de</strong>velopment phase generally<br />

consisted of a copper stem<br />

joined to a steel pin or stub via<br />

a bolted connection. The second<br />

generation saw the introduction of<br />

an aluminium stem joined to the<br />

steel yoke. This connection was<br />

achieved through the use of a bimetallic<br />

joint, commonly referred<br />

to as a transition joint. The bolted<br />

stub connection was replaced by a<br />

wel<strong>de</strong>d connection and became an<br />

integral part of a cast steel yoke.<br />

The copper stem ano<strong>de</strong> rod evolved<br />

with the introduction of a wel<strong>de</strong>d<br />

connection from the stem to the yoke.<br />

This generation of ano<strong>de</strong> rod also saw<br />

the introduction of a multi pin yoke.<br />

Generally this generation <strong>de</strong>sign has<br />

survived through to today’s technology.<br />

The changes to the ano<strong>de</strong> rod<br />

have mainly been attributed to the increases<br />

in line amperage necessitating<br />

the use of much larger ano<strong>de</strong>s.<br />

Upgrading existing ano<strong>de</strong> rod<br />

fleets<br />

The industry has seen extremely large<br />

increases in line amperage and current<br />

efficiencies. In or<strong>de</strong>r for existing<br />

plants to stay competitive with new<br />

smelters, they have increased their<br />

amperage. We are seeing plants that<br />

were <strong>de</strong>signed for 100 to 150 kA now<br />

running at 200 to 250 kA.<br />

To achieve these increases, various<br />

modifications were carried out.<br />

In some cases the original ano<strong>de</strong> rod<br />

was modified:<br />

• Extra stubs ad<strong>de</strong>d<br />

• Stub size increased<br />

• Transition joint type changed<br />

• Offsets in ano<strong>de</strong> rod.<br />

These changes did not necessarily result<br />

in the optimum rod <strong>de</strong>sign, but<br />

with a typical inventory of 10,000<br />

plus rods in an ol<strong>de</strong>r smelter producing<br />

100,000 to 200,000 tonnes of<br />

metal, modification is sometimes the<br />

only viable option. As line amperages<br />

further increase the ano<strong>de</strong> rod may<br />

require re<strong>de</strong>sign; however, the <strong>de</strong>cision<br />

to pursue this route will need<br />

careful planning, as major, expensive<br />

changes to other areas of the plant<br />

may be required.<br />

Current day ano<strong>de</strong> rods<br />

Typical materials used in mo<strong>de</strong>rn-day<br />

ano<strong>de</strong> rods are transition joint (roll<br />

bon<strong>de</strong>d, aluminium to steel), yoke<br />

(cast steel or fabricated mild steel),<br />

stub (mild steel).<br />

Benny E. Raahauge, MSc (Chem. Eng.) has<br />

worked since 1976 with <strong>de</strong>velopment,<br />

marketing and sales of the gas suspension<br />

calcination technology for alumina. His<br />

current position is General Manager, <strong>Alu</strong>mina<br />

& Pyro Technology, at FFE Minerals<br />

Denmark A/S, based in Copenhagen.<br />

Holcan<br />

The <strong>de</strong>sign of the ano<strong>de</strong> rod should<br />

take into account:<br />

• Current carrying capacity<br />

• Mechanical strength<br />

• Choice of material<br />

• Ease of manufacture<br />

• Life of ano<strong>de</strong> rod<br />

• Ease of repair<br />

• Cost of repair<br />

• Electrical resistance<br />

• Initial cost<br />

• Cell thermal requirements.<br />

In recent years the industry has settled<br />

on aluminium rods as a standard<br />

compared to copper rods. This seems<br />

due to a combination of factors:<br />

• <strong>Alu</strong>minium is slightly cheaper for<br />

the same electrical performance<br />

• The larger section area of the aluminium<br />

rod is mechanically more robust<br />

• <strong>Alu</strong>minium rods last longer, typically<br />

more than 15 years compared to<br />

often less than 7 years for copper<br />

• Supports the aluminium industry.<br />

The procedure to manufacture an ano<strong>de</strong><br />

rod is relatively straightforward.<br />

ALUMINIUM · 1-2/2007


<strong>SPECIAL</strong><br />

The cost to manufacture the yoke is<br />

generally driven by up-front costs,<br />

with far less consi<strong>de</strong>ration given to<br />

on-going repair costs once the plant<br />

is in operation. A cast steel yoke complete<br />

with stub may cost 60 to 70%<br />

more than a fabricated yoke.<br />

On a plant with 14,000 new assemblies,<br />

this could represent savings of<br />

US$ 3-4 million. Depending on the<br />

fabricated yoke <strong>de</strong>sign, however, the<br />

potential for extra repairs due to poor<br />

<strong>de</strong>sign could easily cost the operating<br />

plant the construction savings within<br />

a few years of operation. These costs<br />

could be incurred by:<br />

• Failed stub welds from either poor<br />

welds or operational stresses<br />

• Full stub replacement versus partial<br />

stub replacement<br />

• Twisting of assemblies once introduced<br />

into the cell, due to welding<br />

stresses not being addressed during<br />

manufacture; increasing repair needs<br />

and increasing voltage losses during<br />

operation due to poor fit of stubs in<br />

the stub holes.<br />

Economics of rod repair<br />

Cost of repair: On a mo<strong>de</strong>rn day potline<br />

of 280,000 tpy with a 180 mm<br />

stub, the cost of repair can be in the<br />

millions of dollars per year. Reducing<br />

repair costs is naturally a target<br />

for many smelter operators. There are<br />

means by which rod repair costs can<br />

be reduced – as shown in the example<br />

below. There are also pitfalls in<br />

attempting to reduce repair costs – as<br />

discussed in the next section “Cost of<br />

not repairing”.<br />

Example: If a 280,000 tpy potline<br />

repairing 12,000 stubs per year were<br />

to convert from a full stub replacement<br />

to a partial stub replacement,<br />

then savings in steel consumption,<br />

based on a price of US$ 1,000 per<br />

tonne, will be in the or<strong>de</strong>r of US$<br />

290,000 per year.<br />

This repair saving must be set<br />

against a slight increase in voltage (4<br />

mV) across the extra weld, amounting<br />

to US$ 90,000 extra power cost<br />

(at US$ 0.025 per kWh).<br />

This shows that the gains from<br />

adopting a partial stub replacement<br />

far out weigh the extra cost in power<br />

due to extra weld resistance – a net<br />

ALUMINIUM SMELTING INDUSTRY<br />

saving of US$ 200,000 per year for the<br />

smelter.<br />

Cost of not repairing: For the smelter,<br />

the cost of rod repair is immediate<br />

and tangible. There is, however, a hid<strong>de</strong>n<br />

cost – the cost of reduced operating<br />

performance (increased voltage<br />

losses and changed thermal performance)<br />

due to poorly maintained and<br />

repaired assemblies. Typical <strong>de</strong>fects<br />

which lead to reduced ano<strong>de</strong> assembly<br />

performance inclu<strong>de</strong>:<br />

• Reduced stub diameter in the stub<br />

hole<br />

• Reduced stub diameter above the<br />

stub hole<br />

• Stub not central in stub hole<br />

• Stub not seated flat on the base of<br />

stub hole<br />

• Reduced yoke arm section.<br />

For illustrative purposes: It is estimated<br />

for the 280,000 tpy potline that, if<br />

all stubs were allowed to drop from<br />

180 mm to an average diameter of 160<br />

mm within the stub hole, then the additional<br />

voltage loss (40 mV) would<br />

consume US$ 900,000 of power per<br />

year (at US$ 0.025 per kWh). This<br />

example highlights the importance of<br />

maintaining the rod fleet.<br />

The smelter operator must, however,<br />

be careful in setting rod rejection<br />

criteria – the temptation to un<strong>de</strong>r-repair<br />

ano<strong>de</strong> rods, so as to reduce<br />

the obvious costs of rod repair, could<br />

ultimately be penalizing the smelter’s<br />

total cost performance. But too strict<br />

criteria will waste money in unnecessary<br />

repairs. Typically there is a tra<strong>de</strong><br />

off between yearly repair costs and<br />

the assembly performance as illustrated<br />

in the graph.<br />

Repair methods for partial stub<br />

replacement<br />

To perform partial stub replacement<br />

repair, three systems are compared:<br />

Holcan stub welding system, friction<br />

welding, robotic welding.<br />

Holcan welding system: This lowcost<br />

system has been in use for 20<br />

years and employs the MIG (GMAW)<br />

welding method in a semi-automatic<br />

mo<strong>de</strong>. It is very forgiving for out-oftolerance<br />

dimensions of the ano<strong>de</strong><br />

rods already subjected to the operational<br />

stresses, and suggests the use<br />

of flame cutting over sawing.<br />

Friction welding: Due to very high<br />

capital start up costs, this process is<br />

more suited to being an owner’s repair.<br />

A contractor would find it difficult<br />

to justify the cost of installing<br />

this equipment. Close tolerances are<br />

required to achieve a sound weld.<br />

Generally it requires saw cutting of<br />

the old stub, which is often problematic<br />

and expensive.<br />

Robotic welding: This system can<br />

perform poorly with out-of-tolerance<br />

ano<strong>de</strong> rods, and will require a skilled<br />

workforce to programme the robot.<br />

Additionally it generally requires saw<br />

cutting, which is problematic as stated<br />

previously.<br />

Conclusion<br />

Particular attention should be paid to<br />

the <strong>de</strong>sign of the ano<strong>de</strong> rod yoke, as<br />

regards to future repair costs – a poor<br />

<strong>de</strong>sign will lead to excessive repair<br />

work which can easily consume initial<br />

capital savings. The repair methods<br />

chosen should take into account<br />

all the costs and the methods that will<br />

be adopted to complete these repairs.<br />

Often reduced material usage, e.g<br />

steel, can easily outweigh other costs.<br />

Evaluate the hid<strong>de</strong>n costs which<br />

would arise if the stub, yoke and rod<br />

condition <strong>de</strong>teriorate – pick rejection<br />

criteria which gives the lowest overall<br />

cost to the smelter.<br />

Accuracy of information<br />

Given the many assumptions and<br />

types of calculations, it is recommen<strong>de</strong>d<br />

that these results be consi<strong>de</strong>red<br />

as or<strong>de</strong>r of magnitu<strong>de</strong> estimates<br />

only. It is recommen<strong>de</strong>d that actual<br />

test data be gather un<strong>de</strong>r normal operating<br />

conditions.<br />

Authors<br />

Dan Mad<strong>de</strong>n is the Managing Director of<br />

Holcan Constructions Pty. Ltd. and has<br />

worked in the aluminium industry for 28<br />

years. He advises the industry on the manufacture<br />

and fabrication of ano<strong>de</strong> rods.<br />

Bill Dalton has spent 10 years as a Senior<br />

Research Engineer with Comalco and a further<br />

5 years as consultant to the aluminium<br />

and wi<strong>de</strong>r metals industries. He is also an<br />

expert in due diligence and production<br />

cost analysis for the aluminium industry.<br />

43 ALUMINIUM · 1-2/2007<br />

ALUMINIUM · 1-2/2007 43


ALUMINIUM SMELTING INDUSTRY<br />

Integrated continuous billet processing<br />

F. Nie<strong>de</strong>rmair, Braunau<br />

Developed in the 1970s by Hertwich<br />

Engineering (HE), continuous<br />

billet processing plants have<br />

become the accepted standard for<br />

the processing of extrusion billets.<br />

Today more than 60% of worldwi<strong>de</strong><br />

production of extrusion billet<br />

pass through such a HE plant,<br />

which englobes inspection/QA,<br />

HE.C-homogenisation, sawing, and<br />

packaging.<br />

This extraordinary success stems<br />

from a number of clear advantages:<br />

• Perfectly uniform metallurgical<br />

property of billet due to precise<br />

and reproducible temperature<br />

regime during heating, holding<br />

and cooling<br />

• Combination of various process<br />

steps into one fully automated,<br />

continuous process, hence<br />

substantial labour savings<br />

• All equipment components fully<br />

compatible, because <strong>de</strong>veloped,<br />

<strong>de</strong>signed and built by HE<br />

• Plants built to latest<br />

state-of-the-art technology,<br />

80 such plants in operation,<br />

• HE-CIP, Continuous Improvement<br />

Process.<br />

HE extrusion billet plants are custom-<strong>de</strong>signed<br />

to meet individual<br />

requirements of clients, in terms of<br />

throughput, floor area and technical<br />

features.<br />

Description of a mo<strong>de</strong>rn plant<br />

Description of a mo<strong>de</strong>rn plant (60.000<br />

to 120.000 tpy) with the emphasis on<br />

technical features, novelties and specific<br />

options (Fig. 1):<br />

The fully automated processing<br />

sequence starts with laydown of cast<br />

lengths of extrusion ingot on the entry<br />

table. From there logs are moved<br />

over a storage conveyor to the inspection<br />

station, for visual inspection for<br />

surface <strong>de</strong>fects and for ultrasonic inspection<br />

(UT) for centre cracks and<br />

inclusions. For extrusion billets the<br />

linear UT station is a<strong>de</strong>quate, while<br />

billets <strong>de</strong>stined for aircraft or auto-<br />

44<br />

Fig. 1: Typical plant layout<br />

motive components are inspected<br />

with the helical method, whereby<br />

the entire cylindrical billet volume is<br />

inspected, incl. surface <strong>de</strong>fects with<br />

perpendicular and angular probes.<br />

Logs are rotated while several probes<br />

move along the billet surface, each<br />

probe inspects only its section of the<br />

log. This arrangement is necessary to<br />

achieve the required throughput. Furthermore<br />

the helical UT is <strong>de</strong>signed to<br />

meet the requirements of ASTM B 594<br />

Class A or B respectively.<br />

HE has achieved market lea<strong>de</strong>rship<br />

with such ultrasonic inspection<br />

stations. Fault sizes as small as 1,2<br />

mm FBH can be <strong>de</strong>tected.<br />

Data of UT-inspection-results<br />

for each individual<br />

billet is recor<strong>de</strong>d and remains<br />

“attached” to the<br />

billet throughout the system<br />

(log-tracking). For<br />

instance, a centre crack<br />

<strong>de</strong>tected in a certain log<br />

causes the integrated billet<br />

saw to automatically remove<br />

and scrap the faulty<br />

section of the log (Figs. 2<br />

and 3).<br />

A storage conveyor provi<strong>de</strong>s<br />

a<strong>de</strong>quate log storage<br />

between (UT) inspection<br />

and continuous homogenising<br />

furnace. For reduced<br />

noise, logs are lifted and<br />

lowered during transfer,<br />

no rolling is permitted.<br />

Heating<br />

In the heating zone of the furnace,<br />

extrusion-quality logs are heated to<br />

homogenizing temperature within 1,5<br />

to 2,5 hours, holding times may range<br />

between 2 to 4 hours (blue curve).<br />

However, certain plants have been<br />

built to meet different, special heating<br />

requirements (Fig. 4).<br />

For instance a plant in Scandinavia<br />

processes hard ZnMg alloys. This furnace<br />

is capable of slow heating in the<br />

critical temperature range to avoid <strong>de</strong>velopment<br />

of cracks due to inner tensions<br />

(red line vs. standard blue line).<br />

Fig. 2: Linear testing<br />

Helical testing<br />

All illustrations: Hertwich Engineering<br />

ALUMINIUM · 1-2/2007


Temperature (°C)<br />

<strong>SPECIAL</strong><br />

Fig. 4: Heating curves<br />

blue: standard, red: special slow heating<br />

Cooling<br />

Cooling after homogenising is an important<br />

aspect for extrudability and<br />

mechanical properties of billets. Many<br />

different cooling regimes are in use,<br />

<strong>de</strong>pending on metallurgical requirements<br />

and clients recipes, hence a<br />

wealth of different coolers have been<br />

built to date (Fig. 5).<br />

Fig. 5: Cooling curves<br />

Time (min)<br />

Line “a” shows cooling by water<br />

quench. With AlMgSi alloys, Mg 2 Si<br />

thereby remains completely dissolved.<br />

Line “b” represents cooling in<br />

very intense air flow, with cooling<br />

rates 600 to 800 °C/hour.<br />

Line “c” shows the log temperature<br />

during cooling in a mo<strong>de</strong>rate airflow,<br />

whereby cooling rates can be adjusted<br />

350 to 550° K/hour.<br />

The majority of plants built to<br />

date are <strong>de</strong>signed and equipped for<br />

such cooling rates, as these meet the<br />

ALUMINIUM SMELTING INDUSTRY<br />

requirements of<br />

mainstream extru<strong>de</strong>rs.<br />

Line “d” portrays<br />

“step-cooling”. Only<br />

one of our plants is<br />

equipped for this<br />

type of cooling.<br />

However, due to the<br />

associated impact<br />

on extrudability<br />

this cooling regime<br />

is not applied in<br />

practice.<br />

Line “e” shows extremely slow cooling<br />

in the range 75 to 150 °C per hour,<br />

which is required for certain special<br />

alloys. Such slow cooling rates cannot<br />

be achieved simply, not even with<br />

stagnant air, but require closed cooling<br />

chambers with several zones of<br />

different air temperatures.<br />

In accordance with this variety of<br />

cooling regimes, actual cooling stations<br />

vary much in <strong>de</strong>sign and construction.<br />

We distinguish between<br />

open and closed type coolers, and<br />

even coolers with built in heating <strong>de</strong>vices.<br />

For certain countries with cold<br />

climate we have built cooling stations<br />

with integrated waste-heat recovery.<br />

Thereby cooling air is re-circulated<br />

until it is suitable for heating of buildings.<br />

Sawing, marking, packing,<br />

weighing, strapping<br />

After cooling logs are transported to<br />

the saw plant, passing over a combi-<br />

nation of storage conveyors, shuttle<br />

cars, roller table lines etc. Once cut<br />

at the saw, all billets are marked. The<br />

introduction of a pin-stamping unit<br />

in recent years is a small but essential<br />

innovative contribution to full<br />

automation. Prior to that, changing<br />

of hard stamp stencils was the only<br />

remaining operator task. Today’s pin<br />

stamping unit receives marking information<br />

directly from the control<br />

system, eliminating time-consuming<br />

manual changing of stencils and potential<br />

mistakes by inserting incorrect<br />

numbers.<br />

HE has <strong>de</strong>veloped its own pin<br />

stamping unit, as other systems available<br />

on the market were too slow.<br />

Head and butt ends and scrap pieces<br />

are gripped in sawing position by<br />

a scrap manipulator and <strong>de</strong>posited in<br />

scrap containers. The manipulator is<br />

<strong>de</strong>signed to also remove sample discs,<br />

which are placed on a <strong>de</strong>dicated tray<br />

or chute.<br />

Swarf is extracted directly from the<br />

saw and pneumatically transported to<br />

the briquetting press. There swarf briquettes<br />

are formed immediately after<br />

sawing, to a <strong>de</strong>nsity 2.2 to 2.4 kg/dm3 .<br />

Such briquettes remelt in a similar<br />

way to ingots, achieving extremely<br />

low melt loss.<br />

Cut billets now travel to the packing<br />

area on roller table lines. The<br />

packing plant shown is <strong>de</strong>signed for<br />

creating long and short billet stacks<br />

simultaneously. This type stacker is<br />

particularly suited for bulk production<br />

of short billets, when long billet<br />

requirement is limited to say 6.0 m,<br />

whereby 8.0 or 9.0 m is the actual cast<br />

length. This way both casting pit and<br />

homogenising furnace are optimised<br />

for maximum throughput.<br />

Today’s standard strapping centre,<br />

also <strong>de</strong>veloped by HE, inclu<strong>de</strong>s<br />

automatic woo<strong>de</strong>n runner magazine<br />

and positioning <strong>de</strong>vice. The number<br />

and position of woo<strong>de</strong>n runners and<br />

strapping bands are applied fully automatically<br />

according to customer<br />

specification; no operator intervention<br />

or adjustments are required.<br />

Actual strapping is with steel tape, or<br />

more recently with PET-tape. Weighing<br />

of stacks is done prior to and after<br />

strapping, to generate net- and gross<br />

weight.<br />

�<br />

45 ALUMINIUM · 1-2/2007<br />

ALUMINIUM · 1-2/2007 45


ALUMINIUM SMELTING INDUSTRY<br />

Ancillary equipment may comprise<br />

• label printer and applicator<br />

• stack manipulator. (Fig. 6)<br />

The label applicator attaches the label<br />

in a <strong>de</strong>fined position on the bundle.<br />

The manipulator stacks completed<br />

bundles in <strong>de</strong>dicated positions for removal<br />

by fork truck, or stacks directly<br />

onto trailers.<br />

Fig. 6: Sawing and packing<br />

Summary of improvements<br />

Hertwich has achieved numerous<br />

improvements in reliability, computerised<br />

control and data collection,<br />

prevention of surface damage, and<br />

furnace control and productivity.<br />

• Increase of operational reliability<br />

with extensive, ongoing <strong>de</strong>velopment,<br />

many improvements were achieved<br />

in recent years. Plants are of sturdy<br />

construction, and of the highest quality.<br />

Plant availability is 99%.<br />

• Improved, innovative control<br />

software for operator- and maintenance-friendly<br />

production<br />

Fully integrated, automated production<br />

plants need an excellent control<br />

and monitoring system to ensure safe<br />

and reliable production and high<br />

availability.<br />

• Each individual movement of the<br />

plant is monitored for correct execution.<br />

• The refined fault diagnosis system<br />

efficiently gui<strong>de</strong>s operators and<br />

maintenance personnel to the causes<br />

of malfunctions, thereby supporting<br />

easy and quick corrective action.<br />

Malfunctions are recor<strong>de</strong>d and can be<br />

queried in statistical and trend form,<br />

providing a potent tool to permanently<br />

fix weak points.<br />

• Automatic restart programs ef-<br />

46<br />

ficiently and reliably bring the plant<br />

into a pre<strong>de</strong>fined condition, eliminating<br />

potential human error.<br />

• Log/Billet tracking ensures relevant<br />

data on each log or billet is<br />

tracked throughout the system.<br />

• Operator-friendly graphic display<br />

of billets within the system inclu<strong>de</strong>s<br />

all associated data like batch no, diameter,<br />

UT-inspection data.<br />

• Host connection of the plant<br />

Relevant production data, including<br />

homogenizing parameters, sawing<br />

and stacking dimensions, positioning<br />

of woo<strong>de</strong>n runners, strapping specifications<br />

etc. are downloa<strong>de</strong>d from the<br />

client’s production planning and or<strong>de</strong>r<br />

procession host system, directly to the<br />

plant control PC. Conversely the plant<br />

PC transmits data to the client’s host<br />

system including<br />

• measured data of homogenizing (for<br />

quality assurance)<br />

• quality inspection results, i.e. centre<br />

cracks, inclusions, surface <strong>de</strong>fects<br />

• produced quantities, weights, charge<br />

No., log No., time stamp etc.<br />

• Careful handling for improved<br />

billet surface<br />

A new generation of billet supports<br />

with special inlays (patented) has<br />

been <strong>de</strong>veloped for the furnace’s billet<br />

transport system. Thereby surface<br />

damage to billets can be largely eliminated.<br />

Removal of billets from the<br />

furnace is by a shuttle car, replacing<br />

earlier roller table lines.<br />

• Improved heat transfer<br />

More intense hot gas convection and<br />

modified air gui<strong>de</strong> channels have<br />

substantially increased heat transfer<br />

rate to billets without increasing the<br />

number of fans.<br />

HE always prefers to rely on a limited<br />

number a high-quality powerful<br />

ventilators rather than a “forest of<br />

ventilators” on top of a furnace. This<br />

concept directly results in an air over<br />

temperature (heat head) in the heating<br />

zone of max. 5 to 10° K above the<br />

set metal homogenizing temperature.<br />

• Improved direct measurement of<br />

billet temperature insi<strong>de</strong> the furnace<br />

and cooler<br />

Increased production of the furnaces<br />

creates a need for more measuring<br />

points, ever more accurate temperature<br />

control, and for refined data<br />

processing. Consequently direct temperature<br />

measurement is now done at<br />

more positions and with higher accurancy.<br />

The intelligent analyses – software<br />

with trend analyses – provi<strong>de</strong>s<br />

an appropriate tool for early recognition<br />

of possible changes to the heating<br />

regime. Implementation provi<strong>de</strong>s the<br />

means for even tighter quality control:<br />

Billet diameter and homogenizing<br />

temperature can be changed with<br />

higher safety and great flexibility.<br />

• Increased throughput of large<br />

furnaces<br />

The past 10 years has shown a trend<br />

to ever greater throughput of furnaces<br />

and plants. To date the highest<br />

throughput rate is achieved at Dubal<br />

IV plant, where one billet leaves the<br />

furnace every 82 sec. Throughput is<br />

22 t/hour or 1.050 billets per day.<br />

Conclusion<br />

HE continuous production plants for<br />

extrusion billet have been steadily improved<br />

and are therefore fully <strong>de</strong>veloped<br />

plants: HE draws from a wealth<br />

of experience, with 80 such plants<br />

built to date, so as to provi<strong>de</strong> tailor<br />

ma<strong>de</strong> solutions in terms of functionality<br />

and available space.<br />

All HE plants are <strong>de</strong>signed and<br />

built exclusively upon proprietary<br />

know-how by HE itself, including ancillary<br />

equipment like UT-inspection,<br />

strapping, and swarf briquetting.<br />

20 highly qualified engineers are<br />

available to <strong>de</strong>velop control software<br />

and data management for client’s host<br />

systems. Our customers can be sure<br />

of busing a fully <strong>de</strong>veloped, top-quality<br />

plant, which ensures reliable production<br />

throughout an exceptionally<br />

long service life. With HE building and<br />

supplying all components of a plant,<br />

comprehensive after sales and spare<br />

part support is offered.<br />

Author<br />

Dipl.-Ing. Franz Nie<strong>de</strong>rmair (1952) is since<br />

1989 with Hertwich Engineering (HE) in<br />

R&D and marketing. Since 1994 he is Managing<br />

Director of HE.<br />

ALUMINIUM · 1-2/2007


���<br />

����������<br />

����������<br />

Please be our guest<br />

and discover the benefi ts of the<br />

<strong>Alu</strong>minium ePaper yourself in a<br />

free three-month trial:<br />

�������������������������������������<br />

�������������������<br />

� ���������������������������<br />

�����������������<br />

� ������������������<br />

�������������������������<br />

� �������������������������������


ALUMINIUM SMELTING INDUSTRY<br />

De Nora inert metallic ano<strong>de</strong>: further <strong>de</strong>velopments<br />

V. <strong>de</strong> Nora, T. Nguyen, R. von Kaenel, J. Antille, and L. Klinger, Sierre<br />

A stable inert metallic ano<strong>de</strong> offers<br />

many advantages [1,2] and<br />

allows great freedom in choice<br />

of shape. However, an oxygen<br />

evolving ano<strong>de</strong> (OEA) may need<br />

more electrical energy if used in<br />

a conventional way. To minimise<br />

the specific energy consumption,<br />

semi-vertical electro<strong>de</strong>s were<br />

studied and tested on a laboratory<br />

scale. A semi-vertical configuration<br />

helps to maintain the cell’s<br />

thermal equilibrium even if the interpolar<br />

distance is less than 3 cm.<br />

This advantage compensates for<br />

the thermodynamic penalty of the<br />

oxygen evolving ano<strong>de</strong>, and could<br />

double the cell’s productivity. This<br />

paper establishes the thermo-electric<br />

conditions of the cell having<br />

a semi-vertical configuration of<br />

the oxygen evolving ano<strong>de</strong>, and<br />

presents the experimental results<br />

of the semi-vertical electro<strong>de</strong> configuration<br />

in a 100 A laboratory<br />

cell.<br />

For several years Moltech studied and<br />

<strong>de</strong>veloped an OEA for the aluminium<br />

reduction cell; some examples of laboratory<br />

cells of <strong>de</strong> Nora Inert Metallic<br />

Ano<strong>de</strong>s are shown in Fig. 1. The retrofitting<br />

of the <strong>de</strong> Nora inert metallic<br />

ano<strong>de</strong> in commercial cells has been<br />

<strong>de</strong>monstrated in a pilot cell of 25 kA<br />

[1] using larger ano<strong>de</strong>s (Fig. 2). Despite<br />

the low oxygen over-potential of<br />

the cobalt oxi<strong>de</strong> based active coating,<br />

the OEA still presents a penalty of 650<br />

mV [2]. This penalty must be compensated<br />

by increasing the ano<strong>de</strong> current<br />

<strong>de</strong>nsity (horizontal configuration) or<br />

by increasing the ano<strong>de</strong> surfaces with<br />

a semi-vertical configuration.<br />

De Nora inert metallic ano<strong>de</strong><br />

The <strong>de</strong> Nora inert metallic ano<strong>de</strong><br />

consists of a metallic substrate ma<strong>de</strong><br />

of cast Ni-Fe-Cu alloy; the external<br />

surfaces of the ano<strong>de</strong> are protected<br />

by an active coating of Co x Ni y O, with<br />

0.65 < x < 0.85 and 0.15 < y < 0.35.<br />

Table 1 summarises the ano<strong>de</strong> char-<br />

Fig. 2: Pilot <strong>de</strong> Nora inert metallic<br />

ano<strong>de</strong>s used to operate between<br />

3500 to 4500 A per ano<strong>de</strong>.<br />

Fig. 1: <strong>de</strong> Nora inert metallic ano<strong>de</strong>s<br />

used to operate between<br />

100 A to 300 A per ano<strong>de</strong> in laboratory<br />

cells<br />

Table 1: Characteristics of the <strong>de</strong> Nora inert metallic ano<strong>de</strong><br />

Metal substrate resistivity (�.m) 3.10 -7<br />

Oxi<strong>de</strong> coating resistivity (�.m) 3.10 -2<br />

Oxygen activation over-potential (V) 0.10<br />

Experimental oxidation rate of metal substrate (m/year) 1.8 10 -3<br />

Linear dimension change (m/year) - 2.0 10 -3<br />

Expected life time (years) 1 - 1.5<br />

48 ALUMINIUM · 1-2/2007


<strong>SPECIAL</strong><br />

acteristics and performance tests in<br />

horizontal configuration, <strong>de</strong>scribed<br />

previously [2].<br />

The ano<strong>de</strong> metallic structure is fabricated<br />

by a sand casting technique,<br />

which can be adapted to every size<br />

and form of the ano<strong>de</strong>. This advantage<br />

is valuable for adapting to nonhorizontal<br />

configurations. In fact, the<br />

shapes of the ano<strong>de</strong> and active runner<br />

need to respect the:<br />

• current distribution<br />

• gas escape direction<br />

• hydrodynamic effects of the<br />

gas-liquid energy transfer assuring<br />

the bath circulation.<br />

Non-horizontal electro<strong>de</strong><br />

configuration<br />

Test <strong>de</strong>scription<br />

Several configurations of the nonhorizontal<br />

electro<strong>de</strong> assembly were<br />

<strong>de</strong>signed and tested in 100 A laboratory<br />

cells. The selected electro<strong>de</strong> materials<br />

were the following:<br />

• catho<strong>de</strong>: semi-graphitised BN carbon<br />

substrate, totally covered by 1.2<br />

mm of “Tinor 2000” coating. The coating<br />

was pre-aluminised by 3 layers of<br />

aluminium slurry in basic colloid as<br />

shown in Fig. 3.<br />

• ano<strong>de</strong>: Ni-Fe-Cu alloy substrate<br />

ma<strong>de</strong> by sand casting, and totally<br />

covered by 250 �m of Co-Ni electro<strong>de</strong>position.<br />

The oxi<strong>de</strong> active coating<br />

was obtained by pre-oxidation in<br />

air at 950 °C. The coated ano<strong>de</strong> was<br />

cooled down to room temperature before<br />

use.<br />

The 100 A laboratory cell is externally<br />

heated by an electrical furnace.<br />

A graphite crucible having an internal<br />

Fig. 3: Semi-vertical catho<strong>de</strong> before and after aluminisation<br />

ALUMINIUM SMELTING INDUSTRY<br />

square section of 180 x 180 mm and<br />

300 mm height is used as the electrolysis<br />

cell. The graphite crucible is<br />

protected by an Inconel 600 pot, with<br />

a cast alumina sleeve on the top.<br />

Depending on the operational<br />

mo<strong>de</strong>, the crucible can be used as the<br />

catho<strong>de</strong> current fee<strong>de</strong>r through the<br />

electrical connection by the Inconel<br />

pot. The vertical si<strong>de</strong> walls of the<br />

crucible are protected and insulated<br />

electrically by four alumina sheets of<br />

15 mm thickness. The cell set-up is<br />

placed in an electrical furnace, which<br />

controls and maintains constant the<br />

operating temperature.<br />

The electrolysis tests are performed<br />

in a bath of 11% AlF 3 excess<br />

– 4% CaF 2 – 7% KF – 9% Al 2 O 3 (saturation),<br />

at 930 +/- 5 °C. The catho<strong>de</strong><br />

and ano<strong>de</strong> current <strong>de</strong>nsities are i<strong>de</strong>ntical<br />

and maintained constant at 1<br />

A/cm 2 .<br />

Vertical assembly with<br />

hanging catho<strong>de</strong><br />

In the vertical configuration the inclination<br />

of the electro<strong>de</strong>s is 0°, the<br />

assembly is composed of one central<br />

catho<strong>de</strong> and two parallel ano<strong>de</strong>s<br />

as illustrated in Fig. 4. The catho<strong>de</strong><br />

electrical connection is through an<br />

external stem ma<strong>de</strong> of steel core inserted<br />

insi<strong>de</strong> a copper tube of 2 mm<br />

wall thickness. Two similar stems are<br />

also used for the two ano<strong>de</strong>s; the three<br />

horizontal active runners of the ano<strong>de</strong><br />

are inclined with a slope of 10° to the<br />

vertical, so allowing the gas to escape<br />

along the ano<strong>de</strong> back. The ano<strong>de</strong>catho<strong>de</strong><br />

distance is fixed at 2 cm.<br />

The advantages of the hanging<br />

catho<strong>de</strong> assembly are:<br />

• compact arrangement of the electro<strong>de</strong><br />

assembly; the total active surfaces<br />

can be increased by a factor of 2<br />

compared to the horizontal surface<br />

• movable catho<strong>de</strong>s which can be<br />

changed at the end of the coating lifetime<br />

• no vertical polarisation interference<br />

with the metal pool stored on the cell<br />

bottom.<br />

Experimental results<br />

The cell operates at a very stable voltage<br />

of 4.0 ± 0.1 volts; the wettability<br />

and the draining operation of the<br />

catho<strong>de</strong> can be observed by the saw<br />

tooth profile of the cell voltage, which<br />

corresponds to the formation and <strong>de</strong>tachment<br />

of the aluminium drop at<br />

the catho<strong>de</strong> bottom.<br />

After 500 hours (more than 20 days)<br />

the test had to be shut down because<br />

Fig. 4: Vertical assembly with Tinor coated<br />

hanging catho<strong>de</strong><br />

of <strong>de</strong>terioration of the alumina si<strong>de</strong><br />

wall protection, and because of corrosion<br />

of the catho<strong>de</strong> stem by liquid<br />

aluminium. The catho<strong>de</strong> and ano<strong>de</strong>s<br />

were removed for examination:<br />

• The ano<strong>de</strong>s were slightly corro<strong>de</strong>d<br />

at the back and at the lower runner.<br />

This local corrosion is due to chemical<br />

interaction with carbon dust (from<br />

the crucible) and with the metal pool<br />

stored on the cell bottom.<br />

The catho<strong>de</strong> remained intact, and<br />

totally covered by a layer of aluminium<br />

of 2 to 3 mm.<br />

Discussion<br />

As expected, the fundamental behaviour<br />

of the <strong>de</strong> Nora inert metallic ano<strong>de</strong><br />

is not influenced by the vertical<br />

position. However the observations<br />

during the test make it possible to<br />

point out the following aspects of the �<br />

49 ALUMINIUM · 1-2/2007<br />

ALUMINIUM · 1-2/2007 49<br />

All photos: Kannak


ALUMINIUM SMELTING INDUSTRY<br />

vertical configuration:<br />

• The initial current efficiency of<br />

75% <strong>de</strong>creases rapidly, and stabilises<br />

at about 40% after 24 hours.<br />

• The oxygen separation, in escaping<br />

along the ano<strong>de</strong> back, is not optimal<br />

in the vertical position, namely with<br />

an ACD as low as 2 cm. The re-oxidation<br />

of the metal by oxygen seems to<br />

be one of the factors <strong>de</strong>creasing the<br />

current efficiency.<br />

• The aluminium pool stored on the<br />

cell bottom is subjected to the positive<br />

electrical field of the ano<strong>de</strong>s (potential<br />

of + 0.3 volt versus the catho<strong>de</strong>);<br />

an electrochemical dissolution of the<br />

metal can occur probably further <strong>de</strong>creases<br />

the current efficiency.<br />

Semi-vertical electro<strong>de</strong><br />

configuration<br />

To improve the gas separation, a<br />

semi-vertical electro<strong>de</strong> assembly<br />

was <strong>de</strong>signed and tested. The active<br />

surfaces of the catho<strong>de</strong> and the ano<strong>de</strong><br />

are inclined with a slope of 40°.<br />

The catho<strong>de</strong> is one semi-graphitised<br />

block having a<strong>de</strong>quate active surface<br />

geometry; the catho<strong>de</strong> is glued on the<br />

graphite crucible bottom and totally<br />

covered with 1.2 mm of Tinor 2000<br />

coating; the coating is pre-aluminised<br />

by aluminium slurry. The catho<strong>de</strong><br />

electrical connection is ma<strong>de</strong> via the<br />

crucible and an aluminium pool of<br />

about 4 to 6 cm on the bottom. An<br />

inclined ano<strong>de</strong> presents three horizontal<br />

runners with a flat active face<br />

parallel to the catho<strong>de</strong> surface; to<br />

minimise the vertical polarisation the<br />

lower runner is kept at least 4 cm from<br />

the metal pool on the crucible bottom.<br />

The catho<strong>de</strong>-ano<strong>de</strong> distance is fixed<br />

at 2 cm (see Fig. 5).<br />

The advantages of the semi-vertical<br />

configuration are:<br />

• better gas separation minimises the<br />

metal re-oxidation by oxygen<br />

• no external stem nee<strong>de</strong>d for the<br />

electrical connection of the catho<strong>de</strong><br />

• cathodic protection of the metal<br />

pool stored on the crucible bottom<br />

suppresses its electrochemical dissolution.<br />

However, this assembly is less<br />

compact than in the previous one;<br />

the maximum surface increase factor<br />

is about 1.5. The catho<strong>de</strong> is not mov-<br />

able, thus it cannot be changed during<br />

operation.<br />

Experimental results<br />

The cell operates at a very stable voltage<br />

of 3.8 ± 0.1 volts; in comparison to<br />

the previous case the saving of 0.2 volt<br />

should be due to the lower ohmic drop<br />

of the catho<strong>de</strong> body and connection.<br />

Fig. 5: Semi-vertical catho<strong>de</strong>-ano<strong>de</strong> assembly<br />

The visual observations during operation<br />

show that the gas separation is<br />

greatly improved by the inclination of<br />

the ano<strong>de</strong>; and because the metal pool<br />

is protected by the cathodic polarisation,<br />

the current efficiency stabilises<br />

at about 70 to 75%. At a minimum<br />

distance of 4 cm between the lower<br />

runner of the ano<strong>de</strong> and the metal<br />

pool level, the vertical polarisation is<br />

less than 10%, estimated by measuring<br />

the variation of the cell voltage in<br />

raising the ano<strong>de</strong> position. After 500<br />

hours of operation the ano<strong>de</strong> is intact<br />

(Fig. 6), and the catho<strong>de</strong> active surface<br />

remains clean, without any sludge <strong>de</strong>posit<br />

or dimensional change.<br />

Discussion<br />

The gas separation is a major parameter<br />

in current efficiency; as the<br />

better results with the semi-vertical<br />

electro<strong>de</strong> assembly clearly <strong>de</strong>monstrate.<br />

The angle of inclination can be<br />

optimised in taking into account the<br />

gas hydrodynamic, the compactness<br />

of the assembly, and the runner form<br />

for the current distribution.<br />

Thanks to the wettability of Tinor<br />

coating, a good catho<strong>de</strong> electrical<br />

feeding through the liquid metal<br />

pool should induce only a very mar-<br />

ginal ohmic resistance. The concept<br />

of an “immersed catho<strong>de</strong>” must be<br />

<strong>de</strong>veloped so that the catho<strong>de</strong> can<br />

be removed at the end of the Tinor<br />

coating life-time. Fig. 6 shows an inclined<br />

metallic ano<strong>de</strong> after 500 hours<br />

of operation.<br />

ACD in semi-vertical<br />

configuration<br />

A numerical study of the semi-vertical<br />

configuration has been ma<strong>de</strong> in or<strong>de</strong>r<br />

to investigate the current <strong>de</strong>nsity distribution<br />

and the impact on the cur-<br />

Fig. 6: Inclined ano<strong>de</strong> after 500 hours of<br />

operation<br />

rent <strong>de</strong>nsity of a slight mis-alignment<br />

of the electro<strong>de</strong>s.<br />

The first experimental setups<br />

showed oscillations in the voltage.<br />

Although the cause was eventually<br />

shown to be related to an insufficient<br />

bath level (causing too large a thermal<br />

volatility), it was first thought that the<br />

cause might be a difference in the<br />

current carried by each of the three<br />

horizontal runners. In<strong>de</strong>ed, when the<br />

mean current <strong>de</strong>nsity is above 1.3 A/<br />

cm 2 , this leads to voltage oscillations.<br />

The theoretical mo<strong>de</strong>l, a plain electrostatic<br />

computation of the electrical<br />

potential and current <strong>de</strong>nsity, showed<br />

that in the nominal configuration,<br />

there is a difference in the amount of<br />

current carried by each runner, but<br />

the difference is too low to explain<br />

the oscillations. There is, however, an<br />

interesting point to be ma<strong>de</strong> by electrostatic<br />

mo<strong>de</strong>lling, as follows.<br />

Fig. 7 is a typical result for the semi-vertical<br />

configuration. Along with<br />

the ano<strong>de</strong> (top) and catho<strong>de</strong> (bot- �<br />

50 ALUMINIUM · 1-2/2007


�������������������������������<br />

����������������������������������������<br />

���������������������<br />

�����������������������������������<br />

To power your operation while lowering<br />

consumption we provi<strong>de</strong> you with stable<br />

highly effi cient electrical energy supply,<br />

distribution and conditioning. To in-<br />

crease employee productivity and engineering effi ciency, we offer you powerful control<br />

systems. To improve dynamic performance and reduce power losses, we provi<strong>de</strong> high-tech<br />

drive systems. To increase furnace productivity and save energy, utilize our most effective<br />

electromagnetic stirrers. To ensure environmental compliance, reduce product<br />

standard <strong>de</strong>viation and increase production, apply our expert and optimization<br />

solutions. Maximize the return on project investment through our vast know ledge,<br />

know-how and extensive experience. Using quality ABB products helps you achieve<br />

industry leading productivity. Visit us at www.abb.com/aluminium


ALUMINIUM SMELTING INDUSTRY<br />

tom), a surface of constant potential<br />

is shown (middle). It explains why<br />

more current is carried by the lower<br />

runner. Because the current <strong>de</strong>nsity<br />

is proportional to the gradient of the<br />

electrical potential, it follows that<br />

regions where the isosurface of the<br />

potential are curved, a large current<br />

<strong>de</strong>nsity results.<br />

Two main conclusions can be<br />

drawn from such electrostatic mo<strong>de</strong>lling:<br />

• In or<strong>de</strong>r to obtain a more homogeneous<br />

distribution of the current<br />

<strong>de</strong>nsity, one should purposely set the<br />

ano<strong>de</strong> in a non-parallel position relative<br />

to the catho<strong>de</strong>, and specifically by<br />

having a slightly lower ACD un<strong>de</strong>r the<br />

top runner.<br />

• In a future semi-vertical <strong>de</strong>sign<br />

gathering many ano<strong>de</strong>s, it will be<br />

necessary to perform electrostatic<br />

simulations of this kind to optimise<br />

the arrangement and setting of the<br />

electro<strong>de</strong>s, in or<strong>de</strong>r to smooth the<br />

current <strong>de</strong>nsity distribution as far as<br />

possible.<br />

Fig. 7: Semi-vertical electro<strong>de</strong>s setting, and<br />

an isosurface of the electrical potential.<br />

We recall that optimising the current<br />

<strong>de</strong>nsity distribution in the abovementioned<br />

sense is important for <strong>de</strong><br />

Nora inert metallic ano<strong>de</strong>s, because,<br />

on the one hand, they require higher<br />

current <strong>de</strong>nsities (thermal equilibrium,<br />

see below), while, on the other<br />

hand, a critical current <strong>de</strong>nsity exists,<br />

above which the ano<strong>de</strong> may be damaged.<br />

Thus, a good inert ano<strong>de</strong> <strong>de</strong>sign<br />

ensures an even, high current <strong>de</strong>nsity<br />

distribution. In fact an even current<br />

distribution is also very important in<br />

horizontal conventional industrial<br />

cells. If the ano<strong>de</strong> current <strong>de</strong>nsities<br />

are too different, large horizontal current<br />

take place in the liquid metal that<br />

may lead to metal pad wave oscillations.<br />

If the catho<strong>de</strong> current <strong>de</strong>nsity<br />

is too uneven, large local electro-erosion<br />

may take place, leading to short<br />

cell lifetime.<br />

Energy consi<strong>de</strong>rations<br />

As has been noted before [7], one of<br />

the problems to address to bring the<br />

oxygen-evolving ano<strong>de</strong> to industrialisation<br />

is the thermal balance of the<br />

cell. About 1 V of the total cell voltage<br />

is used differently in each technology:<br />

as heat for the classical Hall-Héroult<br />

cell, and to produce aluminium in the<br />

OEA cell. From the point of view of<br />

energy efficiency, this is very positive<br />

for cells implementing the <strong>de</strong> Nora<br />

inert metallic ano<strong>de</strong>, but the corresponding<br />

loss in heating is significant<br />

and means that a balanced thermal<br />

<strong>de</strong>sign is difficult to achieve.<br />

Let us consi<strong>de</strong>r the problem inversely:<br />

assume that we want to operate<br />

an oxygen-evolving ano<strong>de</strong> that<br />

has<br />

a. the same current efficiency<br />

b. the same specific energy<br />

c. and the same heat losses<br />

as a conventional cell; how do these<br />

conditions translate into operating<br />

parameters? The first condition<br />

should be relatively easy to meet,<br />

since Moltech could operate a 25<br />

kA OEA cell with 90% CE [1], while<br />

struggling against various operational<br />

difficulties that are to be expected in<br />

such novel tests. We thus assume that<br />

the current efficiency is the same for<br />

both technologies, �= 0.95.<br />

The second condition, when the<br />

first is met, consists in having the<br />

same cell voltage in both technologies.<br />

To work out the third condition,<br />

we recall that the heat generation loss<br />

Q is given by ([8], respectively with<br />

only � alumina and no Boudouard<br />

reaction):<br />

Q c = I c (U – 1.65 � – 0.48)<br />

Q m = I m (U – 3.11 �)<br />

Where the c subscript <strong>de</strong>signates<br />

carbon or conventional technology,<br />

m standing for metallic (ano<strong>de</strong>s). I is<br />

the current, U the cell voltage and ��<br />

the fractional current efficiency. The<br />

third condition, Q c = Q m , is in fact a<br />

condition on the current. For typical<br />

<strong>de</strong>signs, we get I m = 1.7 I c . Is it possible<br />

to meet both the voltage and current<br />

conditions?<br />

The electro<strong>de</strong> settings studied in<br />

this paper address the conditions<br />

above. Let us consi<strong>de</strong>r only the semivertical<br />

configuration, since it is more<br />

efficient. The cell voltage condition<br />

can be met by <strong>de</strong>creasing the ACD, to<br />

overcome the voltage penalty of the<br />

oxygen-evolving ano<strong>de</strong>. When taking<br />

both the reversible <strong>de</strong>composition<br />

voltage and the over-voltages of the<br />

various electro<strong>de</strong>s into account, it is<br />

commonly assumed to be about 0.6 V<br />

[1,2]. For typical electrolyte conductivities<br />

used in our tests, it amounts to<br />

a reduction in ACD of about 1 to 2 cm.<br />

Thus, operating a semi-vertical configuration<br />

at 2 cm ACD makes it possible<br />

to meet the voltage condition.<br />

Finally, to meet the condition on<br />

the current, for a similar overall cell<br />

size, the semi-vertical setting offers<br />

a two-fold gain: by using a <strong>de</strong> Nora<br />

inert metallic ano<strong>de</strong>, one can work at<br />

higher current <strong>de</strong>nsities (by a factor<br />

of 1.4), while using slanted <strong>de</strong> Nora<br />

ano<strong>de</strong>s permits an increase in the<br />

working area (thus the total current)<br />

by a factor of at least 1.5. Thus, expecting<br />

a total current I m = 2.1 I c appears<br />

realistic. The 1.4 factor is explained by<br />

the typical current <strong>de</strong>nsity in conventional<br />

technology (0.9 A/cm 2 ), compared<br />

to the maximal current <strong>de</strong>nsity<br />

for metallic ano<strong>de</strong>s (1.3 A/cm 2 ). The<br />

second factor is geometrical. For the<br />

setting presented above, the catho<strong>de</strong><br />

surface is 100 cm 2 , and only the flat<br />

surface of the runners is about 55<br />

cm 2 . However, while exact quantification<br />

is difficult, the active surface of<br />

the ano<strong>de</strong> is more than the flat area.<br />

For conventional <strong>de</strong>signs, a horizontal<br />

catho<strong>de</strong> occupying the same overall<br />

space has a surface of 50 cm 2 . Thus,<br />

a 1.5 geometric factor appears reasonable,<br />

and implies a more compact cell<br />

for the same productivity<br />

Conclusions<br />

The gains of energy and production of<br />

the aluminium reduction cell in using<br />

the semi-vertical electro<strong>de</strong> configura-<br />

52 ALUMINIUM · 1-2/2007


<strong>SPECIAL</strong><br />

tion are <strong>de</strong>monstrated by our preliminary<br />

simulation calculations:<br />

• The thermodynamic penalty of the<br />

oxygen evolving ano<strong>de</strong> is largely compensated<br />

by <strong>de</strong>creasing the ACD.<br />

• The cell thermal balance can be<br />

maintained by higher current thanks<br />

to a significant increase of the operating<br />

surface area.<br />

The preliminary tests in laboratory<br />

100 A cells have <strong>de</strong>monstrated that:<br />

• the <strong>de</strong> Nora inert metallic ano<strong>de</strong><br />

and the Tinor coated carbon catho<strong>de</strong><br />

can be used as dimensionally stable<br />

electro<strong>de</strong>s for the non-horizontal<br />

electro<strong>de</strong> configuration. However,<br />

the dimension stability of the carbon<br />

catho<strong>de</strong> was only proven for 500<br />

hours. This dimensional stability is<br />

still in question for longer duration.<br />

ALUMINIUM SMELTING INDUSTRY<br />

• the metallic inert ano<strong>de</strong> and the<br />

wettable Tinor coated catho<strong>de</strong> can<br />

operate at an ACD as low as 2 cm.<br />

• the gas separation is an important<br />

factor influencing the current efficiency,<br />

which can be optimised by<br />

appropriate ano<strong>de</strong> <strong>de</strong>sign.<br />

• the <strong>de</strong>sign freedom of metallic<br />

ano<strong>de</strong>s is unique, and constitutes an<br />

important advantage for the non-horizontal<br />

electro<strong>de</strong> configuration.<br />

References<br />

[1] J. Antille et al.: Light Metals 2006,<br />

pp. 391-396<br />

[2] T. Nguyen and V. <strong>de</strong>. Nora.:<br />

Light Metals 2006, pp. 385-390<br />

[3] V. <strong>de</strong> Nora: Electrochemical Soc.<br />

Interface - Winter 2002, pp 20-24.<br />

[4] J.N. Bruggeman et al: “Wettable<br />

ceramic based drained catho<strong>de</strong><br />

technology for aluminium reduction<br />

cells” – US DOE DE-FC07-97 / ID /<br />

13567 – Dec. 2002, pp 1-42<br />

[5] Huimin Lu et al.: Light Metals 2006,<br />

pp. 687-690<br />

[6] H.A. Oye et al.: Light Metals 1997,<br />

p. 279-286<br />

[7] V. <strong>de</strong> Nora: Proceedings 11th<br />

Intern. <strong>Alu</strong>minium Symposium;<br />

Trondheim – Bergen – Trondheim;<br />

Sept. 2001, pp 155-160<br />

[7] H. Kvan<strong>de</strong>: Light Metals 1999,<br />

pp. 369-376<br />

[8] W. Haupin and H. Kvan<strong>de</strong>:<br />

Light Metals 2000, pp. 379-384<br />

Authors<br />

Vittorio <strong>de</strong> Nora, Thin Nguyen and Rene<br />

von Kaenel are with Moltech Technology<br />

Center, while Jacques Antille and Laurent<br />

Klinger are with KANNAK S.A.<br />

<strong>Alu</strong>minium casting<br />

Boron nitri<strong>de</strong> plus bin<strong>de</strong>r – a synonym for<br />

higher productivity<br />

Chr. Klöpfer, Th. Jüngling, G. Heuts<br />

With its new generation of boron<br />

nitri<strong>de</strong>, ESK Ceramics GmbH &<br />

Co. KG in Kempten, Germany is<br />

providing the casting industry<br />

with tailored materials for laun<strong>de</strong>rs,<br />

ladles, dies and crucibles<br />

that offer unrivalled protection<br />

against aggressive molten aluminium.<br />

A critical factor in this<br />

advance in casting technology is<br />

a novel nanoscale bin<strong>de</strong>r that allows<br />

boron nitri<strong>de</strong> coatings to be<br />

produced that adhere strongly to<br />

different materials.<br />

Thanks to its low <strong>de</strong>nsity, aluminium<br />

has become established as a key material<br />

with an unparalleled breadth<br />

of applications. This light metal has<br />

applications extending from packaging,<br />

through automotive engineering,<br />

to aerospace. Furthermore, when alloyed<br />

with various metals, such as<br />

magnesium or silicon in extru<strong>de</strong>d profiles,<br />

its strength can rival that of steel.<br />

Obtained by an electrochemical process,<br />

the metal occurs in aluminium<br />

foundries and smelting works as a liquid<br />

at a temperature of around 700°C.<br />

Since this melt is very aggressive, the<br />

contacting surfaces must be protected.<br />

That is first to counteract wear of<br />

the tools and vessels and, second, to<br />

prevent the aluminium from being<br />

contaminated with dissolved foreign<br />

matter. That means specifically the<br />

laun<strong>de</strong>rs in casthouse applications as<br />

well as crucibles, ladles and dies used<br />

in foundries. The surfaces that come<br />

into contact with the molten aluminium<br />

must be coated to prevent corrosion.<br />

The quality of these surfaces<br />

not only <strong>de</strong>termines the lifetimes of<br />

the equipment and tools used, but also<br />

has a critical effect on the quality and<br />

mechanical and physical properties of<br />

the resulting castings.<br />

A typical example is the transport<br />

of molten aluminium in cast houses,<br />

which is usually performed in laun<strong>de</strong>rs<br />

with a refractory lining. Of course,<br />

such laun<strong>de</strong>rs have poor thermal conductivity,<br />

which prevents rapid cooling<br />

of the melt. However, a thin oxi<strong>de</strong><br />

skin rapidly forms on the surface of<br />

the hot aluminium. A release agent<br />

must be ad<strong>de</strong>d to prevent this skin<br />

sticking to the surface. Traditionally,<br />

bone ash is ad<strong>de</strong>d, which does in<strong>de</strong>ed<br />

have the required release properties<br />

but because of its poor adhesion must<br />

be repeatedly replenished, since it is<br />

“entrained” by the flowing molten<br />

aluminium.<br />

Boron nitri<strong>de</strong> versus bone ash<br />

Ceramic coatings offer an alternative<br />

to bone ash. These foundry coatings,<br />

which are applied as liquids and dry<br />

to form a solid film, should have high<br />

thermal and chemical stability and a<br />

similar thermal expansion to the coated<br />

surface in or<strong>de</strong>r to prevent the coating<br />

flaking off. A material that i<strong>de</strong>ally<br />

meets all these requirements is boron<br />

nitri<strong>de</strong> (BN). The graphite-like chemical<br />

structure of BN makes it an i<strong>de</strong>al<br />

release agent and lubricant. However,<br />

unlike graphite, which oxidizes at<br />

above 500°C in air, boron nitri<strong>de</strong> is �<br />

53 ALUMINIUM · 1-2/2007<br />

ALUMINIUM · 1-2/2007 53


ALUMINIUM SMELTING INDUSTRY<br />

Casting table for aluminum billet production coated with<br />

EKamold Cast-C prior to use<br />

Casting table for aluminum billet production coated with<br />

EKamold Cast-C after use<br />

SEM picture of a cross section of EKamold Cast-C Coating<br />

characterized by a high thermal stability<br />

that allows it to be processed<br />

up to over 900°C. That makes boron<br />

nitri<strong>de</strong> completely thermally stable in<br />

the temperature range used for lightmetal<br />

casting.<br />

A property that is particularly attractive<br />

for casting is the poor wettability<br />

of its surface by liquid aluminium<br />

and other molten metals. They<br />

do not stick to the smooth surface<br />

but roll off like water droplets from a<br />

lotus leaf. The wetting of ceramics by<br />

melts is usually <strong>de</strong>scribed by means of<br />

the wetting angle. The contact angle<br />

All photos: ESK<br />

of a melt droplet on the substrate is<br />

measured by forming a tangent. Large<br />

angles over 90° mean poor wetting,<br />

while small angles less than 90° indicate<br />

good wetting. At a temperature<br />

of 900°C, boron nitri<strong>de</strong> has a wetting<br />

angle of 160°, which corresponds to<br />

poor wetting.<br />

However, this welcome property<br />

also has a downsi<strong>de</strong>, since the poor<br />

wetting of the BN platelets also impairs<br />

their adhesion to the substrates<br />

to be coated, such as ceramic laun<strong>de</strong>rs,<br />

ladles, crucibles, dies or metal<br />

moulds. To improve adhesion, therefore,<br />

a refractory bin<strong>de</strong>r must be used.<br />

In the coatings, these bin<strong>de</strong>rs bond<br />

the BN particles together as well as<br />

to the substrate. In the past, phyllosilicates,<br />

monoaluminium phosphate<br />

and magnesium silicate have been the<br />

chief refractory bin<strong>de</strong>rs.<br />

High adhesion thanks to nanoparticles<br />

“The bin<strong>de</strong>rs that have been commercially<br />

available so far are not i<strong>de</strong>al for<br />

the casting industry,” says Christiane<br />

Klöpfer of the technical marketing<br />

<strong>de</strong>partment at ESK. A major disadvantage<br />

is that they are only suitable<br />

for applying thin coatings, since otherwise<br />

the rapid temperature cycles<br />

could cause them to flake off. “In<br />

looking for improved high-temperature<br />

bin<strong>de</strong>rs, we hit on sol-gel systems<br />

reinforced with nanoscale particles,”<br />

explains Klöpfer.<br />

The patented bin<strong>de</strong>r system, as a<br />

BN coating for the casting industry, is<br />

called EKamold Cast-C, and is a real<br />

innovation for high-temperature applications.<br />

The system <strong>de</strong>velops its effect<br />

in situ when heat treated during<br />

the first casting cycle, similar to twopack<br />

adhesives, and forms a film that<br />

is resistant to both heat and abrasion.<br />

Compared to conventional boron nitri<strong>de</strong>-based<br />

coatings, this product innovation<br />

offers unrivalled durability<br />

together with ease of application and<br />

extremely low requirements on the<br />

substrate.<br />

Coatings can be repaired<br />

There are also processing advantages<br />

to using boron nitri<strong>de</strong> (BN). For ex-<br />

ample, BN coatings can be applied<br />

by spraying, brushing or dipping.<br />

Although BN coatings <strong>de</strong>velop their<br />

protective effect at a few microns<br />

thickness, the new BN foundry coatings<br />

from ESK can be applied in<br />

thicknesses up to 1 mm. That means<br />

the coating can be readily applied by<br />

untrained staff. The new coating can<br />

be used wherever liquid aluminium is<br />

processed. The range of applications<br />

extends from compact aluminium<br />

ingots to aluminium car wheels and<br />

engine blocks.<br />

Furthermore, the new BN coatings<br />

<strong>de</strong>veloped by ESK, for the first time<br />

ever, allow damaged coatings and<br />

cracks in the substrate to be repaired.<br />

In the traditional process, if the coatings<br />

were damaged, they had to be<br />

painstakingly removed and then reapplied.<br />

With the new systems, damaged<br />

areas of the coating can be repaired<br />

– e.g. with a brush. Moreover, the<br />

coatings can seal cracks and chipping<br />

in the substrate by infiltrating them.<br />

No sedimentation thanks to<br />

„thixotropy“<br />

“Traditional” BN coatings generally<br />

had the problem of sedimentation of<br />

the BN solid particles, and had to be<br />

very carefully stirred to prevent settling<br />

out, which would change the<br />

properties. The new ESK coating<br />

offers a further advantage, since, although<br />

it becomes gel-like after standing<br />

for a long time, it can be easily liquefied<br />

again by stirring or shaking – a<br />

property known as “thixotropy.” “All<br />

these completely new possibilities<br />

offer major advantages to users,” enthuses<br />

Thomas Jüngling, Chief Technology<br />

Officer of the California-based<br />

Ceradyne Inc. Cast houses and foundries<br />

are harsh environments, where<br />

users must be able to <strong>de</strong>pend on the<br />

materials used operating flawlessly.<br />

“The casting industry is very interested<br />

in the new boron nitri<strong>de</strong> coatings,”<br />

observes Jüngling. The new coatings<br />

have already been subjected to practical<br />

tests in aluminium foundries.<br />

Boron nitri<strong>de</strong> coatings last longer …<br />

Guido Heuts of the Dutch company<br />

Ceranex, a supplier of heat-resistant<br />

54 ALUMINIUM · 1-2/2007


<strong>SPECIAL</strong><br />

<strong>SPECIAL</strong><br />

<strong>SPECIAL</strong><br />

<strong>SPECIAL</strong><br />

Boron nitri<strong>de</strong>, a synthetic substance with the<br />

chemical formula BN, is a sort of “inorganic<br />

carbon”. That means BN’s chemical and<br />

physical properties are very similar to those<br />

of graphite, since both compounds crystallize<br />

with the same layer lattice and almost<br />

i<strong>de</strong>ntical dimensions. Two adjacent carbon<br />

atoms of the graphite lattice can therefore<br />

be substituted with a nitrogen and a boron<br />

atom, since two carbon atoms together<br />

have exactly the same number of electrons<br />

as a boron-nitrogen pair. Accordingly, graphite<br />

and BN are isosteric, which, as with other<br />

“isosteric pairs”, such as nitrogen and carbon<br />

monoxi<strong>de</strong> or nitrous oxi<strong>de</strong> and carbon<br />

dioxi<strong>de</strong>, is manifested as a striking physical<br />

and chemically resistant materials for<br />

manufacturing industry, emphasizes<br />

the high abrasion resistance of the<br />

new BN coatings. Heuts is responsible<br />

for the aluminium industry division<br />

in his company and un<strong>de</strong>rstands<br />

the particular challenges faced by this<br />

sector. “Traditional coatings were always<br />

entrained by the flowing molten<br />

aluminium. But the new product adheres<br />

much better and does not have<br />

to be reapplied as often,” he explains.<br />

The coatings have much longer lifetimes<br />

if the liquid aluminium does not<br />

have a chance to attack the substrate.<br />

This could greatly reduce downtimes.<br />

The bottom line for aluminium processors<br />

is significant boost in efficiency<br />

as a result of time savings and higher<br />

productivity. The improvement is<br />

documented by the results of the quality<br />

control. “With the BN coatings we<br />

tested, in contrast to traditional materials<br />

such as bone ash, the castings<br />

did not contain any residues,” Heuts<br />

assures.<br />

… and they are flexible<br />

Besi<strong>de</strong>s their high mechanical stability,<br />

the new BN coatings are also characterized<br />

by high flexibility. To reconcile<br />

apparently contradictory material<br />

properties, a third component<br />

was incorporated into BN coatings<br />

besi<strong>de</strong>s the bin<strong>de</strong>r. This innovation,<br />

which has also been patented, is an<br />

additive that imparts hitherto unach-<br />

ALUMINIUM SMELTING INDUSTRY<br />

Why Boron nitri<strong>de</strong> has similar properties to graphite<br />

and chemical similarity. For example, at temperatures<br />

of around 1600°C and pressures<br />

of 50,000 bar, graphite-like α-BN can, in a<br />

similar way to carbon, be transformed into 2<br />

diamond-like cubic high-pressure allotropes<br />

with similar hardness to diamond. However,<br />

the striking difference between graphite and<br />

BN is that the latter is white and does not<br />

conduct electricity. That is because BN, unlike<br />

graphite, does not possess any mobile πelectrons,<br />

since, because the member atoms<br />

of the lattice are dissimilar, the “excess” electrons<br />

remain fixed to the nitrogen as “lone”<br />

electron pairs. However, more important for<br />

the application in the aluminium industry is<br />

the resistance against oxidation up to 900°C<br />

ievable elasticity to the coatings. “The<br />

coatings have a levelling effect since,<br />

within certain limits, they adapt to<br />

their environment and can expand<br />

and shrink without suffering damage,”<br />

explains Christiane Klöpfer.<br />

The flexibility also applies to the<br />

adhesion of the bin<strong>de</strong>r to the substrate<br />

to be coated, which may be smooth or<br />

porous. “We were even able to make<br />

boron nitri<strong>de</strong> adhere to graphite,”<br />

Klöpfer says. This additional property<br />

is important for graphite parts that<br />

are used in aluminium cast houses<br />

and foundries. They inclu<strong>de</strong> rotors<br />

for melt <strong>de</strong>gassing or boron nitri<strong>de</strong>coated<br />

graphite thermocouple tubes.<br />

Other additives are un<strong>de</strong>r <strong>de</strong>velopment.<br />

“Boron nitri<strong>de</strong> has high thermal<br />

conductivity. That is counterproduc-<br />

compared to graphite which will start to oxidize<br />

already at 500°C. In its most wi<strong>de</strong>spread<br />

form, as a graphite-like hexagonal boron<br />

nitri<strong>de</strong>, the snow-white material possesses<br />

exceptional thermal and chemical resistance.<br />

At the same time, the highly thermally<br />

conductive material but electrically insulating<br />

boron nitri<strong>de</strong> also has good lubricity. This<br />

unique combination opens up a wi<strong>de</strong> field<br />

of applications in which the material often<br />

provi<strong>de</strong>s the critical enhancement to highend<br />

products. Some would not be possible<br />

at all without boron nitri<strong>de</strong>. In this manner,<br />

the range of applications extends from electrical<br />

insulation in high-temperature furnaces<br />

to applications in the cosmetics industry.<br />

tive for aluminium production,” continues<br />

Klöpfer. For example, liquid<br />

aluminium cools by about 1°C per<br />

second on average when conveyed<br />

with ladles. This heat loss has to be<br />

compensated by auxiliary heating.<br />

ESK is currently working on BN coatings<br />

precisely tailored to the needs<br />

of the aluminium-processing industry.<br />

The aim of this work is to find a<br />

further additive that will allow us to<br />

market a boron nitri<strong>de</strong> with reduced<br />

thermal conductivity.<br />

Authors<br />

Christiane Klöpfer, ESK Ceramics GmbH<br />

& Co. KG, Germany.<br />

Dr. Thomas Jüngling, Ceradyne, Inc., USA.<br />

Guido Heuts, Ceranex B.V., Netherlands.<br />

Platzhalter für die<br />

redigitalisierte Anzeige Pa<strong>de</strong>lttherm<br />

90x63 mm, sw, Motiv: Industrieofen<br />

Original-Datei:<br />

Pa<strong>de</strong>ltherm_Metall_11_03.EPS<br />

55 ALUMINIUM · 1-2/2007<br />

ALUMINIUM · 1-2/2007 55


ALUMINIUM SMELTING INDUSTRY<br />

Thyristor rectifiers for aluminium plants<br />

with advanced free-wheeling control<br />

S. Tambe, W. M. Lauwrens, M. Rechsteiner, Turgi<br />

Potline current <strong>de</strong>mand for aluminium<br />

plants is constantly increasing.<br />

Many potlines with 350<br />

kA are in operation, and the trend<br />

is towards 500 kA in the near future.<br />

Such requirements call for<br />

many rectifier units in parallel.<br />

Due to physical limitations on the<br />

size of a rectifier, as well as to redundancy<br />

requirements for safety,<br />

using many units in parallel poses<br />

a great problem of how to handle<br />

current stoppage when all units<br />

are tripped simultaneously. Due<br />

to staggered switching-off times of<br />

the rectifiers, it is likely that the<br />

last unit will briefly carry the full<br />

potline current. In a dio<strong>de</strong> plant<br />

this phenomenon can be handled<br />

easily, as all dio<strong>de</strong>s go into a natural<br />

free-wheeling mo<strong>de</strong>. Thyristor<br />

plants by contrast, require implementing<br />

a special technique to<br />

prevent <strong>de</strong>structive overloading of<br />

the last switched unit. ABB has <strong>de</strong>veloped<br />

an advanced technique to<br />

handle such phenomena without<br />

over-dimensioning any unit.<br />

Continuity and reliability of DC power<br />

supply are the basic requirements<br />

for aluminium smelters, together<br />

with safety. In the past, dio<strong>de</strong> rectifiers<br />

were the natural choice due to<br />

their simplicity. However, tap-changer<br />

maintenance was always an issue<br />

for maintenance people, and control<br />

speed is another drawback.<br />

With the availability of reliable thyristors<br />

and digital firing circuits, users<br />

also started selecting thyristor rectifiers<br />

for smelting aluminium. These<br />

rectifiers need less maintenance and<br />

have higher efficiency. Though normal<br />

operation with thyristor rectifiers<br />

was simple to handle, potline trip was<br />

a serious concern. This is due to the<br />

fact that the last fired thyristor pair<br />

will take the load of the full potline<br />

current. This led to overloading of the<br />

last switched rectifier. In case of dio<strong>de</strong><br />

plants, the complete bridge acts like a<br />

All illustrations: ABB<br />

free-wheeling circuit. But with thyristor<br />

rectifiers, the last pair of conducting<br />

thyristors suffers overload. A special<br />

technique was necessary to avoid<br />

overload damage.<br />

This paper discusses the new technique<br />

implemented by ABB to avoid<br />

overloading of any pair of conducting<br />

thyristors. The advantage of this<br />

technique is that algorithms are implemented<br />

for each unit, and hence<br />

the <strong>de</strong>sign of all rectifier units remains<br />

i<strong>de</strong>ntical in power and controls circuits.<br />

This paper also <strong>de</strong>scribes how<br />

overloads relate to potline circuit<br />

behaviour and process, and to other<br />

sources of overload.<br />

This paper covers the following areas:<br />

process characteristics, minimising<br />

the risk with advanced control,<br />

results and conclusion.<br />

Process characteristics<br />

A typical equivalent circuit diagram<br />

of an aluminium smelter application<br />

can be represented as follows:<br />

The rectifiers connected in parallel<br />

Fig. 1: Equivalent circuit diagram of an aluminium potline<br />

with parallel feeding thyristor rectifier plant<br />

<strong>de</strong>liver the required total process current.<br />

This current is called as potline<br />

current (Idc-PL).<br />

The consi<strong>de</strong>rable busbar length of<br />

more than 1000 meters, and cross<br />

section of 200…300,000 mm 2 , results<br />

in a process time constant � (= L/R)<br />

of about � 250 ms, where L is busbar<br />

inductance and R busbar resistance.<br />

This means the potline current will<br />

require at least a second (4 x � = 1000<br />

ms) to <strong>de</strong>crease from its rated value to<br />

practically zero.<br />

Rectifier behaviour un<strong>de</strong>r tripping<br />

mo<strong>de</strong>s:<br />

Normal mo<strong>de</strong>: Unlike dio<strong>de</strong> rectifier<br />

units, thyristor rectifier units have a<br />

faster response time and are fully controllable.<br />

But it is a fact that a thyristor<br />

rectifier cannot cutoff the current<br />

once it has been triggered. In rectifier<br />

operation thyristors are line commutated.<br />

This inherent characteristic of<br />

each individual unit, together with<br />

the phase shift between various other<br />

parallel feeding units, corresponds to<br />

the asynchronous behaviour of each<br />

rectifier unit, functioning in turn.<br />

During operation each unit can be<br />

switched off manually or automatically<br />

tripped by abnormal operating<br />

conditions, such as overtemperatures,<br />

loss of cooling medium, etc.<br />

As long as only one unit goes<br />

out of service, this does not<br />

pose a serious threat to continuous<br />

potline operation.<br />

Potline trip mo<strong>de</strong>: However,<br />

there are certain conditions<br />

un<strong>de</strong>r which it becomes<br />

necessary to trip all units<br />

simultaneously. This is<br />

known as “potline trip”. On<br />

initiation of a potline trip<br />

command, the rectifiers cannot<br />

all switch their current<br />

to zero at exactly the same<br />

time. Another reason why<br />

the potline current cannot<br />

be interrupted instantly is<br />

because of the large circuit reactance<br />

associated with the energy stored in<br />

its large magnetic field. Assuming the<br />

current remains constant during this<br />

brief switching period, the last unit to<br />

56 ALUMINIUM · 1-2/2007


<strong>SPECIAL</strong><br />

switch off has to carry the total potline<br />

current. In this un<strong>de</strong>sirable situation,<br />

this unit consists of only two legs, one<br />

positive group and one negative group<br />

of one rectifier.<br />

To prevent these thyristors from<br />

overload requires forcing conduction<br />

in all thyristors from positive and negative<br />

groups of all the rectifier units.<br />

This conduction mo<strong>de</strong>, when the energy<br />

driving current flow is circuit inductance,<br />

is called free-wheeling.<br />

Minimising the risk with<br />

advanced control<br />

A potline trip as <strong>de</strong>scribed above will<br />

lead to lead thyristor failures, if no<br />

remedial measures are taken. Excessive<br />

current may cause major damage<br />

to the rectifier as a whole. ABB has<br />

<strong>de</strong>veloped special control and firing<br />

techniques to handle such trips. Some<br />

of the abnormal and high risk conditions<br />

for rectifiers are:<br />

• Hardware trip of all units, such as<br />

an emergency stop<br />

ALUMINIUM SMELTING INDUSTRY<br />

• Network un<strong>de</strong>r-voltages leading<br />

to trips<br />

• Loss of total network<br />

• Process trip.<br />

In or<strong>de</strong>r to prevent the damage to certain<br />

thyristors as mentioned above, it<br />

is essential to share the free-wheeling<br />

current among all units and all semiconductors.<br />

The duration of this, freewheeling<br />

mo<strong>de</strong> could be of the or<strong>de</strong>r<br />

of one second to evacuate reactance<br />

energy. In a 50 Hz, six pulse system,<br />

the firing angle is updated every 3.3<br />

milliseconds. The advance control<br />

Fig. 2: Mo<strong>de</strong> 1 Fig. 3: Mo<strong>de</strong> 2<br />

which controls the free-wheeling replaced<br />

this by a different mo<strong>de</strong>.<br />

Firing mo<strong>de</strong> on a single unit (Fig. 2):<br />

As soon as the control system senses<br />

a fast hardware trip (trip due to un<strong>de</strong>r-voltage<br />

or loss of network) then,<br />

on the next firing instant it fires all<br />

thyristors coloured red in all units. At<br />

the same time it initiates an off command<br />

to all the breakers. As soon as<br />

the control system from a particular<br />

unit receives back signalization that<br />

its breaker is open, then it initiates the<br />

next action as mo<strong>de</strong> 2 shown in Fig. 3.<br />

As soon as a control system receives<br />

57 ALUMINIUM · 1-2/2007<br />

ALUMINIUM · 1-2/2007 57<br />


ALUMINIUM SMELTING INDUSTRY<br />

Fig. 4: Mo<strong>de</strong> 1<br />

Fig. 5: Mo<strong>de</strong> 2<br />

Fig. 6: Fast links for hardware trips and controls<br />

Fig. 7<br />

Fig. 8<br />

a feedback signal that a main breaker and<br />

filter breaker (if installed) are open, then it<br />

fires all thyristors in that unit. All units behaviour:<br />

Mo<strong>de</strong> 1 can be implemented in all<br />

units. But as all units are not synchronised in<br />

firing, they come to mo<strong>de</strong> 1 in<strong>de</strong>pen<strong>de</strong>ntly of<br />

each other. Fig. 4 shows when all units are<br />

in mo<strong>de</strong> 1.<br />

This technique shares the current among all<br />

units so that no single arm gets overloa<strong>de</strong>d.<br />

It thereby dissipates potline energy safely.<br />

When all breakers are open, all units come to<br />

mo<strong>de</strong> 2 as shown in Fig. 5.<br />

It should be noted that all units do not<br />

shift from mo<strong>de</strong> 1 to mo<strong>de</strong> 2 simultaneously.<br />

Switching occurs <strong>de</strong>pending upon breaker<br />

opening instant. This logic, which is implemented<br />

in each unit control software, needs<br />

fast information about a trip. This is implemented<br />

as shown on Fig. 6. This technique brings all units and<br />

all thyristors into free-wheeling mo<strong>de</strong> with minimal time difference<br />

between the units.<br />

Results and conclusion<br />

This advance technique was implemented on an aluminium<br />

plant and was tested un<strong>de</strong>r different mo<strong>de</strong>s of tripping. Fig.<br />

7 shows typical overloading current of the thyristors during<br />

a trip condition. Fig. 8 shows that thanks to the free-wheeling<br />

technique, overloading of the thyristors was prevented. The<br />

advanced and proven technique <strong>de</strong>veloped by ABB for thyristor<br />

plants ensures safety of thyristor plants for electrolysis<br />

applications un<strong>de</strong>r the most severe conditions.<br />

Authors<br />

Shripad Tambe, Master of Technology, IIT Kanpur, started in 1977 with<br />

HBB, India. In HBB India he was Senior Research and Development<br />

Manager. Since 1986 he has been working with ABB Switzerland, and<br />

up to 1999 worked in various technical <strong>de</strong>partments including system<br />

engineering. He is the inventor of two patents registered in many<br />

countries in the area of rectifiers for DC arc furnaces. From October<br />

1999 to 2005 he has been worldwi<strong>de</strong> responsible for retrofit, revamp<br />

and upgra<strong>de</strong>s of rectifier plants for electrolysis and arc furnaces. He is<br />

DGM, Systems Group and head of sales and projects – ABB Switzerland<br />

Ltd. Service Division and is presently DGM for large projects and is<br />

responsible for rectifier systems for aluminium and DC arc furnaces.<br />

Wynand M Lauwrens gained a Bachelor of Engineering in South Africa.<br />

He joined ABB South Africa in 1994 and was responsible for<br />

engineering and commissioning drives and rectifiers control systems.<br />

He joined ABB Switzerland in 2002 as control engineer in the HPR<br />

Division, and is responsible for engineering and commissioning rectifier<br />

control systems.<br />

Markus Rechsteiner gained a Bachelor of Engineering at ITR Rapperswil<br />

Switzerland. He joined ABB in 1997 as Project- and Commissioning<br />

engineer. From October 2001 to 2005 he acted as sales and<br />

project manager in the HPR Service Division. Presently he is responsible<br />

for marketing and communication in the ABB High Power Rectifier<br />

group.<br />

58 ALUMINIUM · 1-2/2007


<strong>SPECIAL</strong><br />

ALUMINIUM SMELTING INDUSTRY<br />

Moeller direct pot feeding technology<br />

T. Letz and C. Duwe, Pinneberg<br />

Since September 2001 the Moeller<br />

direct pot feeding system for the<br />

smelter plant <strong>Alu</strong>minij Mostar in<br />

Bosnia-Herzegovina has been in<br />

successful operation. VAW <strong>Alu</strong>minium<br />

Technology chose Moeller in<br />

July 2000 to modify 256 aluminium<br />

smelting pots (4 potlines with<br />

64 cells each).<br />

The Moeller direct pot feeding for<br />

<strong>Alu</strong>minij Mostar employs <strong>de</strong>nse phase<br />

conveying via pressure vessel and<br />

Moeller turbuflow conveying pipe to<br />

take the secondary alumina from the<br />

storage silo to intermediate bins near<br />

the pots and combines this with the<br />

Moeller fluidflow air sli<strong>de</strong> pipe within<br />

the pots. A schematic presentation<br />

of the system installed in Mostar is<br />

shown in Fig. 1.<br />

The (single-)pressure vessel system<br />

is a non-continuously working<br />

Fig. 1: Direct pot feeding – si<strong>de</strong>-by-si<strong>de</strong> (Mostar, Bosnia-Herzegovina)<br />

pneumatic conveying system for<br />

feeding secondary alumina to one<br />

59 ALUMINIUM · 1-2/2007<br />

ALUMINIUM · 1-2/2007 59<br />

All illustrations: Moeller<br />

section of pots. The pressure vessel<br />

(2) for the <strong>de</strong>nse phase conveying to �


ALUMINIUM SMELTING INDUSTRY<br />

Fig. 2: Direct pot feeding with Moeller Fluidflow<br />

the intermediate bin (5) is equipped<br />

with a Moeller filling valve, a Moeller<br />

conveying pipe shut-off valve and<br />

the necessary pneumatic valves, ball<br />

valves, non-return valves, etc. for the<br />

optimal fluidising and conveying air<br />

distribution of the alumina. The fluidising<br />

and conveying air is supplied by<br />

a separate compressor (8) or the plant<br />

net. The secondary alumina, generally<br />

from the secondary alumina silo of the<br />

fume treatment plant (FTP), is conveyed<br />

via the turbuflow conveying<br />

pipe (3) to intermediate bins (5).<br />

The intermediate bin (5) is the interface<br />

to the fluidflow air sli<strong>de</strong> pipe<br />

and is equipped with a filling valve,<br />

air sli<strong>de</strong>s at the outlet and level indicators.<br />

The intermediate bins (5) start<br />

to fill at a minimum level indication<br />

or after a precisely <strong>de</strong>fined period of<br />

time. The fluidflow air sli<strong>de</strong> pipe connects<br />

the intermediate bin (5) with the<br />

ore bunkers of the pots (7) and provi<strong>de</strong>s<br />

a continuous supply of secondary<br />

alumina. Compressed air (8) for<br />

the fluidising air of the fluidflow air<br />

sli<strong>de</strong> pipe comes either from the plant<br />

net for or from a separate blower.<br />

The supply of secondary alumina<br />

to the ore bunkers of the pots (7) is<br />

self-regulating. For safety reasons, the<br />

fluidflow air sli<strong>de</strong> pipe of each pot is<br />

equipped with the 2 m long Moeller<br />

insulation air sli<strong>de</strong> pipe. This equipment<br />

does not directly influence the<br />

conveying process, but is a key component.<br />

Experiences at <strong>Alu</strong>minij Mostar<br />

The Moeller direct pot feeding (MDPF)<br />

system has been working with 100%<br />

reliability at the smelter plant <strong>Alu</strong>minij<br />

Mostar in Bosnia-Herzegovina since<br />

September 2001. It has maintained<br />

without any problem conveying a capacity<br />

of about 10 t/h over around 150<br />

m for each of the 4 sections (64 cells<br />

each). Furthermore, it has fulfilled all<br />

environmental aspects, especially the<br />

limits on dust emission has been fulfilled.<br />

The MDPF system works absolutely<br />

dust free. It has generated no<br />

measurable fines (attrition) or segregation<br />

in the last five years.<br />

The maintenance costs for the<br />

MDPF system at <strong>Alu</strong>minij Mostar are<br />

extremely low. The Moeller turbuflow<br />

system minimises scaling effects and<br />

maintenance for long distance transport<br />

from the secondary alumina storage<br />

silo to intermediate bins near the<br />

pots. No turbuflow conveying pipe<br />

or conveying pipe bend has been<br />

changed in the last five years.<br />

Since start-up in September 2001<br />

the fluidflow air sli<strong>de</strong> pipe has been<br />

bringing alumina from the intermedi-<br />

Fig. 3: Moeller fluidflow air sli<strong>de</strong> pipe on top of the pot<br />

ate bins near the pots to the bunkers<br />

of the pots without any kind of maintenance.<br />

The MDPF system is thus an<br />

integrated component and is one of<br />

the reasons for the success and the<br />

high performance of this smelter at<br />

<strong>Alu</strong>minij Mostar.<br />

Moeller Fluidflow<br />

Especially for green field applications,<br />

but also for retrofit projects, Moeller<br />

Materials Handling can offer a direct<br />

pot feeding system as Moeller fluidflow<br />

air sli<strong>de</strong> pipe system (Fig. 2).<br />

The alumina will be taken from the<br />

secondary alumina silo by a Moeller<br />

fluidflow air sli<strong>de</strong> pipe. The fluidflow<br />

feeds a so-called main intermediate<br />

bin. This main intermediate bin will<br />

be operated between “full” and “half<br />

full”. From this main intermediate bin,<br />

the alumina will be fed via fluidflow<br />

air sli<strong>de</strong> pipe along the pot room to<br />

all pots.<br />

The fluidflow air sli<strong>de</strong> pipe along<br />

the pot room is equipped with Tpieces,<br />

which are connected with the<br />

fluidflow air sli<strong>de</strong> pipe on top or integrated<br />

in the superstructure of each<br />

pot. Normally, two pots will be feed<br />

via one T-piece. The fluidising air is<br />

supplied by a separate rotary piston<br />

blower. The MDPF system is working<br />

fully automatically and is more or less<br />

100% filled with alumina all the time.<br />

When the bunker of a pot is full, the<br />

bulk material cone level reaches the<br />

fill spout discharge opening of the fluidflow<br />

air sli<strong>de</strong> pipe, and so automatically<br />

blocks the mass flow of alumina.<br />

When secondary alumina is removed<br />

60 ALUMINIUM · 1-2/2007


<strong>SPECIAL</strong><br />

Fig. 4: Self-closed feeding spout and filling process of ore bunkers<br />

from the ore bunker of the pot, the<br />

pneumatic transport starts again automatically<br />

and ensures a constant<br />

and reliable mass feed rate to the<br />

pots. The fluidising of the secondary<br />

alumina insi<strong>de</strong> the fluidflow air sli<strong>de</strong><br />

pipe works permanently to ensure a<br />

constant bulk <strong>de</strong>nsity.<br />

The self-closing filling spout due<br />

to the material cone level in the ore<br />

bunker of a pot is self-regulating and<br />

ensures continuous refilling of the<br />

ALUMINIUM SMELTING INDUSTRY<br />

ore bunkers during operation of the<br />

smelting plant. The self-closed feeding<br />

spout and the filling process of<br />

ore bunker are shown in Fig. 4. Furthermore,<br />

no pressure-tight sealing of<br />

the pot is necessary, because of the<br />

low over-pressure in the fluidflow air<br />

sli<strong>de</strong> pipe.<br />

The main advantages of the MDPF<br />

system are: self-regulating and continuous<br />

feeding of bunkers, absolutely<br />

dust free operation, no generation of<br />

fine particles, no segregation, no scaling,<br />

lowest possible (over)pressure,<br />

no pressure-tight sealing of the pot,<br />

minimized energy consumption, minimized<br />

maintenance work.<br />

Conclusion<br />

The Moeller fluidflow direct pot feeding<br />

is <strong>de</strong>signed to ensure most constant<br />

and reliable feeding possible of<br />

secondary alumina to the ore bunkers<br />

of the pot. Lowest possible conveying<br />

velocities preserve the particle size<br />

distribution and the flowability of the<br />

secondary alumina and avoid scaling<br />

effects. This most competitive system<br />

<strong>de</strong>monstrated superiority by minimal<br />

wear and maintenance, as well<br />

as minimal energy consumption, and<br />

last but not least by its high operating<br />

reliability.<br />

Authors<br />

Dipl.-Ing. Timo Letz and Dipl.-Ing. Carsten<br />

Duwe are with Moeller Materials Handling<br />

GmbH, Pinneberg, Germany.<br />

61 ALUMINIUM · 1-2/2007<br />

ALUMINIUM · 1-2/2007 61


COMPANY NEWS<br />

Company news worldwi<strong>de</strong><br />

<strong>Alu</strong>minium smelting industry<br />

Alcan entertaining potential<br />

buyers for Vlissingen aluminium<br />

plant<br />

Canadian aluminium major Alcan is<br />

entertaining bids from any potential<br />

buyers of its 200,000 tpy aluminium<br />

smelter in Vlissingen in The Netherlands.<br />

Ongoing negotiations involving<br />

a consortium of energy-intensive<br />

companies have so far failed to satisfy<br />

the smelter’s requirements for a longterm<br />

competitive energy supply. There<br />

may be some potential buyer who<br />

will have some special way of working<br />

with it to make it more viable. But the<br />

smelter’s casthouse is good and Alcan<br />

plans to keep it, no matter what the<br />

outcome of the smelter. In addition,<br />

the smelter has a good carbon plant<br />

that has been mo<strong>de</strong>rnised.<br />

Malaysia’s Jabat Yakin plans<br />

300,000 tpy aluminium smelter<br />

Malaysian construction firm Jabat<br />

Yakin is seeking financial backers for<br />

a proposed 2.3 billion ringgit (US$<br />

631m) aluminium smelter in eastern<br />

peninsular Malaysia. Jabat Yakin has<br />

hired two Islamic finance institutions,<br />

Kuwait Finance House and AmIslamic<br />

Bank, as well as accounting firm<br />

PriceWaterhouseCoopers, to arrange<br />

the financing for the project, which<br />

will be located in the state of Pahang.<br />

The Malaysian company is in talks<br />

with potential joint venture partners<br />

Chalco and Dubal. The project will<br />

yield 300,000 tpy of aluminium in a<br />

first stage of production.<br />

Hydro opens office in Iceland<br />

Hydro has opened a North Atlantic<br />

office in Reykjavik to support its strategy<br />

of repositioning and growth in its<br />

primary aluminium activities. Hydro<br />

is presently involved in supplying<br />

technology to the Nordural alumi-<br />

nium plant, and has also <strong>de</strong>livered<br />

technology to the hydrogen filling<br />

station that supplies Icelandic buses<br />

with emission-free fuel. Hydro is able<br />

to build on its position as a technology<br />

lea<strong>de</strong>r in the aluminium industry<br />

and intends to invest in a 600,000<br />

tpy aluminium smelter in the 2010 to<br />

2015 period, based on the availability<br />

of power. Hydro’s new North Atlantic<br />

office in Reykjavik is hea<strong>de</strong>d by<br />

Bjarne Reinholdt.<br />

Qingtongxia – Glencore talks<br />

on the rocks as smelter project<br />

faces <strong>de</strong>lay<br />

Glencore’s plans to co-operate with<br />

Qingtongxia <strong>Alu</strong>minium Group have<br />

hit problems as the future of a 250,000<br />

tpy smelter project planned by the<br />

Chinese company looks increasingly<br />

uncertain. Glencore signed a memorandum<br />

of un<strong>de</strong>rstanding with Qingtongxia<br />

in August 2006, which was <strong>de</strong>signed<br />

to facilitate investment in the<br />

Chinese company’s planned 250,000<br />

tpy aluminium smelting project. But<br />

talks have gone badly. Besi<strong>de</strong>s problems<br />

with Glencore, Qingtongxia has<br />

yet to receive government approval<br />

for the project. The <strong>de</strong>lay is probably<br />

linked to Beijing’s plan to clamp down<br />

on the aluminium industry and to its<br />

stricter stance on new aluminium projects.<br />

New smelting projects in China<br />

are likely to find it more difficult<br />

to win government approval as the<br />

government is not encouraging new<br />

projects.<br />

CVRD’s Mozambique coal<br />

project moving forward<br />

CVRD’s plans to produce coal at<br />

Moatize, Mozambique, could move<br />

forward quickly once the rail link to<br />

transport the coal from mine to port is<br />

established. CVRD is still studying the<br />

possibility of later producing primary<br />

aluminium at the site. Local reports<br />

are correct that output at Moatize<br />

could reach a total of 12 million tpy<br />

of coal, of which around 40 per cent<br />

would be metallurgical (coking) coal<br />

and 60 per cent steam (thermal) coal.<br />

The metallurgical coal would be for<br />

export. Studies are un<strong>de</strong>r way into<br />

<strong>de</strong>veloping the thermoelectric plant.<br />

Likewise, the company continues to<br />

study the possibility of using the energy<br />

produced at the proposed thermoelectric<br />

plant to fuel aluminium<br />

smelting facilities that could also be<br />

set up at Moatize. In theory it should<br />

be cheaper to produce primary aluminium<br />

in Mozambique than in Brazil<br />

due to the current high cost of electrical<br />

energy in Brazil.<br />

Ormet finalises power <strong>de</strong>al with<br />

AEP<br />

Ormet Corp. and American Electric<br />

Power (AEP) have finalised their longterm<br />

agreement un<strong>de</strong>r which AEP will<br />

provi<strong>de</strong> power to Ormet’s Hannibal,<br />

Ohio, operation. Two of Ormet’s six<br />

potlines could now restart as early as<br />

mid-December 2006 as 250 employees<br />

were called back to work. Effective 1<br />

January 2007, the pact places Ormet’s<br />

Hannibal facilities back into AEP service<br />

territory, where the company will<br />

provi<strong>de</strong> power at US$ 43 per MWh<br />

through the end of 2008. Following a<br />

two-year period, Ormet will then be<br />

able to obtain power at the same rate<br />

as other large industrial users in the<br />

Ohio service territory.<br />

62 ALUMINIUM · 1-2/2007<br />

Norsk Hydro


Dubal completes US$ 280m<br />

expansion to take capacity to<br />

861,000 tpy<br />

Dubal has completed a US$ 280 million<br />

expansion which will raise capacity<br />

by 100,000 tpy to 861,000 tpy. The<br />

two expan<strong>de</strong>d potlines, 7B and 9B,<br />

were officially inaugurated at a gala<br />

ceremony atten<strong>de</strong>d by His Highness<br />

Sheikh Hamdan. Expansion of the<br />

two potlines began in November and<br />

December 2005, adding 128 cells to<br />

potline 7B and 36 cells to potline 9B.<br />

Dubal is working on a further small incremental<br />

60,000 tpy expansion that<br />

will lift capacity to around 925,000<br />

tpy from the start of 2007.<br />

Ashapura Minechem to set up<br />

aluminium project in Orissa<br />

Ashapura Minechem, one of India’s<br />

larger bauxite miners, plans to set<br />

up an alumina refinery, aluminium<br />

smelter and power plant in the mineral-rich<br />

state of Orissa in eastern<br />

India. The company has submitted<br />

a proposal to the Orissa government<br />

for an integrated aluminium project<br />

in the bauxite-rich Koraput district<br />

in southern Orissa. The state government<br />

is vetting the proposal before a<br />

memorandum of un<strong>de</strong>rstanding is signed.<br />

Ashapura has yet to <strong>de</strong>ci<strong>de</strong> on<br />

the size of the project and on how it<br />

will be <strong>de</strong>veloped. The alumina refinery<br />

may be set up in the first phase<br />

and the smelter in the second phase.<br />

The integrated aluminium project is<br />

expected to cost come US$ 2 billion. A<br />

formal announcement on Ashapura’s<br />

aluminium project can be expected<br />

early in 2007. The company has re-<br />

����� ���� ������� ������ ����<br />

��� ���������� ���������<br />

����� ��� ���� � ��� ��<br />

��������<br />

�� ����������� ����<br />

������� ���������<br />

��������������������<br />

ALUMINIUM · 1-2/2007<br />

��� ������� ����������� ��<br />

������� ������������<br />

������ ��������<br />

���� �����<br />

�� ��������������� ��<br />

������������������<br />

�� ���� �������<br />

�� ��������������� ��<br />

��������������������<br />

Alcan to pilot advanced AP50 technology<br />

through US$ 550m facility in Quebec<br />

Alcan will invest US$ 550 million in a 60,000 tpy AP50 pilot plant at its<br />

Complexe Jonquière site in Canada. The <strong>de</strong>velopment plan is the first step<br />

in a planned ten-year US$ 1.8 billion investment programme in Quebec’s<br />

Saguenay-Lac-Saint-Jean region. The new AP50 pilot facility will be the<br />

cornerstone of an industrial strategy <strong>de</strong>veloped by Alcan with the support<br />

of the Government of Quebec. The AP50 pilot plant is the initial step in<br />

creating up to 450,000 tpy of new generation AP smelting capacity, based<br />

entirely on clean, renewable hydroelectricity. Construction is expected to<br />

begin in 2008 with first metal coming on stream in late 2010. This initial<br />

phase would be followed by up to an additional 390,000 tpy in the Saguenay-Lac-St.-Jean<br />

region by 2015. For this project the Government of<br />

Quebec has provi<strong>de</strong>d financial support by means of R&D tax incentives and<br />

loans, and has ma<strong>de</strong> available up to 225 MW of additional power to support<br />

the investment programme. The agreement with the Government of Quebec<br />

also reinforces Alcan’s electrical power position in Quebec through the<br />

long-term extension of hydraulic leases and new power contracts which<br />

provi<strong>de</strong> a secure supply of approx. 2,600 MW of low-cost power through<br />

the year 2045.<br />

ceived a formal invitation to begin<br />

work on its alumina project in the<br />

Kutch region of Gujarat by the state<br />

government.<br />

Indonesia places smelter’s<br />

future un<strong>de</strong>r scrutiny<br />

The Indonesian authorities are keeping<br />

up the pressure on their Japanese<br />

joint venture partners to consi<strong>de</strong>r closing<br />

the 225,000 tpy Asahan <strong>Alu</strong>minium<br />

smelter in the country’s Sumatra<br />

province. The smelter has ma<strong>de</strong> a profit<br />

in only 3 of its 23 years of operation,<br />

and Indonesia is now suggesting it be<br />

closed when the existing joint venture<br />

agreement runs out in 2013, and the<br />

freed power used to supply local com-<br />

��������� ��������� ��������������� ��� �����<br />

���� ������ �������������� ����� � �����<br />

������ ���������<br />

������ ����� ��� � ������<br />

������ �������� ����<br />

����� ������ �����<br />

����� ������� ����<br />

������������ ��� ���� � ����<br />

����� ���������������<br />

�� ������������� � ������� ������� �� �� ������<br />

ALUMINIUM SMELTING<br />

munities and businesses. The Indonesian<br />

government wants to change the<br />

Asahan project into an electricity<br />

company, as the government has so<br />

far not gained any financial advantage<br />

from the project.<br />

Columbia Falls hopes to restart<br />

second potline in the first quarter<br />

2007<br />

Columbia Falls <strong>Alu</strong>minum Co hopes<br />

to restart the second of its five<br />

potlines in the first quarter of 2007.<br />

Columbia’s one operating potline produces<br />

approx. 35,000 tpy of aluminium.<br />

While alumina might be readily<br />

available, securing power for aluminium<br />

smelters in the U. S. northwest<br />

������� �������� ������� �����<br />

���� ��������� ���������<br />

��� ���������� � ������ �������������� ������<br />

��� ���������� ����������� �� ���������� ����� �������� ����������� ��<br />

��������� ����� ����������� �� ������� �������� ��������� �� ���<br />

������� ��������� ��������� �� �������� ����� ���� ��������� �� ���<br />

���������� ��������� �� ��� ���� �������� ��������� �� ��� ����� ��������<br />

��������� �� ����� �������� ��� ������� ���������� ������ ����������<br />

63<br />


COMPANY NEWS<br />

has been a hurdle for production. The<br />

plant produces primary aluminium in<br />

sheet and T-bar.<br />

RusAl starts Khakass smelter<br />

RusAl has begun the ramping up of<br />

its Khakass aluminium smelter on 15<br />

December 2006, the first aluminium<br />

production facility in Russia built in<br />

the past 20 years. The company will<br />

initially operate the plant at 71,000<br />

tpy and is aiming to complete in November<br />

2007. Total investments into<br />

the project excee<strong>de</strong>d US$ 750 million.<br />

The 300,000 tpy smelter is located in<br />

the Republic of Khakassia. It operates<br />

RA-300 reduction cells. The overall investment<br />

into the regional infrastructure<br />

amounted to some US$ 21m. The<br />

launch of the new production facility<br />

created around 1,000 jobs.<br />

SUAl plans US$ 1.5b smelter<br />

for northern Kazakhstan<br />

Russian aluminium producer SUAl<br />

plans to build a US$ 1.5 billion aluminium<br />

smelter in northern Kazakhstan<br />

that could add 500,000 tpy to the<br />

company’s output from 2011. SUAl<br />

will begin the feasibility study in early<br />

2007. If the feasibility study is successful,<br />

as well as the following agreements<br />

with the Kazakh government,<br />

construction will start in 2008. SUAl<br />

has already signed a memorandum of<br />

un<strong>de</strong>rstanding with Kazakh subsidiary<br />

of US energy company AES Corp to<br />

supply power to the smelter from the<br />

Ekibastuz GRES-1 power station for<br />

20 to 30 years.<br />

Alcan completes purchase of<br />

catho<strong>de</strong> business in France<br />

Alcan has completed the acquisition<br />

of the remaining 70% stake of Carbone<br />

Savoie, and certain related technology<br />

and equipment, from GrafTech<br />

International for US$ 135 million<br />

less certain price adjustments. Today,<br />

Alcan’s proprietary world-leading Pechiney<br />

AP Series Smelting Technology<br />

already uses Carbone Savoie’s advanced<br />

graphitised catho<strong>de</strong> blocks. With<br />

revenues of approx. US$ 114 million<br />

in 2005, Carbone Savoie is a leading<br />

and profitable producer of catho<strong>de</strong><br />

blocks, including a growing share of<br />

graphitised catho<strong>de</strong> blocks, as well as<br />

Southeast Asia may soon join Australia,<br />

Jamaica and the Republic of Guinea as<br />

one of the world’s chief bauxite-producing<br />

regions. The recent agreement between<br />

<strong>Alu</strong>minium Corp of China (Chalco) and Vietnam<br />

National Coal and mineral Industries<br />

Group (Vinacomin) to mine bauxite and<br />

produce alumina in Vietnam joins them<br />

to a joint venture between Australia’s Ord<br />

River Resources Ltd. and China Nonferrous<br />

Metals International Mining Co Ltd. (CN-<br />

MIM). They plan to <strong>de</strong>velop a potentially<br />

huge bauxite project at the Bolaven Plateau<br />

in southern Laos. Ord has just moved<br />

to establish a Laos-based joint-venture<br />

company with CNMIM in or<strong>de</strong>r to consolidate<br />

the companies’ commercial position<br />

in the country. The partners believe that<br />

si<strong>de</strong>wall blocks and ramming pastes.<br />

The business employs approx. 500<br />

people at two sites, both in close proximity<br />

to Alcan’s R&D centre in Voreppe,<br />

France. �<br />

Bauxite and alumina activities<br />

RusAl acquires 56.2% stake in<br />

Eurallumina refinery<br />

RusAl successfully completed the agreement<br />

with Rio Tinto to purchase a<br />

56.2% stake in the Eurallumina alumina<br />

refinery in Italy. The remaining<br />

43.8% share of Eurallumina is owned<br />

by Glencore. Ownership of the asset<br />

will be consolidated un<strong>de</strong>r United<br />

Company RusAl, when the merger<br />

RusAl, SUAl and Glencore’s alumina<br />

assets is completed in 2007.<br />

Alcan looks Madagascar for<br />

bauxite and 1.5m tpy alumina<br />

refinery<br />

Alcan signed a memorandum of un<strong>de</strong>rstanding<br />

with Access Madagascar<br />

Sarl to jointly study the possibility<br />

of <strong>de</strong>veloping a bauxite mine and a<br />

1 to 1.5 million tpy alumina refinery<br />

in Madagascar’s south eastern<br />

Laos and Vietnam to host<br />

new bauxite projects<br />

Manantenia District. Alcan and Access<br />

will un<strong>de</strong>rtake a concept study<br />

to review the bauxite reserves and<br />

logistics, estimate costs and look at<br />

social and environmental conditions.<br />

This concept study is expected to be<br />

complete in the second quarter of<br />

2007, and could then lead to feasibility<br />

studies. On the basis of these<br />

studies, Alcan will explore options<br />

that could make an alumina refinery<br />

project viable.<br />

Nanshan to expand alumina<br />

capacity to 700,000 tpy<br />

China’s Nanshan Group will expand<br />

alumina refining capacity by 75 per<br />

cent to 700,000 tonnes per year by<br />

September 2007. Nanshan is due to<br />

finish the first phase expansion of its<br />

new alumina refinery by the end of<br />

November, with capacity to produce<br />

400,000 tonnes per year. The com-<br />

the Bolaven Plateau project could hold between<br />

2 and 2.5 billion tonnes of bauxite.<br />

Laos is said to be well-suited for the <strong>de</strong>velopment<br />

of bauxite and alumina projects.<br />

The country has ample hydroelectric power<br />

resources and already exports power to<br />

Vietnam and Thailand. Furthermore, Laos,<br />

Vietnam and China have signed an agreement<br />

to <strong>de</strong>velop the Trans-Asian Railway<br />

(TAR) network, which will link China to<br />

several Southeast Asian nations. Un<strong>de</strong>r an<br />

agreement announced in January 2006<br />

between Chalco and Vinacomin, the companies<br />

are to build a US$ 2 billion bauxite<br />

mining and alumina project in Dak Nong.<br />

The alumina refinery will have a capacity of<br />

1.9 million tpy, rising to 4 million tpy in a<br />

second phase of its <strong>de</strong>velopment.<br />

64 ALUMINIUM · 1-2/2007


pany then plans to increase capacity<br />

by another 300,000 tonnes per year.<br />

Output from the new plant will be<br />

used for its own aluminium smelters<br />

owned by Nanshan Group and Shandong<br />

Nanshan Industrial Co. Nanshan<br />

Group and Shandong Nanshan have<br />

156,000 tpy and 36,000 tpy of electrolytic<br />

aluminium capacity respectively.<br />

Chalco to commission third<br />

phase of Pingguo refinery in<br />

2008<br />

<strong>Alu</strong>minium Corp. of China (Chalco)<br />

plans to commission a 900,000 tpy<br />

third phase expansion at its alumina<br />

refinery in Pingguo in China’s<br />

southern Guangxi autonomous region<br />

in late 2008. The expansion will take<br />

alumina capacity at the Pingguo works<br />

– also known as Chalco’s Guangxi<br />

Branch – to 1.8 million tpy. Chalco<br />

also plans to increase smelting capaci-<br />

ty at Pingguo from 130,000 to 250,000<br />

tpy, though no date has been set for a<br />

second phase of construction.<br />

Guangxi Huayin to commission<br />

alumina refinery in 2007<br />

Guangxi Huayin <strong>Alu</strong>minium Corp<br />

plans to commission a 1.6 million<br />

tpy alumina refinery project in October<br />

2007, as part of a growing drive<br />

by the government of the region to<br />

strengthen its aluminium industry.<br />

Construction of Guangxi Huayin’s<br />

project started in June 2005.<br />

Romania’s Alro plans<br />

alumina capacity upgra<strong>de</strong><br />

Romanian aluminium producer Alro<br />

plans to invest US$ 50 million over<br />

the next two years in upgrading the<br />

alumina refinery at its subsidiary<br />

<strong>Alu</strong>m. The investment will be used to<br />

BAUXITE AND ALUMINA<br />

mo<strong>de</strong>rnise the main production facilities<br />

at <strong>Alu</strong>m, to cut the consumption<br />

of materials and energy, upgra<strong>de</strong> the<br />

thermal power plant and to align the<br />

plant to European labour environment<br />

protection standards. The work<br />

will involve a temporary complete<br />

shutdown of the plant. The upgra<strong>de</strong><br />

will lift capacity at the refinery from<br />

500,000 to 600,000 tpy. Beyond that,<br />

Alro aims to increase capacity to 1<br />

million tpy by 2010.<br />

Iamgold to sell bauxite assets<br />

to Bosai for US$ 46m<br />

Toronto-based Iamgold Corp has<br />

signed a <strong>de</strong>al with Chinese alumina<br />

producer Bosai Minerals Group to<br />

sell its bauxite assets for US$ 46 million.<br />

Un<strong>de</strong>r the agreement, Iamgold<br />

will sell interests in Omai Bauxite<br />

Mining Inc and Omai Services Inc<br />

to Bosai for approx. US$ 28 million<br />

in cash. Bosai will also assume US$<br />

���������������<br />

��������������������������������������� ������<br />

����������������<br />

�����������������������������������������������<br />

��������������� ����<br />

�������� �������<br />

���� �� � ���� ��<br />

��������� ���<br />

���������������� ��� ������� ��������� �����������<br />

������ ��� ��� ���� ����������������� ���������������<br />

������������ ��������������<br />


COMPANY NEWS<br />

18 million in third-party <strong>de</strong>bt. If the<br />

<strong>de</strong>al is approved by regulatory authorities,<br />

the transaction took place on<br />

31 December 2006. The sale is consistent<br />

with Iamgold’s aim to focus<br />

on its core assets. Bosai – based in<br />

southwest Chongqing province to the<br />

east of Sichuan – plans to double its<br />

200,000 tpy alumina refining capacity<br />

to 400,000 tpy within the next two to<br />

three years.<br />

BHP in talks to take a third of<br />

Global’s US$ 2.8b alumina refinery<br />

project<br />

BHP Billiton has begun talks with<br />

Global <strong>Alu</strong>mina Corp to take a 33.3<br />

per cent equity stake in its US$ 2.8<br />

billion alumina refinery project in<br />

Guinea. BHP would assume the role<br />

of project manager and operator and<br />

will lend as much as US$ 50 million<br />

to Global <strong>Alu</strong>mina to help fund a feasibility<br />

study. Un<strong>de</strong>r the agreement,<br />

Global <strong>Alu</strong>mina and BHP would each<br />

own a third of the project, Dubal one<br />

quarter, with Mubadala Development<br />

Co taking one-twelfth. If the transition<br />

goes ahead, the potential partners<br />

would receive shares in Global <strong>Alu</strong>mina<br />

and reach separate sharehol<strong>de</strong>r,<br />

project-management and off-take agreements.<br />

BHP, Dubal and Mubadala<br />

Development Co have agreed to<br />

provi<strong>de</strong> US$ 100 million of interim<br />

financing for the project, which will<br />

be guaranteed by Global <strong>Alu</strong>mina and<br />

Guinea <strong>Alu</strong>mina. The refinery, to be<br />

built at the inland town of Boké, is<br />

scheduled to come on stream in the<br />

first half of 2009.<br />

�<br />

Secondary aluminium smelting<br />

and recycling activities<br />

Hydro Deesi<strong>de</strong> aims to boost<br />

sales to offset energy costs<br />

Hydro <strong>Alu</strong>minium Deesi<strong>de</strong> plans to<br />

lift production to 55,000 tpy to boost<br />

sales by the end of next year in a<br />

bid to offset soaring electricity prices.<br />

Over the past three years, the plant’s<br />

spending on electricity has more than<br />

doubled. Currently the plant pays 4.6<br />

pence per night unit and 7 pence per<br />

day unit. Deesi<strong>de</strong>’s current electricity<br />

contract is 64% higher than the previous<br />

18 month contract which ran out<br />

in October, while that contract was<br />

60% higher than the one before. The<br />

recycling and remelting plant located<br />

in Wrexham in northeast Wales produces<br />

more than 40,000 tpy of extrusion<br />

ingots. Hydro <strong>Alu</strong>minium Deesi<strong>de</strong><br />

produces extrusion ingot from 90%<br />

remelted aluminium scrap.<br />

Alcan invests US$ 7m in UBC<br />

recycling at Neuf-Brisach<br />

Alcan will invest US$ 7 million in<br />

a special sheet Rhenalu facility in<br />

France to recycle aluminium used<br />

beverage cans (UBC). The new capacity<br />

will come on stream by the<br />

start of 2008 and will turn the site at<br />

Neuf-Brisach into Europe’s only fully<br />

integrated UBC processing, rolling<br />

and finishing facility. The investment<br />

will promote beverage can recycling<br />

in Europe. In addition to the Neuf-Brisach<br />

plant, in Europe Alcan operates<br />

recycling and rolling facilities in Singen,<br />

Germany.<br />

RusAl aims for 500,000 tpy of<br />

secondary aluminium by 2011<br />

RusAl plans to produce some 500,000<br />

tpy of secondary aluminium by 2011<br />

through acquisitions and through<br />

building its own production plants.<br />

Such a strategy would see RusAl<br />

surpass capacity of Aleris Recycling<br />

works in Germany, Europe’s largest<br />

secondary aluminium producer,<br />

which produces 400,000 tpy, and<br />

compete directly with Asia’s largest<br />

producers, Shanghai Sigma Metals in<br />

China and Daiki <strong>Alu</strong>minium in Japan.<br />

RusAl has recently acquired one producer,<br />

Tsvetmet Services, based in the<br />

Samara region. The company owns<br />

Resal, also in Samara, which was set<br />

up by RusAl in 2000. In 2005, the<br />

Russian government has encouraged<br />

RusAl to buy secondary aluminium<br />

assets and already RusAl has bought<br />

secondary aluminium assets in the<br />

Rostow, Samara and Leningrad regions.<br />

The plan to produce 500,000 tpy<br />

would give RusAl more than 60% of<br />

the Russian market. It has been estimated<br />

that there are 440 businesses in<br />

Russia that produce aluminium alloys<br />

from scrap.<br />

Spanish secondary aluminium<br />

producer Idalsa in trouble<br />

Spanish secondary aluminium producer<br />

Iberica <strong>de</strong> Aleaciones Ligeras<br />

(Idalsa) is facing a financial crisis,<br />

struggling un<strong>de</strong>r the weight of 26<br />

million euros (US$ 33.4m) in <strong>de</strong>bt,<br />

and sources at European secondary<br />

aluminium producers were reporting<br />

that the company based in Zaragoza<br />

in Aeragon had filed for bankruptcy<br />

protection on 1 November 2006. The<br />

news did not surprise the market as<br />

Idalsa, which produces around 30,000<br />

tpy of alloy, was a supplier to Manzoni-Bouchot,<br />

the French die-caster<br />

that filed for bankruptcy protection<br />

in October. Idalsa was owed some 13<br />

million euros by Manzoni. Idalsa was<br />

set up in 1984.<br />

Scholz buys Hungarian secondary<br />

aluminium producer Eural<br />

German non-ferrous and ferrous scrap<br />

merchant Scholz AG has acquired<br />

Hungarian secondary aluminium producer<br />

Eural kft from Spanish group<br />

Pansoinco SA for an undisclosed sum.<br />

Eural, which has a capacity to produce<br />

50,000 tpy of aluminium alloy, will<br />

probably source scrap from Audi’s<br />

manufacturing plant in Györ and<br />

supply aluminium alloy to automotive<br />

casting plants next to Audi. Eural is<br />

located in Tatabanya, just 60 km from<br />

Györ. Eural is one of the main players<br />

in the aluminium alloys and rod industry<br />

in Central and Eastern Europe.<br />

Scholz is one of Europe’s largest<br />

scrap processors and merchants, with<br />

66 ALUMINIUM · 1-2/2007


12 centres in south and east Germany,<br />

the Czech Republic and Croatia, including<br />

eight shred<strong>de</strong>rs, 38 shearing<br />

machines, nine railtrack crushers and<br />

four cable shred<strong>de</strong>rs.<br />

Century <strong>Alu</strong>minium seeks foreign<br />

partner to increase capacity<br />

Indian secondary aluminium producer<br />

Century <strong>Alu</strong>minium intends<br />

to increase its output to 50,000 tpy<br />

from 35,000 tpy by the end of 2007,<br />

and would like to increase output to<br />

100,000 tpy in the long term by securing<br />

a foreign partner. A time frame<br />

<strong>Alu</strong>minium semis<br />

Poland<br />

Polish aluminium manufacturer<br />

allocates funds for German buy<br />

Polish aluminium products manufacturer<br />

Grupa Kety will allocate up to<br />

200 million zloty (around US$ 65.2m)<br />

to buy German companies operating<br />

in the extru<strong>de</strong>d products and systems<br />

segments. Grupa Kety is actively seeking<br />

out a medium-sized German<br />

company which also manufactures<br />

and distributes extru<strong>de</strong>d products.<br />

Germany has been chosen for the size<br />

of the market for aluminium systems<br />

used in the construction industry.<br />

Croatia<br />

Croatia tries again to sell aluminium<br />

products maker<br />

Croatia’s Privatisation Fund is trying<br />

to sell the government’s 80.2% stake<br />

in Tvornica Lakih Metala (TLM),<br />

which is the Balkan country’s largest<br />

producer of extru<strong>de</strong>d and rolled aluminium<br />

products. The company has<br />

high <strong>de</strong>bts and a previous attempt to<br />

sell the stake in September drew no<br />

bids. The latest ten<strong>de</strong>r has set a minimum<br />

price of 10% of the company’s<br />

nominal value in an attempt to draw<br />

out more interest. As before, the latest<br />

ten<strong>de</strong>r notice stimulates that any<br />

potential buyer must maintain the<br />

company’s core business, commit to<br />

ALUMINIUM · 1-2/2007<br />

was not given for that additional expansion.<br />

India represents one of the<br />

most attractive aluminium recycling<br />

opportunities in the world. Recycled<br />

aluminium consumption in India, driven<br />

by the automotive sector, is set to<br />

boom in the next four years. Demand<br />

for recycled aluminium from automotive<br />

manufacturers is likely to increase<br />

in India to some 350,000 tpy by 2010<br />

from 93,700 tpy, and consumption<br />

in the general engineering industry,<br />

such as components for washing machines,<br />

is forecast to more than treble<br />

to 87,500 tpy from 23,500 tpy. India’s<br />

domestic production of 200,000 tpy is<br />

well below those levels. �<br />

further investment and keep 1,400 of<br />

the current 1,600 employees on the<br />

payroll for two years after the signing<br />

of a purchase contract.<br />

Bahrain<br />

New foil annealing furnace for<br />

Garmco Foil Mill<br />

Garmco Foil Mill Co., Bahrain, has<br />

placed a second or<strong>de</strong>r for an indirect<br />

electrically heated chamber furnace<br />

with mass flow heating for the annealing<br />

of aluminium foils un<strong>de</strong>r air<br />

or nitrogen. Garmco is expanding its<br />

rolling facility and inquired for an<br />

additional aluminium foil annealing<br />

furnace from Otto Junker, Germany.<br />

The or<strong>de</strong>red furnace is almost i<strong>de</strong>ntical<br />

to the furnace supplied by Otto<br />

Junker in 2004.<br />

The existing foil annealing facility<br />

consists of three annealing furnaces<br />

with a common rail mounted charging<br />

car, nitrogen gas supply system, coil<br />

cooling/waiting/loading stands and<br />

steel coil racks/pallets. The or<strong>de</strong>red<br />

new foil annealing furnace is to be<br />

located in a new extension to the existing<br />

bay with installation scheduled<br />

to commence in April 2007.<br />

Garmco is supplied with feedstock<br />

from parent company Gulf <strong>Alu</strong>minium<br />

Rolling Mill Co. which produces<br />

cold rolled coil and sheet in 1xxxx,<br />

3xxx, 5xxx and 8xxx series alloys for<br />

ALUMINIUM SEMIS<br />

Suppliers<br />

Dubal awards ABB contract<br />

to upgra<strong>de</strong> smelter<br />

Dubai <strong>Alu</strong>minium has awar<strong>de</strong>d a US$<br />

39m contract to ABB of Zurich to upgra<strong>de</strong><br />

electrical and automation systems<br />

at Dubal’s 861,000 tpy smelter complex<br />

in Dubai. ABB will replace five high-voltage<br />

regulating rectifier transformers,<br />

which convert alternating current (AC)<br />

to direct current (DC), with larger units<br />

rated at 86 MVA to increase capacity and<br />

to allow Dubal to combine two potlines.<br />

ABB will upgra<strong>de</strong> existing systems,<br />

including high-voltage cables and lowvoltage<br />

and control cables, as well as<br />

provi<strong>de</strong> control and protection systems<br />

and 250 kA field-oriented measuring<br />

equipment. Commissioning of the new<br />

system will begin in July 2007.<br />

<strong>Alu</strong>minij dd Mostar chooses<br />

Wagstaff equipment<br />

<strong>Alu</strong>minij dd Mostar, aluminium producer<br />

in Mostar, Bosnia-Herzegovina, has<br />

placed an or<strong>de</strong>r with Wagstaff Inc, to<br />

mo<strong>de</strong>rnise their third casting station.<br />

The new contract consists of a Wagstaff<br />

ShurCast casting machine, an AutoCast<br />

automated casting control system, and<br />

LHC low head composite casting moulds<br />

for use on all stations in the casthouse.<br />

The equipment purchased in the new<br />

contract is slated to be commissioned in<br />

early 2007.<br />

Stub milling machine for<br />

NZAS<br />

Stimir of Iceland has completed the <strong>de</strong>sign<br />

of a stub milling machine for New<br />

Zealand <strong>Alu</strong>minium Smelters (NZAS). The<br />

contract required Stimir to fully <strong>de</strong>sign a<br />

stub milling machine able to automatically<br />

mill off excess stub length whilst<br />

the ano<strong>de</strong> rod is hanging in an overhead<br />

conveyor. The automatic stub milling<br />

machine will ensure that all stubs are of<br />

equal length, so as to improve electrical<br />

conductivity, rod<strong>de</strong>d ano<strong>de</strong> geometry,<br />

and removal of cast iron thimbles. These<br />

improved parameters increase electrical<br />

efficiency and maximise both rod availability<br />

and rod service life.<br />

67<br />


COMPANY NEWS<br />

a wi<strong>de</strong> range of applications with a<br />

current annual capacity of 162,000<br />

tonnes.<br />

Taiwan<br />

CS <strong>Alu</strong>minium <strong>de</strong>lays cold<br />

rolling expansions<br />

Taiwan’s CS <strong>Alu</strong>minium has <strong>de</strong>layed<br />

plans to expand cold rolling capacity<br />

at its Kaoshiung works on rising<br />

competition from aluminium rollers<br />

in China. CS <strong>Alu</strong>minium had planned<br />

to build a new 42,000 tpy cold rolling<br />

line in southern Taiwan, which it hoped<br />

to complete by the end of 2009.<br />

The plan has now been postponed<br />

in<strong>de</strong>finitely. CS <strong>Alu</strong>minium plans<br />

to make another look at its product<br />

mix and focus more on Taiwanese<br />

<strong>de</strong>mand going forward. The company<br />

currently sells 70% of its production<br />

in Taiwan and exports the rest.<br />

CS <strong>Alu</strong>minium has also a 35,000 tpy<br />

aluminium cold rolling mill in Ningbo<br />

On the move<br />

Alcoa has named Charles D. McLane as<br />

its new Chief Financial Officer effective 1<br />

January 2007. McLane will succeed Joseph<br />

Muscari who will retire to become Chairman<br />

and CEO of Minerals Technologies Inc.<br />

Alcoa has appointed Joseph R. Lucot Vice<br />

Presi<strong>de</strong>nt – Corporate Controller and elected<br />

him officer of the company. Alcoa elected<br />

new vice presi<strong>de</strong>nts: Kevin J. Anton, Presi<strong>de</strong>nt,<br />

Alcoa Materials Management; Olivier<br />

Jarrault, who leads the Alcoa Fastening<br />

Systems business; Raymond B. Mitchell,<br />

who serves as Presi<strong>de</strong>nt Alcoa Investment<br />

Cast and Forged Products; and Wayne G.<br />

Osborn, Managing Director, Alcoa World<br />

<strong>Alu</strong>mina Australia.<br />

Alcoa has ma<strong>de</strong> several executive changes:<br />

Michael Parker, currently General Manager,<br />

Alcoa Materials Management, will become<br />

Vice Presi<strong>de</strong>nt of that division; Timothy<br />

Reyes, senior Vice Presi<strong>de</strong>nt of Alcoa Materials<br />

Management, will become Vice Presi<strong>de</strong>nt<br />

of marketing for Alcoa World <strong>Alu</strong>mina<br />

and Chemicals; William Rice, Vice Presi<strong>de</strong>nt<br />

of marketing for Alcoa World <strong>Alu</strong>mina and<br />

Chemicals, will become Vice Presi<strong>de</strong>nt of<br />

in eastern China, which is still un<strong>de</strong>rgoing<br />

test-runs.<br />

China<br />

Private aluminium fabricator in<br />

China plans expansion to meet<br />

rising <strong>de</strong>mand<br />

Mo<strong>de</strong>rn International Enterprise<br />

(Nanhai) Holding is planning big expansions<br />

to its aluminium fabricating<br />

and extruding capacity to meet rising<br />

<strong>de</strong>mand in China and in export markets.<br />

The privately owned Chinese<br />

company intends to increase capacity<br />

at a newly acquired 40,000 tpy aluminium<br />

extru<strong>de</strong>r in Chiping, eastern<br />

Shandong province, to 100,000 tpy by<br />

the end of February 2007. The company<br />

intends to raise aluminium fabricating<br />

capacity in Foshan, southern<br />

Guangdong province, to 120,000 tpy<br />

over the next five years, from 20,000<br />

tpy. The Foshan plant produces aluminium<br />

alloy and aluminium bars.<br />

mining. Rice will serve on the Halco board<br />

and represent Alcoa’s interest in the CBG<br />

Guinea Bauxite mining operations; Russell<br />

Williams, Vice Presi<strong>de</strong>nt of mining, will become<br />

Vice Presi<strong>de</strong>nt of mining projects in<br />

Asia, focusing on Asian bauxite issues.<br />

The Novelis Board of Directors has accepted<br />

the resignation of director John D. Watson,<br />

who informed the board of his need to step<br />

down as a director for personal reasons.<br />

Hydro <strong>Alu</strong>minium appointed Cecilie Ditlev-<br />

Simonsen Executive Vice Presi<strong>de</strong>nt, to join<br />

the company’s top management team with<br />

overall responsibility for communication and<br />

reputation management.<br />

Rio Tinto has appointed Tom Albanese,<br />

currently Director of Group Resources, as its<br />

new CEO, to replace Leigh Clifford on 1<br />

May 2007.<br />

The Presi<strong>de</strong>nt of Alcan’s Primary Metal Group<br />

for the Asian Pacific area, Marco Palmieri,<br />

has left the company to pursue other career<br />

opportunities. His position no longer exists.<br />

Bengt Lie Hansen has been appointed<br />

head of Hydro’s Russia business unit. The<br />

change will be effective as of January 2007.<br />

68 ALUMINIUM · 1-2/2007<br />

China<br />

Yangkuang <strong>Alu</strong>minium mulls<br />

downstream projects<br />

China’s Yangkuang Ke-Au <strong>Alu</strong>minium<br />

Co is mulling downstream aluminium<br />

projects as Beijing tightens<br />

controls on the primary aluminium<br />

sector. Yangkuang, which operates<br />

a 140,000 tpy aluminium smelter in<br />

eastern Shandong province, is consi<strong>de</strong>ring<br />

downstream projects, including<br />

aluminium alloy and recycling.<br />

The company has not finalized plans<br />

but once that is done, construction<br />

is likely to start within the next two<br />

years. Projects will be at least 50,000<br />

tpy in capacity. Yangkuang exports<br />

the majority of it aluminium ingots to<br />

south and southeast Asia.<br />

China<br />

Kunshan to commission 25,000<br />

tpy foil mill in 2007<br />

Kunshan <strong>Alu</strong>minium Co (KAC), owned<br />

by Hanjiang Group, will commission<br />

a 25,000 tpy foil mill in Kunshan in<br />

eastern Jiangsu province in June 2007.<br />

KAC intend to export the majority of<br />

its foil and Europe is likely to be an<br />

export <strong>de</strong>stination. The mill project is<br />

a first by Hanjiang Group, which also<br />

owns an aluminium smelter Hubei<br />

Danjiang <strong>Alu</strong>minium Co. Danjiang<br />

<strong>Alu</strong>minium is targeting production<br />

of 101,000 tonnes of aluminium ingot<br />

in 2006. Based in Danjiangkou city<br />

in central Hubei province, Hanjiang<br />

Group’s main business is hydropower.<br />

U.S.A.<br />

Indalex to sell drawn tube plant<br />

to Spectube<br />

Indalex Holding Corp., Illinois, agreed<br />

to sell its assets of its drawn tube operation<br />

in Winton, North Carolina, to<br />

Spectube Inc., Chicoutimi, Quebec.<br />

Un<strong>de</strong>r terms of the <strong>de</strong>finite agreement,<br />

Spectube will acquire substantially<br />

all of the assets of the Indalex drawn<br />

tube business in Winton including a<br />

dormant aluminium extrusion facility<br />

on the site. Spectube will continue to<br />

operate the Winton drawn tube plant,


which employs about 95 people, and<br />

Indalex will continue to supply the<br />

plant with extru<strong>de</strong>d aluminium un<strong>de</strong>r<br />

a supply contract with Spectube.<br />

The Winton plant makes porthole and<br />

seamless tube in alloys 6063, 6061,<br />

3003, 1100 and 6463 and has nine<br />

high-speed draw benches and four<br />

roll straightening machines.<br />

U.S.A.<br />

Start-up of Kaiser <strong>Alu</strong>minum’s<br />

heat-treat furnace at Trentwood<br />

The first heat-treat furnace in Kaiser<br />

<strong>Alu</strong>minum’s US$ 105 million Trentwood<br />

rolling mill expansion is now<br />

at full production after going through<br />

shakedown and start-up procedures<br />

during the third quarter. The second<br />

furnace is expected to be on line by<br />

mid-2007 and the final furnace and<br />

new stretcher by 2008. The expansion<br />

had been increased from an initial<br />

US$ 70 to 105 million and Kaiser<br />

would consi<strong>de</strong>r further expansions if<br />

customer <strong>de</strong>mand materialised.<br />

U.S.A.<br />

Quanex <strong>de</strong>nies Nichols unit to go<br />

back on sales block<br />

Quanex Corp., Houston, <strong>de</strong>nies that<br />

is will be shopping for a buyer for its<br />

Nichols <strong>Alu</strong>minum Corp. aluminium<br />

sheet business sometime during 2007.<br />

The breakout of Nichols <strong>Alu</strong>minum<br />

financial results in Quanex’s fourth<br />

quarter earning statement could be<br />

a signal that it is thinking about selling<br />

the business. Nichols <strong>Alu</strong>minum<br />

is an earn-and-protect business and<br />

Quanex broke out the numbers to provi<strong>de</strong><br />

better transparency. Previously,<br />

the numbers had been rolled into<br />

overall results for Quanex’s building<br />

products segment.<br />

China<br />

Malaysian aluminium extru<strong>de</strong>r<br />

Press Metal buys upstream plant<br />

in China<br />

Malaysian aluminium extru<strong>de</strong>r Press<br />

Metal plans to buy a 90% stake in<br />

China’s Hubei Huasheng <strong>Alu</strong>minium<br />

ALUMINIUM · 1-2/2007<br />

Or<strong>de</strong>r for SMS Demag<br />

CSWA Cold Rolling Co., Ltd. (Southwest<br />

<strong>Alu</strong>minium), China, which belongs to the<br />

Chinalco Group, has placed an or<strong>de</strong>r with<br />

SMS Demag, Germany, for the supply of a<br />

two-stand cold rolling mill for aluminium<br />

and aluminium alloys.<br />

The two-stand cold rolling mill constitutes<br />

the core of an investment package by<br />

means of which CSWA intends to increase<br />

its cold rolling capacity to more than half a<br />

million tonnes per year. The new mill will<br />

produce tin-can strip, panelling and litho<br />

material for the printing industry. The cold<br />

strip can be rolled up to a width of 1800<br />

mm and a maximum final thickness of 0.15<br />

mm.<br />

SMS Demag is the technical and commercial<br />

lea<strong>de</strong>r of an international consortium.<br />

The supply scope of the company covers a<br />

two-stand tan<strong>de</strong>m mill, three Multi-Plate<br />

plate filters for best rolling oil purity as<br />

and Electric Co Ltd for 360m yuan<br />

(US$ 46m) in a bid to secure raw materials<br />

and electricity for its Press Metal<br />

International (PMI) downstream<br />

aluminium manufacturing plant in<br />

Guangzhou. Huasheng <strong>Alu</strong>minium<br />

owns the Huasheng <strong>Alu</strong>minium Smelter,<br />

which produces aluminium ingot,<br />

and the Huasheng Electricty Generation<br />

power plant. Huasheng <strong>Alu</strong>minium<br />

produces 38,000 tpy of aluminium<br />

ingots. PMI is in the process of doubling<br />

its capacity to 43,000 tpy.<br />

Japan<br />

Kobe Steel and Alcoa to dissolve<br />

auto sheet joint ventures<br />

Kobe Steel and Alcoa have agreed to<br />

dissolve two aluminium auto sheet<br />

joint ventures. The two companies<br />

set up the 50 : 50 joint ventures, one<br />

based in the US and one in Japan, in<br />

1992. The US-based company, Alcoa<br />

Kobe Transportation Products Inc.,<br />

focuses on research and <strong>de</strong>velopment,<br />

while Kobe Alcoa Transportation Products<br />

Ltd in Japan manufactures and<br />

supplies aluminium sheet to Japanese<br />

car makers. Alcoa will acquire all<br />

ALUMINIUM SEMIS<br />

First 2-stand cold rolling mill for China<br />

well as a large airwash exhaustair<br />

cleaning system. The new rolling mill is<br />

equipped with state-of-the-art actuators<br />

and technological control systems. Both<br />

stands are <strong>de</strong>signed with the CVC6 plus<br />

technology. Such a multi-stand mill is particularly<br />

sophisticated in terms of technology<br />

because of the temperature sensitivity<br />

of the rolling oil used for the cold rolling<br />

of aluminium. The mill stands as well as all<br />

core components are manufactured in SMS<br />

Demag‘s workshop in Germany. Commissioning<br />

is scheduled for the spring of 2009.<br />

The Southwest <strong>Alu</strong>minium Works is consi<strong>de</strong>red<br />

a technology centre within the<br />

Chinalco Group. It is located in the Xipeng<br />

District of Chongqing, the metropolis of 30<br />

million at the upper course of the Yangtze<br />

river. SMS Demag AG forms part of the<br />

Metallurgical Plant and Rolling Mill Technology<br />

Business Area of the SMS group.<br />

stock in the R&D venture in January<br />

2007, while Kobe Steel will purchase<br />

all shares in the production and sales<br />

firm a month later. Kobe Steel will<br />

also take over the marketing of products<br />

in the Japanese market. Sales at<br />

the Japanese unit for the current year<br />

are anticipated to be less than ¥ 20<br />

billion (US$ 169.6m). �<br />

The Author<br />

The author, Dipl.-Ing. R. P. Pawlek is<br />

foun<strong>de</strong>r of TS+C, Technical Info Services<br />

and Consulting, Sierre (Switzerland), a<br />

new service for the primary aluminium<br />

industry. He is also the publisher of the<br />

standard works “<strong>Alu</strong>mina Refineries and<br />

Producers of the World” and “Primary<br />

<strong>Alu</strong>minium Smelters and Producers of<br />

the World”. These reference works are<br />

continually updated, and contain useful<br />

technical and economic information<br />

on all alumina refineries and primary<br />

aluminium smelters of the world. They<br />

are available as loose-leaf files and/or<br />

CD-roms from the <strong>Alu</strong>minium-Verlag,<br />

Marketing & Kommunikation GmbH in<br />

Düsseldorf, Germany.<br />

69


All illustrations: Signo<strong>de</strong> M ARKT UND TECHNIK<br />

Umreifungstechnik mit PET-Hochleistungsband<br />

„Keine Konzessionen<br />

an die Qualität“<br />

Lange Zeit galten Stahlbän<strong>de</strong>r als<br />

das non plus ultra, um Masseln,<br />

Walzbarren, Pressbolzen, Bleche<br />

o<strong>de</strong>r Profile für <strong>de</strong>n Transport zu<br />

umreifen und sicher an ihren Bestimmungsort<br />

zu bringen. Auch<br />

die Signo<strong>de</strong> Packaging Systems,<br />

ein Pionier in Sachen Umreifungstechnik,<br />

ist mit Stahlbän<strong>de</strong>rn groß<br />

gewor<strong>de</strong>n. Mittlerweile hat sich in<br />

<strong>de</strong>r <strong>Alu</strong>miniumindustrie in weiten<br />

Bereichen Kunststoffband durchgesetzt.<br />

Vor allem das Hochleistungsband<br />

„Tenax“ aus PET bietet<br />

in <strong>de</strong>r Kombination von hoher<br />

Bruchlast und Elastizität einen optimalen<br />

Transportschutz.<br />

Signo<strong>de</strong> ist seit 1986 ein Unternehmen<br />

<strong>de</strong>r ITW Illinois Tool Works Inc.<br />

und beschäftigt weltweit über 7.000<br />

Mitarbeiter in mehr als einhun<strong>de</strong>rt<br />

Län<strong>de</strong>rn. Rund 650 Mio. Euro Umsatz<br />

wer<strong>de</strong>n allein in Europa mit Umreifungstechnik<br />

erwirtschaftet. Im Jahr<br />

1913 zunächst als Seal and Fastener<br />

Company gegrün<strong>de</strong>t, ist Signo<strong>de</strong> damals<br />

wie heute ein Vorreiter in diesem<br />

Geschäft.<br />

Das Unternehmen sieht sich als<br />

Technologie- und Qualitätsführer im<br />

Umreifungsgeschäft. Dafür sprechen<br />

über 600 aktive Patente. Qualität<br />

hat natürlich ihren Preis. Gerard W.<br />

Laks, <strong>de</strong>r als General Manager <strong>de</strong>n<br />

Län<strong>de</strong>rvertrieb für Westeuropa leitet,<br />

gibt unumwun<strong>de</strong>n zu, dass die Umreifungsmaschinen<br />

<strong>de</strong>s Unternehmens<br />

nicht zu Discountpreisen erhältlich<br />

sind. „Dafür machen wir keine Konzessionen<br />

an die Qualität unserer Produkte.<br />

Wenn jemand 20, 30 Prozent<br />

unter unseren Preisen liegt, bietet er<br />

im Grun<strong>de</strong> ein völlig an<strong>de</strong>res Produkt<br />

als wir an“, sagt Laks.<br />

Das Aushängeschild unter <strong>de</strong>n Signo<strong>de</strong>-PET-Produkten<br />

ist die AK200-<br />

Technologie in Kombination mit <strong>de</strong>m<br />

Hochleistungsband Tenax: einem<br />

hochfesten und äußerst elastischen<br />

PET-Band, das in seiner 19 bis 25<br />

mm breiten Ausführung eine Bruchlast<br />

von fast 12000 Newton aufweist.<br />

Noch wichtiger aber als die Bruchlast<br />

(die von Stahl ist weit größer) ist die<br />

hohe Schlagfestigkeit <strong>de</strong>s Tenax-Ban<strong>de</strong>s.<br />

Sie ist 25 Mal größer als die von<br />

Standard-Stahlbän<strong>de</strong>rn. Dieser Vorteil<br />

kommt beim Handling und Transport<br />

zum Tragen – etwa wenn ein<br />

Ladung vom Gabelstapler fällt o<strong>de</strong>r<br />

auf einem Lkw, per Bahn o<strong>de</strong>r Schiff<br />

durchgerüttelt wird. Das Tenaxband<br />

lässt sich bis zu fünf Prozent <strong>de</strong>hnen<br />

ohne plastisch zu verformen. Erst bei<br />

einer Dehnung von 16 Prozent reißt<br />

es. Im Gegensatz dazu reißt Standard-<br />

Stahlband bei 0,2 Prozent und Hoch-<br />

Mit PET-Band umreifte Palette Bolzen ... Strapped with PET strip: billets ...<br />

Strapping technology<br />

with PET high-performance strip<br />

“No concessions<br />

on quality”<br />

Steel strips have long been regar<strong>de</strong>d<br />

as the non plus ultra for the<br />

strapping of ingots, rolling slabs,<br />

extrusion billets, sheets or sections<br />

for transport and safe <strong>de</strong>livery<br />

to their <strong>de</strong>stination. Signo<strong>de</strong><br />

Packaging Systems too, a pioneer<br />

in the field of strapping technology,<br />

grew large on the strength of<br />

steel strip. Meanwhile, in wi<strong>de</strong><br />

areas of the aluminium industry<br />

plastic strip has become accepted.<br />

Above all the high-performance<br />

strip “Tenax” ma<strong>de</strong> from PET, with<br />

its combination of high breaking<br />

strength and elasticity, offers optimum<br />

protection during transport.<br />

Since 1986 Signo<strong>de</strong> has been owned<br />

by ITW Illinois Tool Works Inc. and<br />

employs more than 7,000 people<br />

worldwi<strong>de</strong> in more than 100 countries.<br />

In Europe alone its strapping<br />

technology generates a turnover of<br />

around 650 million euros. Foun<strong>de</strong>d in<br />

1913 first as Seal and Fastener Company,<br />

Signo<strong>de</strong> was then, as it is now, a<br />

front-runner in this business.<br />

The company views itself as a<br />

technology and quality lea<strong>de</strong>r in the<br />

strapping business. Evi<strong>de</strong>nce of this<br />

are over 600 active patents. Quality,<br />

of course, has its price. General<br />

Manager Gerard W. Laks, Distributor<br />

Sales Western Europe, states plainly<br />

that the company’s strapping machines<br />

are not to be had at discount<br />

prices. “We make no concessions on<br />

the quality of our products. If anyone’s<br />

prices are 20 or 30% lower than ours,<br />

it is basically because he is offering<br />

a product completely different from<br />

ours”, says Laks.<br />

The flagship among Signo<strong>de</strong> PET<br />

products is AK200 technology combined<br />

with the high-performance<br />

strip Tenax: a high-strength and exceptionally<br />

elastic PET strip which, in<br />

its 19 to 25 mm wi<strong>de</strong> version, has a<br />

breaking strength of almost 12,000 N.<br />

Even more important than the breaking<br />

strength, however (that of steel<br />

is far higher), is the high impact re-<br />

70 ALUMINIUM · 1-2/2007


sistance of Tenax strip, which is 25<br />

times greater than that of standard<br />

steel strips. That advantage is important<br />

during handling and transport,<br />

for example when a load falls off a<br />

fork-lift or is jud<strong>de</strong>red on a truck, rail<br />

wagon or ship. Tenax strip can stretch<br />

up to 5% without plastic <strong>de</strong>formation.<br />

It only snaps at an elongation of<br />

16%. In contrast, standard steel strip<br />

breaks at 0.2% and high-performance<br />

steel strip at 6% elongation. Stretched<br />

steel strip also essentially no longer<br />

contracts again after extension.<br />

A further advantage of PET strip is<br />

that its tightness is maintained when<br />

the strapped material cools down –<br />

stripping is often carried out at 70 °C<br />

or more – and shrinks slightly during<br />

this. Or when ingots are stacked in a<br />

1200 kg bundle and the packet sags<br />

un<strong>de</strong>r its own weight. The PET plastic<br />

strip contracts correspondingly<br />

so as to fit tightly again around the<br />

packaged material. In contrast steel<br />

strips have to be re-tightened, which<br />

incurs additional handling costs. But<br />

if the material has left the company’s<br />

premises, its packaging can no longer<br />

be re-tightened if the strapping becomes<br />

loose.<br />

Tenax strip has a number of other<br />

advantages compared with steel<br />

strips. It does not scratch or in<strong>de</strong>nt<br />

the metal surface and produces no<br />

corrosion spots. The risk of injury is<br />

smaller, since it is not sharp-edged<br />

like steel strip. It is 80% lighter than<br />

steel, which reduces freight charges,<br />

and it occupies up to 50% less storage<br />

space. And it does not have to be<br />

removed when the ingot packs are<br />

transferred to the melting furnace.<br />

Tests have shown that a typical ingot<br />

bundle of 980 kg (with about 50 g of<br />

Tenax strip) produces a total of 0.03%<br />

ash. This has no adverse effect at all<br />

on the metal quality.<br />

The centrepiece of Signo<strong>de</strong> strapping<br />

machines is the AK strapping<br />

head. This was <strong>de</strong>veloped as early as<br />

the 1980s: as the AK100 first for steel<br />

strips and then as the AK200 for plastic,<br />

and in the mid-1990s then for polyester.<br />

The AK200-HD head enables<br />

a tightening tension of up to 6000 N.<br />

“No other strapping head on the market<br />

can do that”, stresses Laks, who<br />

has looked after business with the �<br />

ALUMINIUM · 1-2/2007<br />

... und Stangen ... and bars<br />

leistungs-Stahlband bei sechs Prozent<br />

Dehnung. Ge<strong>de</strong>hntes Stahlband zieht<br />

sich zu<strong>de</strong>m grundsätzlich nicht mehr<br />

zusammen.<br />

Der Vorteil <strong>de</strong>s PET-Ban<strong>de</strong>s besteht<br />

auch darin, dass die Spannung erhalten<br />

bleibt, wenn das umreifte Material<br />

abkühlt – oft wird bei 70 °C und mehr<br />

umreift – und dabei leicht schrumpft.<br />

O<strong>de</strong>r wenn Masseln zu einem Bün<strong>de</strong>l<br />

von 1.200 kg gestapelt wer<strong>de</strong>n und<br />

sich das Paket unter seinem Eigengewicht<br />

staucht. Das PET-Kunststoffband<br />

zieht sich entsprechend zusammen,<br />

so dass es weiterhin eng um das<br />

verpackte Material liegt. Stahlbän<strong>de</strong>r<br />

müssen dagegen nachgespannt wer<strong>de</strong>n,<br />

was zusätzliche Handlingkosten<br />

verursacht. Hat das Material <strong>de</strong>n Firmenhof<br />

verlassen, kann jedoch nichts<br />

mehr an <strong>de</strong>r Verpackung nachgezurrt<br />

wer<strong>de</strong>n, falls die Umreifung sich lockert.<br />

MARKETS AND TECHNOLOGY<br />

Tenaxband bietet eine Reihe weitere<br />

Vorteile gegenüber Stahlband. Es<br />

verkratzt nicht die Metalloberfläche,<br />

kerbt sich nicht ein und verursacht<br />

keine Korrosionsflecken. Die Verletzungsgefahr<br />

ist geringer, da es nicht<br />

scharfkantig wie Stahlband ist. Es ist<br />

80 Prozent leichter als Stahl, was die<br />

Frachtkosten verringert, und beansprucht<br />

bis zu 50 Prozent weniger<br />

Lagerraum. Und es muss nicht entfernt<br />

wer<strong>de</strong>n, wenn die Masselpakete<br />

in <strong>de</strong>n Schmelzofen kommen. Tests<br />

haben gezeigt, dass ein typisches<br />

Masselbün<strong>de</strong>l von 980 kg (mit ca. 50<br />

Gramm Tenaxband) insgesamt 0,03<br />

Prozent Asche hinterlässt. Die Metallqualität<br />

wird dadurch in keinster<br />

Weise beeinträchtigt.<br />

Das Herzstück <strong>de</strong>r Signo<strong>de</strong>-Umreifungsanlagen<br />

ist <strong>de</strong>r AK-Umreifungskopf.<br />

Entwickelt wur<strong>de</strong> er bereits in<br />

<strong>de</strong>n 1980er Jahren: als AK100 �<br />

71


MARKT UND TECHNIK<br />

Begutachtung eines Masselbün<strong>de</strong>l nach einem Falltest<br />

Assessment of an ingot pack after a fall test<br />

zunächst für Stahlbän<strong>de</strong>r, als AK200<br />

anschließend für Kunststoff, Mitte<br />

<strong>de</strong>r 1990er Jahre dann für Polyester.<br />

Der AK200-HD-Kopf leistet eine Zugspannung<br />

bis zu 6000 Newton. „Das<br />

kann kein an<strong>de</strong>rer Umreifungskopf<br />

im Markt“, betont Laks, <strong>de</strong>r seit 1996<br />

das Geschäft mit <strong>de</strong>r <strong>Alu</strong>miniumindustrie<br />

betreut. Ähnlich anspruchsvoll<br />

sind auch die Leistungswerte für <strong>de</strong>n<br />

Verschluss. Das patentierte Z-Weld<br />

Verschlussverfahren garantiert eine<br />

Verschlussstärke von 90 Prozent.<br />

Dieser Vorteil ergibt sich daraus,<br />

dass Signo<strong>de</strong> nicht weg-, son<strong>de</strong>rn lastabhängig<br />

umreift. Eine wegabhängige<br />

Umreifung hat <strong>de</strong>n Nachteil, dass<br />

die Bespannung stoppt, sobald ein<br />

Gegendruck erfolgt. Demgegenüber<br />

wird das Band bei <strong>de</strong>r lastabhängigen<br />

Umreifung so lange gezogen, bis eine<br />

leichte Dehnung erfolgt. Erst dann<br />

wird das Band unter hohem Druck<br />

verschlossen.<br />

Das Umreifungsband wird ebenso<br />

wie die Maschinen von Signo<strong>de</strong> selbst<br />

produziert, und zwar in England und<br />

Finnland. Für Tenaxband verwen<strong>de</strong>t<br />

man „jungfräuliches“ Material, damit<br />

die Elastizität in vollem Umfang<br />

gewährleistet ist. Recyclingmaterial<br />

kommt nur bei Standardband mit zum<br />

Einsatz. Die Zutaten zur Bandherstellung<br />

bleiben ein Geheimnis weniger<br />

„Küchenchefs“, so wohlbehütet wie<br />

die Rezeptur von Coca-Cola. Man will<br />

<strong>de</strong>n Wettbewerb ja nicht unbedingt<br />

schlauer machen als nötig.<br />

Ähnliches gilt für die<br />

Fertigung <strong>de</strong>s AK-200-<br />

Kopfes, <strong>de</strong>r ausschließlich<br />

in Dinslaken produziert<br />

wird. An diesem Signo<strong>de</strong>-<br />

Standort erfolgte die Entwicklung<br />

<strong>de</strong>s AK-Kopfs,<br />

hier sind rund 300 Mitarbeiter<br />

beschäftigt, hier wird<br />

das Fertigungs-Knowhow<br />

gebün<strong>de</strong>lt.<br />

In <strong>de</strong>r <strong>Alu</strong>miniumindustrie<br />

wur<strong>de</strong>n die ersten zwei<br />

Maschinen mit AK200-<br />

Kopf 1996 bei Alcan Isal<br />

in Island zum Umreifen<br />

von Masseln und Barren<br />

bis mittlerweile 30 Tonnen<br />

aufgestellt. Für sehr schwere<br />

Güter wie Bolzen kommt<br />

PET-Tenaxband in <strong>de</strong>r Breite<br />

von 19 bis 25 mm zum Einsatz. Für<br />

Bolzen wird 25 mm breites Band verwen<strong>de</strong>t,<br />

für das Verpacken von Masseln<br />

reicht dagegen 19 mm breites<br />

Hochleistungsband. Bei weniger hohen<br />

Ansprüchen (z. B. für Profilverpackungen)<br />

wird PET-Standardband<br />

in Breiten zwischen 12 und 16 mm<br />

verwen<strong>de</strong>t.<br />

Mehr als 2.600 AK-Köpfe sind mittlerweile<br />

weltweit und branchenübergreifend<br />

im Markt. „Und je<strong>de</strong> Woche<br />

kommen weitere hinzu“, so Laks. 890<br />

davon sind AK200-Köpfe für Polyesterband.<br />

In <strong>de</strong>r <strong>Alu</strong>miniumindustrie<br />

sind etwa 155 AK200-Köpfe im Einsatz.<br />

Hydro <strong>Alu</strong>minium ist laut Laks<br />

komplett mit Signo<strong>de</strong>-Maschinen<br />

bzw. AK200-HD-Köpfen ausgerüstet,<br />

die in Umreifungsmaschinen für<br />

Stahlband nachgerüstet wur<strong>de</strong>n.<br />

Auslieferungen <strong>de</strong>r vergangenen<br />

Monate betreffen unter an<strong>de</strong>rem <strong>de</strong>n<br />

Verkauf von AK200 19mm-Anlagen<br />

für Masseln nach Albras in Brasilien.<br />

Alba Bahrain hat neue AK200-HD-<br />

Anlagen in Auftrag gegeben. CBA or<strong>de</strong>rte<br />

für seine brasilianische Hütte<br />

eine Kombimaschine mit AK100/200-<br />

Köpfen, die für 25 mm Stahl- und 19<br />

mm Polyesterband ausgelegt ist. Eine<br />

Umstellung von PET auf Stahlband<br />

kann übrigens innerhalb von 15 Minuten<br />

erfolgen, <strong>de</strong>nn die Bauart <strong>de</strong>r<br />

AK100- und 200-Köpfe ist i<strong>de</strong>ntisch.<br />

An Assan <strong>Alu</strong>minium in <strong>de</strong>r Türkei<br />

ging eine Stahlbandanlage für Coils,<br />

aluminium industry since 1996. Similarly<br />

impressive are the performance<br />

figures for the closure. The patented<br />

Z-weld closure process guarantees a<br />

closure strength of 90%.<br />

This advantage stems from the fact<br />

that Signo<strong>de</strong> straps not in a path-<strong>de</strong>pen<strong>de</strong>nt<br />

but in a load-<strong>de</strong>pen<strong>de</strong>nt way.<br />

Path-<strong>de</strong>pen<strong>de</strong>nt strapping has the disadvantage<br />

that the tightening stops as<br />

soon as there is a counter-pressure.<br />

In contrast, during load-<strong>de</strong>pen<strong>de</strong>nt<br />

strapping the strip is tensioned until<br />

a slight extension takes place. Only<br />

then is the strap sealed un<strong>de</strong>r high<br />

pressure.<br />

Both the strapping strips and the<br />

machines are produced by Signo<strong>de</strong><br />

itself, in England and Finland. For<br />

Tenax strip “virgin” material is used,<br />

to guarantee the full extent of its elasticity.<br />

Recycled material is only ever<br />

used for standard strip. The ingredients<br />

for strip production remain a secret<br />

between a few “master-chefs”, as<br />

well-protected as the recipe for Coca-<br />

Cola. One does not want to make the<br />

competition any more cunning than<br />

necessary.<br />

The same applies to the production<br />

of the AK200 head, which is ma<strong>de</strong> exclusively<br />

in Dinslaken. The AK head<br />

was <strong>de</strong>veloped at the Signo<strong>de</strong> site in<br />

Dinslaken, where 300 people are employed<br />

and all the production knowhow<br />

is concentrated.<br />

In the aluminium industry the<br />

first two machines with AK200 heads<br />

were set up in 1996 at Alcan Isal in<br />

Iceland for strapping ingots and bars<br />

now up to 30 tonnes. For very heavy<br />

goods such as billets PET Tenax strip<br />

of width 19 to 25 mm is used. For billets<br />

25 mm strip is used, while in contrast<br />

19 mm high-performance strip is<br />

enough for packing ingots. In less <strong>de</strong>manding<br />

cases (e.g. for section packing)<br />

PET standard strip from 12 to 16<br />

mm wi<strong>de</strong> is used.<br />

Meanwhile, more than 2,600 AK<br />

heads have been marketed worldwi<strong>de</strong><br />

and in many branches. “And the<br />

number is increasing every week”, says<br />

Laks. 890 of them are AK200 heads<br />

for polyester strip. In the aluminium<br />

industry about 155 AK200 heads are<br />

in use. According to Laks Hydro <strong>Alu</strong>minium<br />

is completely equipped with<br />

Signo<strong>de</strong> machines and AK200 heads,<br />

72 ALUMINIUM · 1-2/2007


etrofitted in strapping machines for<br />

steel strip.<br />

Deliveries in the last few months<br />

inclu<strong>de</strong> for example the sale of AK200<br />

19 mm units for ingots to Albras in<br />

Brazil. Alba Bahrain has or<strong>de</strong>red new<br />

AK200-HD units. For its Brazilian<br />

smelter CBA or<strong>de</strong>red a combination<br />

machine with AK100/200 heads, <strong>de</strong>signed<br />

for 25 mm steel and 19 mm<br />

polyester strips. Besi<strong>de</strong>s, conversion<br />

from PET to steel strips can take place<br />

within 15 minutes, since the structure<br />

of the AK100 and AK200 heads is<br />

i<strong>de</strong>ntical. A steel strip unit for coils to<br />

be heat treated has gone to Assan <strong>Alu</strong>minium<br />

in Turkey. Dubal is currently<br />

converting from steel to plastic.<br />

The remaining approximately<br />

1,700 aggregates sold are AK100<br />

heads for steel strips. Many have been<br />

giving good service day after day for<br />

over 20 years. Occasionally they are<br />

cleaned and maintained, or a bla<strong>de</strong><br />

or conveyor wheel has to be replaced.<br />

There are, however, hardly any other<br />

parts affected by wear. According to<br />

Laks, at 2,000 to 2,500 euros per year<br />

maintenance costs are the lowest on<br />

the market. This is also because the<br />

technical components are on the outsi<strong>de</strong><br />

of the head and therefore easy<br />

to reach.<br />

It might be thought that such reliability<br />

is not very good for business,<br />

since ultimately one wants to sell machines.<br />

But the company stays true<br />

to its philosophy, which can be expressed<br />

as, “How can we improve our<br />

work today for the sake of tomorrow”.<br />

Improve, in or<strong>de</strong>r to make the customer’s<br />

work easier, save costs, and<br />

ensure that the goods arrive at their<br />

<strong>de</strong>stination undamaged. That pays<br />

in the long term. As Laks explains,<br />

“Since the customers are happy with<br />

the machine, we ensure long-term<br />

sales of the associated strip”.<br />

Besi<strong>de</strong>s, <strong>de</strong>mand is increasing continually.<br />

Laks reports that business<br />

with the AK heads is going well. So<br />

far they are mainly used in the smelter<br />

industry. Almost two-thirds of all<br />

smelters use AK200 heads, with an<br />

upward trend since more and more<br />

companies are converting from steel<br />

to polyester strip. “Americans are<br />

lagging rather behind in this <strong>de</strong>velopment”,<br />

says Laks. They are even �<br />

ALUMINIUM · 1-2/2007<br />

die wärmebehan<strong>de</strong>lt<br />

wer<strong>de</strong>n. Dubal<br />

rüstet <strong>de</strong>rweil von<br />

Stahl auf Kunststoff<br />

um.<br />

Die an<strong>de</strong>ren rund<br />

1.700 verkauften Aggregate<br />

sind AK100-<br />

Köpfe für Stahlbän<strong>de</strong>r.<br />

Manche leisten<br />

seit über 20 Jahren<br />

ihren Dienst, Tag für<br />

Tag. Gelegentlich<br />

wer<strong>de</strong>n sie gereinigt<br />

und gewartet, muss<br />

ein Messer ausgetauscht<br />

wer<strong>de</strong>n o<strong>de</strong>r<br />

ein För<strong>de</strong>rrad. Weitere<br />

Verschleißteile<br />

gibt es jedoch kaum.<br />

Die Kosten für die<br />

Instandhaltung sind<br />

mit 2.000 bis 2.500<br />

Euro pro Jahr laut<br />

Laks die niedrigsten<br />

im Markt. Auch weil sich die Technik<br />

an <strong>de</strong>r Außenseite <strong>de</strong>s Kopfes befin<strong>de</strong>t<br />

und damit einfach zu erreichen ist.<br />

Man könnte meinen, diese Zuverlässigkeit<br />

sei ein Stück weit schädlich<br />

fürs Geschäft, <strong>de</strong>nn schließlich will<br />

man ja auch Maschinen verkaufen.<br />

Doch man bleibt <strong>de</strong>r Firmenphilosophie<br />

treu, die da lautet: „Wie können<br />

wir unsere Arbeit von heute für morgen<br />

verbessern“. Verbessern, um <strong>de</strong>m<br />

Kun<strong>de</strong>n die Arbeit zu erleichtern, Kosten<br />

zu ersparen und sicherzustellen,<br />

dass die Ware ohne Schä<strong>de</strong>n beim<br />

Adressaten ankommt. Das zahlt sich<br />

langfristig aus. „Denn sind die Kun<strong>de</strong>n<br />

mit <strong>de</strong>m Werkzeug zufrie<strong>de</strong>n, verdienen<br />

wir langfristig am Verkauf <strong>de</strong>s<br />

zugehörigen Ban<strong>de</strong>s“, so Laks.<br />

Im Übrigen wächst die Nachfrage<br />

kontinuierlich. Das Geschäft mit <strong>de</strong>n<br />

AK-Köpfen läuft laut Laks gut. Sie wer<strong>de</strong>n<br />

bislang vor allem in <strong>de</strong>r Hüttenindustrie<br />

eingesetzt. Fast zwei Drittel aller<br />

Hütten verwen<strong>de</strong>n AK200-Köpfe.<br />

Ten<strong>de</strong>nz steigend, <strong>de</strong>nn immer mehr<br />

Betriebe rüsten von Stahlband auf Polyester<br />

um. „Die Amerikaner hinken<br />

dieser Entwicklung noch etwas hinterher“,<br />

sagt Laks. Sie seien eben konservativer<br />

als die Europäer. Außer<strong>de</strong>m<br />

sind spezielle Begutachtungen<br />

bei Einsatz von PET-Band für <strong>Alu</strong>miniumprodukte<br />

erfor<strong>de</strong>rlich. Da bleibt<br />

MARKETS AND TECHNOLOGY<br />

Zusätzliche Sicherung mit <strong>de</strong>m neuen Signo<strong>de</strong> „Flex Stretch Net“<br />

The new Signo<strong>de</strong> „Flex Stretch Net“ for optimum transit security<br />

also noch viel Spielraum für Wachstum,<br />

sowohl in Nord- wie in Südamerika.<br />

Erste AK200-HD-Maschinen für<br />

Bolzen sind jedoch schon in <strong>de</strong>n USA<br />

und Kanada installiert.<br />

Langfristig dürften auch <strong>de</strong>r chinesische<br />

und russische Markt attraktiv<br />

wer<strong>de</strong>n. Dort dominiert noch das Umreifen<br />

mit Stahlband o<strong>de</strong>r sogar mit<br />

<strong>Alu</strong>miniumdraht.<br />

Der Marktbedarf in Europa ist<br />

dagegen weitgehend ge<strong>de</strong>ckt. Zumin<strong>de</strong>st<br />

in <strong>de</strong>n Hüttenbetrieben. Wachstumspotenziale<br />

bietet dagegen die Recyclingbranche<br />

und die Verarbeitung.<br />

Signo<strong>de</strong> hat hier vor allem die Umreifung<br />

von <strong>Alu</strong>miniumwalzprodukten<br />

wie Bleche und Coils im Visier.<br />

Zur Marktbearbeitung wur<strong>de</strong> daher<br />

erst kürzlich ein neues Global<br />

Specialist Team gebil<strong>de</strong>t, das von<br />

Laks geführt wird. Es soll die Kontakte<br />

zu <strong>de</strong>n Signo<strong>de</strong>-Nie<strong>de</strong>rlassungen, die<br />

die OEMs weltweit betreuen, intensivieren.<br />

Außer<strong>de</strong>m soll das Team die<br />

lokalen Key Account Manager von Signo<strong>de</strong><br />

dabei unterstützen, mit <strong>Alu</strong>miniumhütten<br />

und -verarbeitern Kontakt<br />

aufzunehmen, um sie mit Testversuchen<br />

von <strong>de</strong>r Leistungsstärke<br />

<strong>de</strong>s Polyesterban<strong>de</strong>s zu überzeugen.<br />

Das sollte nicht allzu schwer fallen.<br />

�<br />

73


MARKETS AND TECHNOLOGY<br />

more conservative than Europeans.<br />

Moreover, special expertise is nee<strong>de</strong>d<br />

when using PET strip for aluminium<br />

products. So there is still plenty<br />

of room for growth, in both North and<br />

South America. However, the first few<br />

AK200-HD machines for billets have<br />

already been installed in the USA and<br />

Canada. In the long term the markets<br />

in China and Russia should also become<br />

attractive. In both countries<br />

strapping with steel strip or even alu-<br />

minium wire is still dominant.<br />

In contrast, market needs in Europe<br />

have largely been covered, at least<br />

in smelter operations. On the other<br />

hand there is growth potential in the<br />

recycling branch and in processing.<br />

Here, Signo<strong>de</strong> mainly has the strapping<br />

of rolled aluminium products<br />

such as sheets and coils in its sights.<br />

To prepare the market, therefore, a<br />

new Global Specialist Team was recently<br />

formed, which is led by Laks.<br />

It aims to intensify contacts with the<br />

Signo<strong>de</strong> establishments which look<br />

after OEMs worldwi<strong>de</strong>. In addition,<br />

the Team will support Signo<strong>de</strong>’s local<br />

Key Account Managers in making<br />

contact with aluminium smelters<br />

and processors, in or<strong>de</strong>r to persua<strong>de</strong><br />

them of the effective performance of<br />

polyester strip by means of tests. That<br />

should not be difficult at all.<br />

Alcutec Engineering<br />

German know-how for Russian aluminium<br />

recycling complex<br />

MVS (Mordovvtorsyrio) in the<br />

capital of the Russian republic of<br />

Mordovia, Saransk, has started<br />

the construction of an aluminium<br />

recycling complex with an annual<br />

capacity of 60,000 tonnes of metal<br />

for a wi<strong>de</strong> range of alloys. The<br />

plant concept is based on the most<br />

advanced equipment available for<br />

this kind of production. The technology<br />

is provi<strong>de</strong>d by the German<br />

company Alcutec Engineering,<br />

which also implemented all the<br />

engineering services and supplied<br />

the required equipment. The individual<br />

components were manufactured<br />

in Germany with some components<br />

supplied from the UK, the<br />

Netherlands and France. The steel<br />

structures were also built in Germany,<br />

“since quality control and<br />

monitoring are very painstaking<br />

and therefore costly”, as Christoph<br />

Schmitz, Managing Director of Alcutec,<br />

stresses.<br />

Key equipment for the melting section<br />

are two tilting rotary drum furnaces<br />

with a capacity of 25 tonnes<br />

each, having a cycle time (tap to tap)<br />

of 4 hours. To be able to process all<br />

kinds of aluminium scrap of different<br />

origin the complex is equipped with<br />

Technological <strong>de</strong>tails of the tilting rotary drum<br />

furnace were published in ALUMINIUM 2004,<br />

issue 3, 172-177, and issue 4, 288-290.<br />

In <strong>de</strong>r Bauphase: Einer von zwei kippbaren Drehtrommelöfen ...<br />

In the building phase: one of two tilting rotary drum furnaces …<br />

a high performance shred<strong>de</strong>r system<br />

with adjacent classifiers. Two reverberatory<br />

furnaces, each of 25 tonnes<br />

bath capacity with a melting rate of<br />

3 tonnes per hour, facilitate casting.<br />

The melting capacity is required to<br />

be able to melt no-go production and<br />

clean scrap.<br />

The arrangement of the furnaces<br />

permits continuous casting. A dual<br />

casting line with automatic stacker<br />

produces remelt ingots. To obtain high<br />

quality standards an in-line, <strong>de</strong>gassing<br />

and filtration system is arranged<br />

ahead of the casting line. The neces-<br />

74 ALUMINIUM · 1-2/2007<br />

�<br />

sary plant also inclu<strong>de</strong>s a state-of-theart<br />

gas scrubbing system to complete<br />

the plant set-up. This shows that the<br />

Russian customer regards environmental<br />

protection as extremely important<br />

and makes no concessions in<br />

that respect.<br />

The MVS contract is worth approximately<br />

10 million euros. The<br />

contract was awar<strong>de</strong>d in May 2006<br />

and <strong>de</strong>livery was conclu<strong>de</strong>d a few<br />

days ago once reconstruction of the<br />

shed for the plant had been completed.<br />

“The customer assigned to us highly<br />

qualified staff, with whom outstand-<br />

Photos: Alcutec Engineering


ing collaboration was possible”, says<br />

Schmitz in appreciation of the good<br />

co-operation during the performance<br />

of the contract work.<br />

For Alcutec the Russian market<br />

is very important and is a mainstay<br />

of the company’s business. After the<br />

construction of plants at MOPM, Moscow<br />

and VTORMET, MVS is the third<br />

complete aluminium recycling complex<br />

supplied to Russia by Alcutec.<br />

A further advantage in this was that<br />

Russian import duties are reduced in<br />

the Province of Mordovia in or<strong>de</strong>r to<br />

encourage the establishment of industrial<br />

companies there. A proportion<br />

of the casting alloys produced go<br />

towards meeting domestic needs, but<br />

MVS aims to export the remain<strong>de</strong>r.<br />

With the current investments MVS is<br />

preparing itself for the fact that as the<br />

Russian domestic automobile market<br />

<strong>de</strong>velops into one of the country’s<br />

largest purchasers, castings of better<br />

quality will be nee<strong>de</strong>d. “The plant<br />

now supplied makes MVS not only<br />

Russia’s largest secondary melting<br />

operator, but also puts the company<br />

in a position to compete fully with European<br />

suppliers”, says Schmitz.<br />

Important as the Russian market<br />

may be for Alcutec, the USA and<br />

emerging Asian markets such as India<br />

are also interesting market regions<br />

for Alcutec’s engineering business.<br />

In contrast, it is very difficult to get<br />

or<strong>de</strong>rs for complete new projects in<br />

Germany, where as a rule existing<br />

but largely superannuated recycling<br />

plants are being mo<strong>de</strong>rnised.<br />

“Nobody builds as sturdily<br />

as we do“<br />

Alcutec Engineering provi<strong>de</strong>s professional<br />

engineering services for the secondary<br />

aluminium industry, starting<br />

from feasibility studies, through basic<br />

and <strong>de</strong>tailed engineering, to project<br />

management. This also inclu<strong>de</strong>s the<br />

supply of technology and process<br />

know-how as well as the <strong>de</strong>velopment<br />

of new processes. As Schmitz points<br />

out, “Our professional service ensures<br />

a conclusive engineering and planning<br />

phase. We strive to avoid critical<br />

interfaces between equipment and<br />

plant selections.” A particular point of<br />

differentiation from the competition is<br />

ALUMINIUM · 1-2/2007<br />

und kippbaren Herdöfen mit Schmelzleistung für MVS<br />

… and tilting hearth furnaces with the melting power for MVS<br />

expressed as, “Nobody builds as sturdily<br />

as we do”. For a recycling furnace<br />

to operate for 20 years or even longer<br />

without problems, for example without<br />

cracks in the external masonry or<br />

the furnace housing, a warp-resistant<br />

steel structure with correspondingly<br />

large wall thickness is nee<strong>de</strong>d. “That<br />

may be somewhat more expensive,<br />

but it is an investment which pays in<br />

the long term”, says Schmitz.<br />

Alcutec supplies proprietary equipment<br />

consisting of tilting rotary drum<br />

furnaces, hearth furnaces, charging<br />

systems, chip drying systems as well<br />

as other tailor-ma<strong>de</strong> equipment for<br />

the secondary aluminium industry.<br />

In co-operation with other firms the<br />

Für die russische MVS in <strong>de</strong>r Republik<br />

Mordowien hat Alcutec Engineering aus<br />

Nie<strong>de</strong>rzier einen Komplettauftrag über<br />

zwei kippbare Drehtrommelöfen, zwei<br />

kippbare Herdöfen mit Schmelzleistung<br />

inklusive Nebeneinrichtungen wie Abgasreinigung,<br />

Kühl-, Elektro- und Hydraulikeinrichtungen<br />

sowie Schred<strong>de</strong>ranlage<br />

abgewickelt.<br />

Die Kapazität <strong>de</strong>r Recyclingöfen beträgt<br />

je 25 Tonnen. Die Herdöfen haben eine<br />

Kapazität von ebenfalls je 25 Tonnen bei<br />

einer Schmelzleistung von drei Tonnen pro<br />

Stun<strong>de</strong>.<br />

MARKETS AND TECHNOLOGY<br />

company supplies all other equipment<br />

used in the industry, such as ingot<br />

casting lines with stacker, waste<br />

gas scrubbing plants and auxiliary<br />

equipment.<br />

The business activities comprise<br />

professional services for erection,<br />

commissioning and plant maintenance,<br />

including the <strong>de</strong>velopment of<br />

maintenance systems. One activity is<br />

operational assistance by providing<br />

experts with a <strong>de</strong>tailed service report<br />

in their field. This service enables the<br />

customer to update the methods of<br />

an existing plant or to use the latest<br />

technology efficiently.<br />

The quality requirements of the<br />

different aluminium alloys are stead-<br />

Alcutec rüstet russische Umschmelzhütte aus<br />

Der MVS-Recyclingkomplex ist auf eine<br />

Jahresleistung von 60.000 Tonnen ausgelegt.<br />

„Mit <strong>de</strong>r gelieferten Anlage entwickelt<br />

sich MVS nicht nur zur größten Umschmelzhütte<br />

in Russland, das Unternehmen<br />

wird auch gegenüber europäischen<br />

Anbietern absolut wettbewerbsfähig“,<br />

sagt Alcutec-Geschäftsführer Christoph<br />

Schmitz. Der Auftrag hat ein Volumen von<br />

rund zehn Millionen Euro und wur<strong>de</strong> vor<br />

wenigen Tagen ausgeliefert. Es ist <strong>de</strong>r dritte<br />

russische Komplettauftrag für Alcutec.<br />

„Weitere Projekte für <strong>de</strong>n russischen Markt<br />

sind in Vorbereitung“, so Schmitz.<br />

75<br />


MARKETS AND TECHNOLOGY<br />

ily becoming stricter, particularly for<br />

the most important customer of the<br />

secondary aluminium plants – the<br />

automotive industry. Quality means<br />

minimum <strong>de</strong>viations from the target<br />

alloy composition, no or negligible<br />

mechanical inclusions and very little<br />

gaseous contamination. On the other<br />

hand, the plant must operate economically<br />

successfully. Consi<strong>de</strong>ring<br />

spiralling energy costs and the more<br />

and more stringent environmental<br />

regulations, this is becoming increasingly<br />

difficult.<br />

However, the most critical factor<br />

is the shortage of suitable aluminium<br />

scrap. The quantity of this raw material<br />

is limited worldwi<strong>de</strong> and numerous<br />

countries compete to get their<br />

share, with the result that scrap prices<br />

are high. The secondary aluminium<br />

industry is therefore compelled to<br />

process even scrap of low quality, in<br />

other words scrap that is heavily con-<br />

Kippdrehtrommelofen im Einsatz bei <strong>de</strong>r Firma Oetinger.<br />

Tilting rotary drum furnace in use at Oetinger in Germany<br />

taminated by organic and inorganic<br />

contaminants and compound metals.<br />

Clean scrap originating from production<br />

waste or no-go parts is generally<br />

not available to refiners in the secondary<br />

aluminium industry.<br />

One key question for a production<br />

manager is therefore, how much aluminium<br />

is produced from a certain<br />

quantity of scrap. This is expressed<br />

by the metal recovery factor, namely<br />

the ratio between metal produced and<br />

scrap consumed. This is easy to use in<br />

an economical evaluation since prices<br />

of scrap and metal are readily available.<br />

However, sometimes confusing<br />

information is published on recovery:<br />

for instance, a value of 90% or even<br />

higher, although the scrap processed<br />

may have had a metal content of only<br />

70%. So the figures given have to be<br />

looked at carefully. They may be only<br />

valid for a very specific case such as<br />

a plant that remelts clean scrap un<strong>de</strong>r<br />

strictly controlled operating conditions.<br />

Melting such material in a reverberatory<br />

furnace may result in a metal<br />

loss as high as 70%, 80%, or even more,<br />

unless a special metal pumping system<br />

is used. The melting loss may than be<br />

reduced to reasonable values of 2 to<br />

5% of the metal contained in the feed<br />

material. This technology, however,<br />

entails operation with a metal heel<br />

in the furnace, and there are difficulties<br />

in obtaining the requested metal<br />

analysis if the<br />

metal charged<br />

is not very well<br />

specified. In fact<br />

this can only<br />

be the case in a<br />

closed-loop recycling<br />

process<br />

in a downstream<br />

plant.<br />

As is generally<br />

known, the<br />

secondary aluminiumindustry<br />

is divi<strong>de</strong>d<br />

into refiners and<br />

remelters. While<br />

refiners produce<br />

alloys from a<br />

wi<strong>de</strong> variety of<br />

scrap, remelters<br />

produce their<br />

alloys from clean scrap of <strong>de</strong>fined<br />

analysis. Consequently the key technology<br />

for the melting equipment<br />

is different. Reverberatory furnaces<br />

either <strong>de</strong>signed as hearth furnace or<br />

twin-chamber furnaces additionally<br />

equipped with feeding systems for<br />

small particles are used in remelting<br />

plants that process <strong>de</strong>fined clean<br />

scrap with only little organic contamination.<br />

Refiners, in contrast, need different<br />

melting equipment. “The key<br />

equipment for melting at a refining<br />

plant is the rotary drum furnace, today<br />

typically <strong>de</strong>signed as a tilting<br />

rotary drum furnace” says Schmitz.<br />

This technology permits processing<br />

of almost all kinds of scrap and is<br />

particularly suitable for scrap heavily<br />

contaminated with organic and inorganic<br />

matter and for material with a<br />

large specific surface area. Selecting<br />

the proper equipment for the kind of<br />

plant operation – remelting or refining<br />

– is the principle task of the plant<br />

owner and his engineers.<br />

Low metal loss and also favourable<br />

energy consumption are not the only<br />

criteria. Safe and reliable operation<br />

is an important factor as well. The<br />

equipment must be able to withstand<br />

the sometimes harsh treatment by<br />

the operators un<strong>de</strong>r severe operating<br />

condition and must work without<br />

down-time due to equipment failures.<br />

“So the traditional methods of equipment<br />

<strong>de</strong>sign may not be sufficient to<br />

achieve this target and <strong>de</strong>sign methods<br />

used for heavy machinery must be<br />

applied as well”, says Schmitz.<br />

Another factor to be consi<strong>de</strong>red is<br />

compliance with the environmental<br />

standards of the plant location and<br />

the industry. Summarising the above<br />

facts, the plant owner may be hard<br />

put to select the right equipment and<br />

processes for his future plant or plant<br />

expansion.<br />

Further Russian projects in<br />

course of preparation<br />

Professional consulting services may<br />

assist the plant owner in the <strong>de</strong>cision-making<br />

process. Companies that<br />

can provi<strong>de</strong> the required consulting<br />

service should also have proprietary<br />

technologies and a broad product<br />

range. This combination assures clients<br />

in the secondary aluminium industry<br />

of smooth commissioning and<br />

trouble-free operation. Proper training<br />

and production assistance are further<br />

steps for obtaining a plant that is<br />

economically successful. Schmitz is<br />

convinced that Alcutec provi<strong>de</strong>s this<br />

service as well as supplying proprietary<br />

equipment and technology. And<br />

he confirms that, “Further projects for<br />

the Russian market are in course of<br />

preparation”. �<br />

76 ALUMINIUM · 1-2/2007


MARKT UND TECHNIK<br />

Positive Stimmung in <strong>de</strong>r Branche<br />

Deutsche <strong>Alu</strong>miniumkonjunktur<br />

läuft <strong>de</strong>rzeit rund<br />

Die <strong>de</strong>utsche <strong>Alu</strong>miniumindustrie<br />

bleibt auf Wachstumskurs. Die<br />

ersten neun Monate <strong>de</strong>s vergangenen<br />

Jahres verliefen für die<br />

Branchenunternehmen durchweg<br />

positiv, wie Gerhard Bud<strong>de</strong>nbaum,<br />

Präsi<strong>de</strong>nt <strong>de</strong>s Gesamtverban<strong>de</strong>s<br />

<strong>de</strong>r <strong>Alu</strong>miniumindustrie (GDA),<br />

auf einer Pressekonferenz im<br />

November 2006 resümierte. Die<br />

<strong>Alu</strong>miniumunternehmen konnten<br />

2006 <strong>de</strong>utlich mehr Aufträge<br />

verbuchen. „In fast allen Produktions-<br />

und Verarbeitungsbereichen<br />

weisen die Ten<strong>de</strong>nzen nach oben,“<br />

so Bud<strong>de</strong>nbaum. Die <strong>de</strong>utlich gestiegenen<br />

Metallpreise an <strong>de</strong>r London<br />

Metal Exchange übten dabei<br />

allerdings Druck auf die Margen<br />

<strong>de</strong>r Verarbeiter aus.<br />

Seit geraumer Zeit ist die Stimmung<br />

<strong>de</strong>r <strong>Alu</strong>miniumindustrie positiv. Und<br />

auch für 2007 bleiben die Perspektiven<br />

laut GDA aussichtsreich, trotz <strong>de</strong>r<br />

zu Anfang dieses Jahres in Deutschland<br />

erhöhten Mehrwertssteuer um<br />

drei Prozentpunkte und <strong>de</strong>r weiterhin<br />

hohen heimischen Energiepreise.<br />

Anzeige<br />

www.inotherm-gmbh.<strong>de</strong><br />

Die Be<strong>de</strong>utung von <strong>Alu</strong>minium hat in<br />

<strong>de</strong>n vergangenen Jahren ständig zugenommen.<br />

Der <strong>Alu</strong>miniumbedarf ist im<br />

Zehnjahresvergleich zwischen 1995<br />

und 2005 um mehr als 50 Prozent auf<br />

3,1 Mio. Tonnen gestiegen. Der Bedarf<br />

wird laut GDA-Geschäftsführer Christian<br />

Wellner auch für das Gesamtjahr<br />

2006 erneut leicht zunehmen.<br />

Wichtigster Zielmarkt für die<br />

<strong>de</strong>utsche <strong>Alu</strong>miniumindustrie bleibt<br />

<strong>de</strong>r Verkehrssektor mit 43 Prozent<br />

Marktanteil am Gesamtabsatz. Weitere<br />

wichtige Märkte sind <strong>de</strong>r Bausektor<br />

(15%), die Verpackungsindustrie<br />

(10%) und <strong>de</strong>r Maschinenbau<br />

(9%). Im Getränkedosenmarkt hat<br />

sich die <strong>Alu</strong>miniumdose mit <strong>de</strong>r neuen<br />

Pfandregelung seit Mai 2006 einen<br />

Marktanteil von rund 50 Prozent erobert.<br />

Das ist gemessen an früheren<br />

zehn bis 15 Prozent Marktanteil zwar<br />

ein beachtlicher Erfolg gegenüber <strong>de</strong>r<br />

Weißblechdose, doch bewegt sich <strong>de</strong>r<br />

Dosenmarkt insgesamt gesehen noch<br />

weit unter <strong>de</strong>m Niveau, auf <strong>de</strong>m er vor<br />

drei bis vier Jahren war.<br />

Produktion auf hohem Niveau<br />

Bei <strong>de</strong>r Produktion von Sekundäraluminium,<br />

<strong>Alu</strong>miniumhalbzeug und<br />

Formguss konnten die <strong>de</strong>utschen<br />

<strong>Alu</strong>miniumunternehmen 2006 leicht<br />

zulegen, bei <strong>de</strong>r Weiterverarbeitung<br />

wur<strong>de</strong> das gute Vorjahresergebnis<br />

bestätigt. Die <strong>de</strong>utschen Primäraluminiumhütten<br />

produzierten wie in <strong>de</strong>n<br />

Vorjahren an <strong>de</strong>r Kapazitätsgrenze. In<br />

<strong>de</strong>n ersten neun Monaten 2006 lag die<br />

Erzeugung von Primäraluminium mit<br />

386.700 t jedoch 22 Prozent unter <strong>de</strong>m<br />

Vergleichszeitraum <strong>de</strong>s Vorjahrs. Zurückzuführen<br />

ist dieser Rückgang auf<br />

die Abschaltung <strong>de</strong>r <strong>Alu</strong>miniumhütte<br />

in Hamburg. Die Produktion von Sekundäraluminium<br />

stieg von Januar bis<br />

September 2006 um 11 Prozent auf<br />

596.100 t. Sorgen bereitet <strong>de</strong>r Branche<br />

<strong>de</strong>r anhalten<strong>de</strong> Rohstoffbedarf boomen<strong>de</strong>r<br />

Volkswirtschaften wie China<br />

und Indien, die die Verfügbarkeit von<br />

<strong>Alu</strong>miniumschrotten in Deutschland<br />

und <strong>de</strong>m übrigen Europa bedrohen.<br />

Die 35 <strong>de</strong>utschen Halbzeugwerke<br />

produzierten 2006 auf weiterhin hohem<br />

Niveau. Bei <strong>de</strong>n Press- und Zieh-<br />

Quelle: GDA<br />

<strong>Alu</strong>miniummärkte in Deutschland, 2005<br />

Positive mood<br />

in the German aluminium industry<br />

Prospects for 2007<br />

are good<br />

The aluminium industry in Germany<br />

is still growing. The first<br />

nine months of last year turned<br />

out positively for the branch, as<br />

Gerhard Bud<strong>de</strong>nbaum, Presi<strong>de</strong>nt<br />

of the German tra<strong>de</strong> association<br />

GDA summarised at a press conference<br />

in November 2006. <strong>Alu</strong>minium<br />

companies booked many<br />

more or<strong>de</strong>rs in 2006. “In almost<br />

every production and processing<br />

sector the trend was upwards”,<br />

said Bud<strong>de</strong>nbaum. However, the<br />

consi<strong>de</strong>rably higher metal prices<br />

on the London Metal Exchange put<br />

pressure on processors’ margins.<br />

Generally speaking the aluminium industry’s<br />

mood is positive. And according<br />

to the GDA prospects for 2007 are<br />

relatively good as well, <strong>de</strong>spite the<br />

value-ad<strong>de</strong>d tax increase (by 3%) at<br />

the beginning of this year in Germany<br />

and the persistently high domestic energy<br />

prices.<br />

Over the past several years the importance<br />

of aluminium has increased<br />

continually. A ten-year comparison<br />

between 1995 and 2005 shows that<br />

<strong>de</strong>mand for aluminium has increased<br />

by more than 50%, up to 3.1 million<br />

tonnes. According to GDA Managing<br />

Director Christian Wellner, it is again<br />

expected to have increased slightly in<br />

the full year 2006.<br />

The most important target market<br />

for Germany’s aluminium industry is<br />

still the transport sector, with a 43%<br />

market share of total sales. Other major<br />

markets are the building sector<br />

<strong>Alu</strong>minium markets in Germany, 2005<br />

78 ALUMINIUM · 1-2/2007


(15%), the packaging industry (10%)<br />

and mechanical engineering (9%). In<br />

the beverage can market, with the<br />

new <strong>de</strong>posit regulation in force since<br />

May 2006 aluminium cans have captured<br />

a market share of approximately<br />

50%. Compared with the previous 10<br />

to 15%, this is in<strong>de</strong>ed a substantial<br />

victory over tinplate cans, although<br />

the can market viewed as a whole is<br />

still far below its level three or four<br />

years ago.<br />

Production at a high level<br />

ALUMINIUM · 1-2/2007<br />

Economic data of the German aluminium industry<br />

Production 2005 2005 /<br />

2004<br />

As in previous years, primary aluminium<br />

smelters in Germany have<br />

been producing at the limits of their<br />

capacity. In the first nine months of<br />

2006, however, primary aluminium<br />

production, at 386,700 tonnes, was<br />

22% down on the same period a year<br />

earlier. This downturn can be attributed<br />

to the closing of the HAW<br />

smelter in Hamburg. The production<br />

by German aluminium companies<br />

of secondary aluminium, semis and<br />

castings increased slightly in 2006,<br />

and in the fields of further processing<br />

the good results of the previous year<br />

were repeated.<br />

Between January and September<br />

2006 the production of secondary aluminium<br />

increased by 11% to 596,100<br />

tonnes. There is concern in the branch<br />

regarding the persistent raw materials<br />

<strong>de</strong>mands of booming economies such<br />

as China and India, which threaten<br />

the availability of aluminium scrap in<br />

Germany and throughout Europe.<br />

Production by the 35 semis plants<br />

in Germany was again at a high level<br />

in 2006. In the first nine months of<br />

the year the production of extru<strong>de</strong>d<br />

and drawn products was up by 9.4%.<br />

This was because of the once more �<br />

Jan. - Sep.<br />

2005<br />

Jan. - Sep.<br />

2006<br />

produkten legte die Produktion bis<br />

September 2006 um 9,4 Prozent zu.<br />

Grund dafür war die erneut hervorragen<strong>de</strong><br />

Exportbilanz <strong>de</strong>s Verarbeiten<strong>de</strong>n<br />

Gewerbes in Deutschland.<br />

Bei Walzprodukten stiegen die Auftragseingänge<br />

bis September um mehr<br />

als zehn Prozent. Zum Jahresen<strong>de</strong><br />

wird die Produktion Wellner zufolge<br />

über <strong>de</strong>r <strong>de</strong>s Vorjahres liegen (2005:<br />

1,8 Mio. t). Den Branchenumsatz für<br />

2006 veranschlagt <strong>de</strong>r GDA auf 15<br />

Mrd. Euro (2005: 13,9 Mrd. €), wobei<br />

ein Großteil <strong>de</strong>s Zuwachses auf die<br />

gestiegenen <strong>Alu</strong>miniumnotierungen<br />

zurückzuführen ist.<br />

Verkehr und Maschinenbau<br />

starke Wachstumsträger<br />

Jan. - Sep.<br />

2006 / 05<br />

‘000 t % ‘000 t ‘000 t %<br />

Primary aluminium 647.9 -3.0 495.9 386.7 -22.0<br />

Secondary aluminium 718.3 +2.1 537.2 596.1 +11.0<br />

Rolled products 1780.9 +3.5 1354.5 1318.6 -2.7<br />

Extru<strong>de</strong>d and drawn products 527.9 +0.8 403.3 441.3 +9.4<br />

Shaped castings 727.2 +1.6 557.2 584.0 +4.8<br />

Further processing of aluminium:<br />

Foil, tubes, aerosol & beverage cans<br />

361.7 -0.3 275.9 287.7 +4.3<br />

Sources: GDA, GDM, VAR, Stat. Bun<strong>de</strong>samt<br />

„Auch in <strong>de</strong>n nächsten Jahren wird<br />

<strong>de</strong>r <strong>Alu</strong>miniumbedarf in Deutschland<br />

kontinuierlich wachsen“, so Wellner<br />

zu <strong>de</strong>n mittelfristigen Perspektiven<br />

<strong>de</strong>r Branche. Stärkster Wachstumsträger<br />

wer<strong>de</strong> weiterhin die Automobilindustrie<br />

sein, zumal hier die spezifischen<br />

Eigenschaften <strong>de</strong>s Leichtmetalls<br />

voll zum Tragen kommen.<br />

Weitere Absatzchancen bietet die<br />

Luftfahrt, beson<strong>de</strong>rs für hochwertige<br />

Platten und Bleche aus <strong>Alu</strong>minium.<br />

Auch <strong>de</strong>r Maschinenbau weist seit<br />

einigen Jahren einen kontinuierlichen<br />

Mehrbedarf an <strong>Alu</strong>miniumprodukten<br />

aus. Neben hochwertigen Profillösungen,<br />

z. B. für Pneumatik- und Zylin<strong>de</strong>rsysteme,<br />

wer<strong>de</strong>n vermehrt Platten für<br />

die Kunststoff-Formgebung geliefert.<br />

Die Bauindustrie, die seit rund einem<br />

Jahrzehnt rückläufig war, ist inzwischen<br />

ebenfalls auf <strong>de</strong>m Weg <strong>de</strong>r<br />

Besserung, wovon auch die <strong>Alu</strong>miniumbranche<br />

profitieren wird.<br />

Dass man in Deutschland trotz<br />

schwieriger Rahmenbedingungen<br />

MARKETS AND TECHNOLOGY<br />

produzieren kann, beweist die<br />

<strong>Alu</strong>miniumindustrie seit Jahren,<br />

beson<strong>de</strong>rs bei Produkten mit hoher<br />

Wertschöpfung. „Dem Wettbewerbsdruck<br />

<strong>de</strong>r Niedriglohnlän<strong>de</strong>r<br />

setzen unsere Unternehmen ein<br />

hohes Qualitätsniveau, absolute<br />

Zuverlässigkeit und große Flexibilität<br />

entgegen“, so Bud<strong>de</strong>nbaum.<br />

Die hohe Wettbewerbsfähigkeit<br />

<strong>de</strong>r Branche zeigt sich vor allem<br />

in ihren Exporterfolgen, rund 41<br />

Prozent <strong>de</strong>r gesamten <strong>de</strong>utschen<br />

Produktion gehen ins Ausland. Die<br />

Wachstumsraten bei <strong>de</strong>n Exporten<br />

sind in <strong>de</strong>r Tat eindrucksvoll. So<br />

stiegen die Exporte von <strong>Alu</strong>miniumhalbzeug<br />

in die EU-Staaten von 2000<br />

bis 2005 um rund 20 Prozent. Die<br />

Exporte nach Nordamerika nahmen<br />

im gleichen Zeitraum, von niedrigem<br />

Niveau kommend, um 90 Prozent<br />

zu; hier waren in beson<strong>de</strong>rem Maße<br />

Walzspezialitäten für die Luftfahrt<br />

gefragt. Auch die Ausfuhren nach<br />

Südamerika, Osteuropa o<strong>de</strong>r Asien<br />

entwickelten sich in <strong>de</strong>n letzten sechs<br />

Jahren überdurchschnittlich gut.<br />

Branche vor großen Herausfor<strong>de</strong>rungen<br />

Doch bei aller positiven Grundstimmung:<br />

Die Branche steht vor großen<br />

Herausfor<strong>de</strong>rungen und muss weiterhin<br />

mit Standortnachteilen zurechtkommen.<br />

Die hohen Energiepreise<br />

sind ein Faktor, über <strong>de</strong>n immer<br />

wie<strong>de</strong>r in dieser Zeitschrift berichtet<br />

wird. Die strukturellen Nachteile <strong>de</strong>s<br />

Standorts Deutschland zeigen sich<br />

darüber hinaus in vielen weiteren<br />

wirtschaftspolitischen Facetten. Der<br />

GDA-Präsi<strong>de</strong>nt dazu: „Wir brauchen<br />

weniger Bürokratie und eine Mo<strong>de</strong>rnisierung<br />

<strong>de</strong>s Steuer- und Genehmigungsrechts,<br />

um im internationalen<br />

Vergleich weiter aufzuholen.“ Die europäische<br />

<strong>Alu</strong>miniumindustrie, fügte<br />

er hinzu, wer<strong>de</strong> sich nur durch ihre<br />

eigene Innovationskraft langfristig an<br />

<strong>de</strong>n Märkten behaupten. Marktnahe<br />

Produkte mit hoher Wertschöpfung,<br />

viel Know-how und gut ausgebil<strong>de</strong>tes<br />

Personal und eine hohe Servicequalität<br />

seien die Erfolgsgaranten, unter<br />

<strong>de</strong>nen Europa als Produktionsstandort<br />

eine Zukunft habe.<br />

�<br />

79


MARKETS AND TECHNOLOGY<br />

outstanding export balance of tra<strong>de</strong><br />

achieved by processing businesses<br />

in Germany. Or<strong>de</strong>r intakes for rolled<br />

products were up by over 10%. For<br />

the year taken as a whole, production<br />

is expected to exceed that of last year<br />

(2005: 1.8 million t).<br />

The GDA estimates that branch<br />

turnover in 2006 will amount to some<br />

15 billion euros (2005: 13.9 billion €),<br />

most of this increase being attributable<br />

to higher aluminium prices.<br />

Transport and mechanical<br />

engineering – a powerful impulse<br />

towards growth<br />

“In the coming years too, <strong>de</strong>mand for<br />

aluminium in Germany will continue<br />

growing”, commented Wellner concerning<br />

the medium-term perspectives<br />

of the branch. The strongest impulse<br />

for growth will still be the automotive<br />

industry, all the more so since<br />

it is here that the specific properties<br />

of the light metal come fully into their<br />

own. The commercial vehicle sector<br />

could also benefit from this, since<br />

light metal superstructures are being<br />

adopted more and more.<br />

Further sales opportunities are<br />

offered by aviation, in particular for<br />

high-gra<strong>de</strong> aluminium plates and<br />

sheets. For some years mechanical<br />

The German aluminium association<br />

GDA participated as a co-operation<br />

partner at the UN international<br />

conference “Creating solutions for<br />

sustainable consumption and production”<br />

(SCP), which took place end<br />

of last year in Wuppertal, Germany.<br />

GDA was one of the few representatives<br />

of industry at the conference and<br />

reported on the contribution ma<strong>de</strong> by<br />

the branch towards economically successful,<br />

socially responsible and ecologically<br />

acceptable <strong>de</strong>velopment.<br />

The conference was organised by<br />

the Centre for Sustainable Consumption<br />

and Production (CSCP). Michael<br />

Kuhndt, Managing Director of CSCP,<br />

which was established by the United<br />

Nations Environment Programme<br />

engineering has also been using ever<br />

more aluminium products. Besi<strong>de</strong>s<br />

high-gra<strong>de</strong> section solutions, for example<br />

in pneumatic and cylin<strong>de</strong>r<br />

systems, in that market sector more<br />

plates for moulding plastics are being<br />

supplied. Even in the building industry,<br />

which was recessive for about a<br />

<strong>de</strong>ca<strong>de</strong>, the aluminium branch can<br />

look forward to gradual recovery.<br />

That successful production is still<br />

possible in Germany <strong>de</strong>spite difficult<br />

boundary conditions has been amply<br />

<strong>de</strong>monstrated by the aluminium<br />

industry for years, especially with<br />

reference to products with high value<br />

addition. “Our companies are responding<br />

to the competition pressure<br />

from countries with low labour costs<br />

with high quality standards, absolute<br />

reliability and great flexibility”, said<br />

Bud<strong>de</strong>nbaum. The striking competitiveness<br />

of the branch is apparent in<br />

particular from its export successes.<br />

Around 41% of total German aluminium<br />

production goes abroad. Export<br />

growth rates are in fact impressive:<br />

for example, exports of aluminium<br />

semis to the EU states increased by<br />

around 20% between 2000 and 2005,<br />

and during the same period exports to<br />

North America grew from a low level<br />

by 90%, with <strong>de</strong>mand focused particularly<br />

on special rolled products<br />

(UNEP) and the Wuppertal Institute<br />

for Climate, Environment and Energy,<br />

said, “<strong>Alu</strong>minium is precious and<br />

should therefore be used efficiently.<br />

All the more satisfying therefore,<br />

that the German aluminium industry<br />

in particular is playing a leading<br />

role in the discussion on sustainable<br />

production and consumption. As the<br />

aluminium industry is also aware of<br />

its responsibility and strengths during<br />

the utilisation phase, in GDA we have<br />

acquired a competent partner and<br />

speaker for the conference.”<br />

The newly foun<strong>de</strong>d CSCP is the<br />

new “think tank” for socially acceptable<br />

and sustainable production and<br />

consumption worldwi<strong>de</strong>, so sustainable<br />

ad<strong>de</strong>d value is one of its princi-<br />

for the aviation industry. Exports to<br />

South America, Eastern Europe and<br />

Asia also <strong>de</strong>veloped at above-average<br />

rates over the past six years.<br />

A branch faced<br />

by major challenges<br />

Yet, <strong>de</strong>spite the optimism of the prevailing<br />

mood, the branch faces great<br />

challenges and still has to overcome<br />

location disadvantages. High energy<br />

prices are only one factor, which has<br />

frequently been commented upon in<br />

this journal. The structural disadvantages<br />

of Germany as a location also<br />

emerge in many other aspects of economic<br />

policy. On this, Bud<strong>de</strong>nbaum<br />

said, “We need less bureaucracy and<br />

an updating of tax and licensing laws<br />

if we are to keep up with international<br />

competition”.<br />

The European aluminium industry,<br />

he adds, will only hold its own in the<br />

markets in the long term by virtue of<br />

its ability to innovate. Market-orientated<br />

products with high ad<strong>de</strong>d value,<br />

a wealth of know-how, well-trained<br />

personnel and high-quality services<br />

provi<strong>de</strong> the warranties of success<br />

which Europe needs if it is to have a<br />

future as a production location.<br />

�<br />

GDA participation at UN conference on sustainability<br />

pal tasks. As GDA Managing Director<br />

Stefan Glimm explained, “The international<br />

SCP conference was an excellent<br />

forum for us to continue our<br />

dialogue with important stakehol<strong>de</strong>r<br />

groups on aluminium and its contribution<br />

to sustainable <strong>de</strong>velopment<br />

as part of our ‘<strong>Alu</strong>minium for Future<br />

Generations’ initiative.” With its involvement<br />

of many years in the field of<br />

sustainability, the German aluminium<br />

industry has acted as a role mo<strong>de</strong>l for<br />

the aluminium industry in Europe and<br />

the rest of the world. “We have <strong>de</strong>veloped<br />

standards for this which have<br />

since become benchmarks for the way<br />

the global aluminium industry does<br />

business,” said Stefan Glimm.<br />

�<br />

80 ALUMINIUM · 1-2/2007


EAA launches new sustainable <strong>de</strong>velopment indicator results<br />

In 2002 the European <strong>Alu</strong>minium<br />

Association (EAA) and its member<br />

companies embarked on a pioneering<br />

journey towards measuring<br />

sustainability. Together with the<br />

German Wuppertal Institute for<br />

Climate, Environment & Energy<br />

and the Versailles University the<br />

European aluminium industry<br />

<strong>de</strong>veloped 34 measurable sustainable<br />

<strong>de</strong>velopment indicators (SDI)<br />

to scrutinise the aluminium industry‘s<br />

performance during the<br />

period 1997 to 2002.<br />

The SDI cover areas as varied as energy<br />

consumption, emissions, resource<br />

use, product life cycles, employee<br />

<strong>de</strong>velopment and relations, community<br />

relationships, health and safety,<br />

management efforts, competitiveness,<br />

production and revenues. The first report<br />

was issued in 2004 and showed<br />

an industry which had significantly<br />

improved since 1997. Now EAA has<br />

ALUMINIUM · 1-2/2007<br />

������ ���<br />

��������<br />

released the 2006 report and the data<br />

show further improvements in many<br />

different areas such as emissions, natural<br />

resource use, recycling and worker<br />

safety among others. For example,<br />

health and safety total recordable<br />

inci<strong>de</strong>nts fell 63.9% between 1997<br />

and 2005, while the industry’s fossil<br />

fuel requirements for metal production<br />

fell 30% and direct climate gas<br />

emissions reduced 43.5% for metal<br />

production.<br />

The primary aluminium sector has<br />

reduced its CO 2 emissions by 7.7% between<br />

2002 and 2005. This reduction<br />

is partly achieved through PFC emissions<br />

reduction and partly through<br />

energy consumption reduction. During<br />

this time the semi-fabrication sector<br />

reduced its emissions by an average<br />

of 5.5% per year.<br />

The use of aluminium in cars produced<br />

in Europe has been steadily<br />

increasing. Between 1997 and 2002,<br />

aluminium use per car increased, on<br />

MARKETS AND TECHNOLOGY<br />

for <strong>Alu</strong>minium DC<br />

casting<br />

Drache<br />

umwelttechnik<br />

average, 6.6% per year to 117 kg per<br />

vehicle. Between 2002 and 2005 the<br />

average increase per year was 4.1%<br />

to 132 kg per vehicle.<br />

The building indicator provi<strong>de</strong>s the<br />

total quantity of aluminium used for<br />

building and construction purposes in<br />

Europe. The increase has continued:<br />

from 2.11 million tonnes in 2002 to<br />

2.5 million tonnes in 2005.<br />

The average market share of aluminium<br />

cans in Europe was 56%<br />

in 2005 compared to 50% in 2002.<br />

On average, an aluminium can only<br />

needs sixty days to be recycled into a<br />

new can and be back on the retailer’s<br />

shelf.<br />

The recycling rate for cans was<br />

52% in 2005 according to industry<br />

statistics collected on a regular basis<br />

from European countries. In the automotive<br />

sector as well as in buildings<br />

the aluminium recycling rate is now<br />

95%.<br />

�<br />

������� ����<br />

�������<br />

for <strong>Alu</strong>minium DC<br />

casting<br />

�������������������������������������������������������������������������<br />

81


MARKETS AND TECHNOLOGY<br />

The <strong>de</strong>velopment of Russia‘s packaging market<br />

<strong>Alu</strong>minium processing technology at the forefront<br />

With the planned merger of the<br />

two Russian aluminium concerns<br />

Rusal and Sual and the Swiss raw<br />

material concern Glencore International,<br />

the world’s largest concern<br />

in the branch – at any rate<br />

with a view to the production of<br />

aluminium and alumina – is being<br />

created. The downstream activities<br />

of this group have until now been<br />

less at the focus of international<br />

reporting. Yet here too, in the production<br />

of can stock and foils for<br />

packaging, the group could in the<br />

long term <strong>de</strong>velop into an international<br />

competitor with a strong<br />

market position.<br />

“United Company Rusal”, created by<br />

the merger of Rusal, Sual and Glencore,<br />

will produce 4 million tonnes<br />

of aluminium and 11 million tonnes<br />

of alumina per year and will employ<br />

110,000 people in 17 countries on five<br />

continents. The group will account for<br />

12.5% of global aluminium production<br />

and 16% of global alumina production.<br />

These are impressive figures.<br />

In contrast, the group’s processing<br />

sector is still more mo<strong>de</strong>st, but for all<br />

that should not be ignored. The more<br />

so since over the past few years Rusal<br />

and Sual have invested not only in<br />

the mo<strong>de</strong>rnisation of their smelters<br />

but also in that of their processing<br />

capacities. The technological gap between<br />

Russian and Western aluminium<br />

plants is gradually beginning to<br />

close. The combination of <strong>de</strong>manding<br />

product qualities with locationrelated<br />

cost advantages will make the<br />

forthcoming United Company Rusal<br />

an effective supplier on the domestic<br />

Russian market, which international<br />

concerns are keeping an eye on, and<br />

conversely a competitor in the European<br />

and international markets to be<br />

taken seriously.<br />

In total around 760,000 tonnes<br />

of primary aluminium went to the<br />

various sales sectors of the Russian<br />

market in 2005. The largest purchasers<br />

of aluminium are the building<br />

and packaging sectors. These two are<br />

about equally important and between<br />

them account for around 54% of aluminium<br />

consumption. Third place,<br />

with 9%, is held by the transport sector,<br />

whereas in the western industrialised<br />

countries it is the largest sales<br />

market for light metal structures and<br />

components. Lightweight construction,<br />

however, is not yet a major issue<br />

in Russian automotive engineering.<br />

Russian cars contain a proportion of<br />

aluminium slightly above 40 kg, while<br />

over 100 kg of the metal are built into<br />

European and American vehicles.<br />

In contrast, consumer packaging<br />

has for years been a dynamically<br />

growing sales market in Russia. This<br />

applies particularly to the market for<br />

beverage cans. It is dominated by the<br />

packaging material aluminium and is<br />

roughly equally divi<strong>de</strong>d between two<br />

producers, Rusal Rostar and Rexam.<br />

Achenbach caster…<br />

Imports of cans cover less than 5%<br />

of <strong>de</strong>mand. Rostar, a 100%-owned<br />

subsidiary of Rusal, built its first can<br />

factory with an annual capacity of 1.3<br />

billion units in 1998, in Dmitrov near<br />

Moscow. In 2004 a second can factory<br />

with annual capacity 1.7 billion units<br />

was built in St. Petersburg. There, in<br />

St. Petersburg and Moscow, are also<br />

where the most important can fillers<br />

are located.<br />

Demand for beverage cans<br />

is growing apace<br />

In Russia <strong>de</strong>mand for aluminium bev-<br />

erage cans is growing apace. As late as<br />

1999 the can market was still rather<br />

insignificant, with an annual <strong>de</strong>mand<br />

for about 258 million cans. By the end<br />

of 2006 the <strong>de</strong>mand has increased<br />

by a factor of 15, and in 2006 can<br />

production is estimated at around 4<br />

billion units per year. This headlong<br />

growth will continue in the coming<br />

years and drive can sales up to over 5<br />

billion units. The need for aluminium<br />

can stock will increase to over 90,000<br />

tpy – mainly for cans to be filled with<br />

beer, alcoholic mixed drinks and carbonated<br />

soft drinks.<br />

In recent years the two major can<br />

manufacturers Rusal and Rexam have<br />

ma<strong>de</strong> efforts to encourage this market.<br />

A marketing campaign initiated in<br />

2000 and pursued for five years aimed<br />

to provi<strong>de</strong> aluminium cans with a pre-<br />

mium image. And this succee<strong>de</strong>d: in<br />

2003 12% of Russian beer was already<br />

being sold in aluminium cans, compared<br />

with only 0.4% in 2000. The<br />

success in the market for soft drinks<br />

was similar, with the proportion of<br />

beverage cans increasing by a factor<br />

of 7 to 700 million units. Rusal itself<br />

has a 30% market share of beer cans<br />

(2005). In the first half of 2006 the<br />

company produced 15,927 t of can<br />

and lid stock, an increase of 23.5%<br />

over the same period of the year before,<br />

attributable to the commissioning<br />

of a second production line at the<br />

Rostar works in St. Petersburg.<br />

82 ALUMINIUM · 1-2/2007<br />

Achenbach


Trend towards thinner foils<br />

The market for aluminium foils has<br />

also <strong>de</strong>veloped. Total Russian production<br />

in this sector amounted to around<br />

56,600 t in 2005. The most important<br />

sales markets are the foodstuff branch<br />

(33%) and the tobacco industry (29%).<br />

The trend is towards thinner foils of<br />

6 to 9 μm. Global food concerns such<br />

as Nestlé and Kraft Foods are increasingly<br />

turning to the Russian market<br />

and making ever-stricter <strong>de</strong>mands,<br />

for example related to surface quality<br />

and mechanical properties.<br />

Rusal produces a wi<strong>de</strong> range of<br />

foils and foil composites, mainly for<br />

confectionery and dairy products,<br />

tobacco goods and pharmaceuticals,<br />

and technical applications. These are<br />

ma<strong>de</strong> in its two factories Sayanal and<br />

Armenal, which produced just short<br />

of 19,000 t of foils in the first half of<br />

2006. This corresponds to a growth<br />

of 2.3% compared with the same period<br />

in 2005, largely attributed to a<br />

productivity boost at Sayanal. There,<br />

precisely in the sector of strip and foil<br />

production, is emerging a new inter-<br />

national competitor<br />

that plans to produce<br />

not only commodities<br />

but also quality products<br />

whose manufacture<br />

is technically<br />

sophisticated: foil<br />

qualities which need<br />

not fight shy of comparison<br />

with those<br />

provi<strong>de</strong>d by European<br />

suppliers.<br />

Sayanal, in the Republic<br />

of Khakassia,<br />

started operating in<br />

ALUMINIUM · 1-2/2007<br />

Rusal<br />

Peter Finnimore, in charge of<br />

sales and marketing at Rusal<br />

1995 and is the largest producer of<br />

foils and composite foils in Russia.<br />

The plant produces strip material<br />

6 to 10 mm thick in widths of 1300<br />

to 1650 mm and then rolls them to<br />

foil thicknesses down to 0.006 mm,<br />

as used for composite packaging in<br />

Western Europe as well. Some of<br />

the material is <strong>de</strong>livered directly to<br />

packaging manufacturers and some<br />

then goes for finishing. Already in<br />

2006 work to mo<strong>de</strong>rnise the rolling<br />

plant began with the collaboration of<br />

Achenbach Buschhütten in Germany.<br />

A main aim was to boost productivity<br />

…and mo<strong>de</strong>rnised foil mill at Armenal<br />

by higher rolling speeds. According to<br />

information from the company, sales<br />

extend throughout Russia and the CIS<br />

states, to Southern Asia, the American<br />

continent and Europe.<br />

The Armenal foil rolling plant in<br />

Armenia was foun<strong>de</strong>d in 2000. In October<br />

2006 mo<strong>de</strong>rnisation of the plant<br />

was completed after<br />

almost two years,<br />

again with Achenbach<br />

as the supplier.<br />

The investment programme<br />

amounted to<br />

over US$ 70 million<br />

and covered the complete<br />

mo<strong>de</strong>rnisation<br />

of six existing foil<br />

mills including accessory<br />

and environment<br />

protection equipment.<br />

The mo<strong>de</strong>rnisation<br />

programme inclu<strong>de</strong>d<br />

the installation of “supercasters”,<br />

i.e. continuous casting and rolling<br />

units. Armenal will in future produce<br />

25,000 tpy of foil. 18,000 t of this in<br />

the thickness range 6 to 9 μm. This<br />

corresponds to an efficiency boost of<br />

150%. The Armenal foil production<br />

too need not fear international comparison.<br />

Around 7,000 tpy of household<br />

foil are produced.<br />

In search of new sales markets<br />

Yet, barely has the current mo<strong>de</strong>rnisation<br />

programme been completed and<br />

MARKETS AND TECHNOLOGY<br />

a capacity increase to 40,000 tpy is already<br />

being consi<strong>de</strong>red. The <strong>de</strong>clared<br />

aim of Rusal is to build Armenal up<br />

to become an international player in<br />

the foil market, as Peter Finnimore, in<br />

charge of the Sales & Marketing sections<br />

at Rusal, explained to this journal<br />

at the <strong>Alu</strong>minium Fair in October<br />

2006. His main objective is the quest<br />

for new sales markets – mainly with<br />

the European and American markets<br />

at the focus – and the establishment of<br />

long-term customer relations in Russia<br />

and worldwi<strong>de</strong>.<br />

In the future, the foil activities of<br />

Ural Foil (around 18,000 tpy) will<br />

have to be taken into account along<br />

with the above Rusal capacities. Ural<br />

Foil belongs to Sual and is the second-largest<br />

aluminium foil producer<br />

in Russia. The foil works was built<br />

in 1984 in Mikhailovsk in the Sverdlovsk<br />

region and covers the full<br />

technical range from melts, through<br />

the casting of aluminium strip (0.21 to<br />

0.40 mm) up to foil production (0.20<br />

to 0.006 mm). The mo<strong>de</strong>rnisation of<br />

the plant by ABB in 2004 concerned<br />

among other things the drive and<br />

automation technology of the coldrolling<br />

mill, including technological<br />

control systems for thickness and flatness,<br />

which has distinctly improved<br />

the foil production both qualitatively<br />

and quantitatively.<br />

�<br />

83


MARKETS AND TECHNOLOGY<br />

Audi takes EuroCarBody Award 2006<br />

Award for innovative TT body concept<br />

Audi is the winner of the EuroCar-<br />

Body Award from the Automotive<br />

Circle International for the innovative<br />

body concept of the TT. mo<strong>de</strong>l<br />

The sports coupé beat off 13 competitors<br />

from around the world to<br />

take the award. The body of the<br />

new TT represents the first application<br />

of the Audi Space Frame<br />

(ASF) technology with a hybrid<br />

construction, featuring an elaborate<br />

composition of aluminium<br />

and steel.<br />

Audi TT Coupé body structure<br />

This prize pays tribute to the work of<br />

Audi <strong>de</strong>velopers who have again presented<br />

impressive proof, in the form<br />

of the new TT body, of how Audi leads<br />

the way in this field. In ASF technology,<br />

the body‘s supporting structure is<br />

ma<strong>de</strong> of extru<strong>de</strong>d aluminium sections<br />

and die-castings, with the aluminium<br />

sheet panels forming a positive connection<br />

and performing a load-bearing<br />

role within this structure. The<br />

components of the ASF space frame<br />

vary in shape and cross-section <strong>de</strong>pending<br />

on their function – like the<br />

bones of the human skeleton, they<br />

are ma<strong>de</strong> to fulfil their task as well as<br />

possible, while having the minimum<br />

possible weight.<br />

In the new TT, Audi has further <strong>de</strong>veloped<br />

ASF technology, and ad<strong>de</strong>d<br />

high-strength steel to the material<br />

mix. <strong>Alu</strong>minium accounts for 69 per<br />

cent of the total body weight. Steel<br />

components are used at the rear of the<br />

floor assembly. The doors and boot lid<br />

are also ma<strong>de</strong> of steel. This provi<strong>de</strong>s<br />

an optimum distribution of axle loads,<br />

making for superior handling.<br />

The TT body-in-white weighs 206<br />

kg, of which 140 kg is aluminium and<br />

66 kg is steel; as an all-steel construction<br />

it would be 48 per cent heavier.<br />

The aluminium components of the<br />

ASF comprise 63 kg of sheet, 45 kg<br />

of castings and 32 kg of extru<strong>de</strong>d sections.<br />

The new form of ASF <strong>de</strong>veloped<br />

for the Audi TT has qualities that are<br />

perfect for a sports car. The static torsional<br />

stiffness of the Coupé is roughly<br />

50 per cent higher than that of its pre<strong>de</strong>cessor;<br />

on the Roadster the increase<br />

is an incredible 128 per cent.<br />

Extremely resilient cast components<br />

have been used in areas subjected<br />

to high local forces and where<br />

multifunctionality is required. A prime<br />

example is the A-post no<strong>de</strong> – this is<br />

a high-tech component that connects<br />

the longitudinal member, sill, A-post<br />

and windscreen cross-member.<br />

Audi is profiting from its superior<br />

wealth of experience when it comes to<br />

joining together aluminium and steel<br />

components. Joining is performed in<br />

a variety of ways – punch-riveting,<br />

clinching and bonding. A fourth joining<br />

technology has now been ad<strong>de</strong>d<br />

to the list: self-tapping screws, inserted<br />

by robots, melt the surface of the<br />

component as a result of the friction<br />

they cause, thus penetrating fully into<br />

the material, forming a positive connection<br />

with it. Another innovative<br />

concept used on the new TT is the<br />

aluminium zero joint that is produced<br />

between the roof and the si<strong>de</strong> section<br />

during laser-welding.<br />

This technique also enhances ri<strong>de</strong><br />

comfort by reducing vibration. It took<br />

only a few simulation cycles on the<br />

computer to arrive at a structure that<br />

suppresses incipient vibration and<br />

avoids transmission paths.<br />

In terms of crash safety, too, the<br />

new TT is uncompromising. This is<br />

the second time that Audi has received<br />

the coveted award. In 2003 Europe‘s<br />

most prestigious innovation prize for<br />

body construction went to the Audi<br />

A8. The A8 also has an ASF body.<br />

Innovatives Karosseriekonzept ausgezeichnet<br />

Der Audi TT ist für sein innovatives Karosseriekonzept<br />

mit <strong>de</strong>n EuroCarBody<br />

Award <strong>de</strong>s Automotive Circle International<br />

ausgezeichnet wor<strong>de</strong>n. In <strong>de</strong>r Karosserie<br />

<strong>de</strong>s neuen TT fin<strong>de</strong>t <strong>de</strong>r ASF erstmals in<br />

hybri<strong>de</strong>r Bauweise seine Anwendung. <strong>Alu</strong>minium<br />

und Stahl wer<strong>de</strong>n hier aufwändig<br />

miteinan<strong>de</strong>r verbun<strong>de</strong>n. Bei <strong>de</strong>r Karosserie<br />

macht <strong>Alu</strong>minium 69 Prozent <strong>de</strong>s Gesamtgewichts<br />

aus. Stahlkomponenten fin<strong>de</strong>n<br />

sich im Heckbereich <strong>de</strong>r Bo<strong>de</strong>ngruppe.<br />

Türen und Heckklappe sind ebenfalls aus<br />

Stahl. Die Rohkarosserie <strong>de</strong>s TT wiegt 206<br />

kg, die sich auf 140 kg <strong>Alu</strong>minium und 66<br />

kg Stahl verteilen; in reiner Stahlbauweise<br />

wäre sie 48 Prozent schwerer. Der <strong>Alu</strong>miniumanteil<br />

<strong>de</strong>s ASF setzt sich aus 63 kg<br />

Blechen, 45 kg Gusskomponenten und 32<br />

kg Strangpressprofilen zusammen. Extrem<br />

belastbare Gusskomponenten kommen<br />

dort zum Einsatz, wo lokal hohe Kräfte<br />

eingeleitet wer<strong>de</strong>n und Multifunktionalität<br />

gefragt ist. Ein Musterbeispiel ist <strong>de</strong>r A-<br />

Säulen-Knoten – er ist ein Hightech-Bauteil,<br />

das Längsträger, Schweller, A-Säule und<br />

Scheibenquerträger miteinan<strong>de</strong>r verbin<strong>de</strong>t.<br />

84 ALUMINIUM · 1-2/2007


www.<br />

alu-bookshop.<strong>de</strong><br />

�<br />

�<br />

�<br />

EINSCHLÄGIGE FACHLITERATUR<br />

AUSSCHLIESSLICH RUND UM<br />

NE-METALLE<br />

ALLES AUS EINER HAND<br />

SUCHEN, FINDEN, BESTELLEN<br />

Giesel Verlag GmbH<br />

Postfach 120158<br />

D-30907 Isernhagen<br />

Tel. +49 511 7304-122<br />

Fax +49 511 7304-157<br />

www.giesel.<strong>de</strong> · vertrieb@giesel.<strong>de</strong>


MARKT UND TECHNIK<br />

Kolbenschmidt Pierburg setzt auf AGR-Kühler aus <strong>Alu</strong>minium<br />

Markterfolg mit Abgasrückführung<br />

Die Kolbenschmidt Pierburg AG<br />

hat für ihr neu entwickeltes Modul<br />

zur gekühlten Abgasrückführung<br />

erste Kun<strong>de</strong>naufträge verbuchen<br />

können. Aktuell verfügt das weltweit<br />

tätige Zulieferunternehmen<br />

über Aufträge von drei namhaften<br />

europäischen Automobilherstellern,<br />

die ein Projektvolumen von<br />

insgesamt rund 300 Mio. Euro<br />

darstellen.<br />

Sowohl Diesel- als auch aufgela<strong>de</strong>ne<br />

Otto-Motoren sind angesichts <strong>de</strong>r stetig<br />

steigen<strong>de</strong>n Anfor<strong>de</strong>rungen <strong>de</strong>r Abgasgesetzgebung<br />

ohne AGR-Kühlung<br />

künftig kaum mehr <strong>de</strong>nkbar. Beim<br />

Dieselmotor - ob im Pkw- o<strong>de</strong>r Nkw-<br />

Bereich - gilt das vor allem für die<br />

weitere Reduzierung <strong>de</strong>r Stickoxi<strong>de</strong><br />

(NOx). Eine beson<strong>de</strong>re Be<strong>de</strong>utung<br />

kommt hierbei <strong>de</strong>r gekühlten Abgasrückführung<br />

zu, die eine <strong>de</strong>utliche<br />

Reduzierung <strong>de</strong>s NOx-Ausstoßes ermöglicht.<br />

Das Gruppenunternehmen Pierburg<br />

GmbH setzt dabei mit seiner<br />

Entwicklung auf ein Abgasrückführ-<br />

Modul mit einem neu entwickelten<br />

Kühler aus <strong>Alu</strong>minium-Druckguss,<br />

<strong>de</strong>r eine kostengünstige und gewichtssparen<strong>de</strong><br />

Alternative zu <strong>de</strong>n heute üblichen<br />

E<strong>de</strong>lstahlkühlern darstellt und<br />

sich zu<strong>de</strong>m die bessere Wärmeleitung<br />

von <strong>Alu</strong>minium zunutze macht.<br />

Der Abgaskühler senkt die Abgastemperatur<br />

je nach Betriebspunkt<br />

um über 600 °C und trägt daher nicht<br />

nur wesentlich zur Reduzierung <strong>de</strong>r<br />

Verbrennungstemperatur und damit<br />

<strong>de</strong>r Stickoxi<strong>de</strong>missionen bei, son<strong>de</strong>rn<br />

senkt auch die Temperaturbelastung<br />

<strong>de</strong>r nachfolgen<strong>de</strong>n Motorkomponenten.<br />

Auf <strong>de</strong>m langjährigen Know-how<br />

<strong>de</strong>s Neusser Automobilzulieferers in<br />

punkto Schadstoffreduzierung aufbauend<br />

hat das Entwicklungsteam<br />

mit <strong>de</strong>m AGR-Kühler aus <strong>Alu</strong>minium<br />

eine Produktinnovation für Dieselfahrzeuge<br />

konzipiert, die sich durch<br />

eine hervorragen<strong>de</strong> Langzeitkühlleistung<br />

auszeichnet. Dies wird durch<br />

eine neuartige Abgasführung über<br />

speziell geformte Lamellen-Rippen<br />

erzielt. Das neuartige Kühlerkonzept<br />

eignet sich sowohl für Nie<strong>de</strong>r- als auch<br />

für Hochdrucksysteme und kann bei<br />

entsprechen<strong>de</strong>n Motorkonzepten ins<br />

Saugrohr integriert wer<strong>de</strong>n.<br />

Bisher bestan<strong>de</strong>n Kühler meist<br />

aus zusammengeschweißten E<strong>de</strong>lstahlblechen,<br />

was relativ hohe Fertigungskosten<br />

zur Folge hat. Ein weiterer<br />

Vorteil von <strong>Alu</strong>minium liegt<br />

darin, dass dieser Werkstoff eine wesentlich<br />

höhere Wärmeleitfähigkeit<br />

als Stahl besitzt. So lässt sich bei relativ<br />

kleinem Bauraum eine sehr hohe<br />

Kühlleistung erzielen.<br />

Die spezielle, patentierte Bauform<br />

mit unterbrochener Lamellen-Rippenstruktur<br />

ist optimal, weil die turbulente<br />

Durchmischung <strong>de</strong>r Abgasströmung<br />

durch die Unterbrechungen geför<strong>de</strong>rt<br />

wird. Sie wirkt einer direkten<br />

Versottung entgegen, för<strong>de</strong>rt <strong>de</strong>n<br />

konvektiven Wärmeaustausch und<br />

ermöglicht <strong>de</strong>n Stoff-, Druck- und<br />

Wärmeaustausch quer zur Hauptströmungsrichtung,<br />

was zu einem Selbstreinigungseffekt<br />

führt.<br />

Um <strong>de</strong>n Motor möglichst schnell<br />

auf Betriebstemperatur zu bringen,<br />

verfügt <strong>de</strong>r neue Abgaskühler über<br />

eine wahlweise elektrisch o<strong>de</strong>r pneumatisch<br />

geschaltete Bypassklappe.<br />

Über diese wer<strong>de</strong>n die Abgase über<br />

<strong>de</strong>n so genannten Bypasskanal am<br />

Kühler vorbei geleitet, bis die notwendige<br />

Betriebstemperatur <strong>de</strong>s Motors<br />

erreicht ist.<br />

Beim betriebswarmen Motor wird<br />

<strong>de</strong>r Bypass geschlossen, so dass <strong>de</strong>r<br />

Kühler seine eigentliche Funktion<br />

aufnehmen kann, nämlich die Temperaturabsenkung<br />

<strong>de</strong>r zurückgeführten<br />

Abgase. Durch die hiermit hervorgerufene,<br />

gezielte Absenkung <strong>de</strong>r Verbrennungstemperatur<br />

in Kombination<br />

mit <strong>de</strong>r entsprechen<strong>de</strong>n Sauerstoffreduktion<br />

wird die maximale<br />

Stickoxidreduzierung erreicht.<br />

Ein weiterer Vorteil <strong>de</strong>s neuen<br />

AGR-Kühlers besteht darin, dass es<br />

sich hier um ein integriertes Bauteil<br />

han<strong>de</strong>lt, bei <strong>de</strong>m die einzelnen<br />

Komponenten – also <strong>de</strong>r kühlwasserdurchströmte<br />

AGR-Kühler, die Bypassklappe,<br />

die bedarfsgerecht zwi-<br />

Kolbenschmidt Pierburg<br />

successfully marketing<br />

its EGR system<br />

Kolbenschmidt Pierburg has<br />

booked its first or<strong>de</strong>rs for the<br />

newly <strong>de</strong>veloped cooled exhaust<br />

gas recirculation (EGR) module.<br />

Presently, this globally operating<br />

auto industry supplier has or<strong>de</strong>rs<br />

on hand from three renowned<br />

European carmakers, representing<br />

a total contract volume of around<br />

300 million euros.<br />

In future, both diesel and turbocharged<br />

gas engines will be hardly<br />

conceivable without EGR cooling due<br />

to the ever stricter exhaust gas regulations.<br />

For diesel engines, whether<br />

in passenger or commercial vehicles,<br />

this is especially true of the further<br />

reduction of nitrogen oxi<strong>de</strong>s (NOx)<br />

Of special significance in this context<br />

is cooled exhaust gas recirculation<br />

enabling a drastic reduction of such<br />

emissions. This exhaust gas recirculation<br />

module from Pierburg comprises<br />

a newly <strong>de</strong>veloped cooler ma<strong>de</strong> from<br />

die-cast aluminium - a low-cost and<br />

weight-saving alternative to today’s<br />

commonly used stainless steel coolers,<br />

an option which, moreover, utilizes<br />

the better heat conductivity of<br />

aluminium.<br />

In lowering exhaust gas temperature<br />

by over 600 °C, <strong>de</strong>pending on the<br />

operating mo<strong>de</strong>, the exhaust gas cooler<br />

therefore helps reduce combustion<br />

temperatures and hence nitrogen oxi<strong>de</strong><br />

emissions while also taking some<br />

of the heat off the downstream engine<br />

components. The long standing<br />

know-how of this Neuss-based auto<br />

industry vendor in terms of emission<br />

reduction has enabled the <strong>de</strong>velopment<br />

team, with its aluminium EGR<br />

cooler, to <strong>de</strong>sign a product innovation<br />

for diesel engine vehicles, one characteristic<br />

for its excellent long-term<br />

cooling performance. This is achieved<br />

through innovative exhaust gas recirculation<br />

using specially shaped fins.<br />

The new cooler concept is suitable for<br />

both low- and high-pressure systems<br />

and can be integrated into the intake<br />

manifold of engines with matching<br />

<strong>de</strong>sign features.<br />

To date, coolers have mainly con-<br />

86 ALUMINIUM · 1-2/2007


sisted of wel<strong>de</strong>d stainless steel sheet<br />

metal with its comparably high production<br />

costs. Another advantage of<br />

aluminium is its much higher heat<br />

conductivity versus steel. <strong>Alu</strong>minium’s<br />

excellent heat conductivity<br />

makes it possible to achieve a very<br />

high cooling effect even in a relatively<br />

small space.<br />

Moreover, the patented discontinuous<br />

fin construction is i<strong>de</strong>al, since the<br />

turbulent mixing of the exhaust gas<br />

flow is enhanced by these breaks. It<br />

counteracts direct fouling, promotes<br />

convective heat exchange and permits<br />

an exchange of substances, pressure<br />

and heat transverse to the mainstream<br />

direction - this having a self-cleaning<br />

effect.<br />

So that the engine reaches its operating<br />

temperature as quickly as possible,<br />

the new exhaust gas cooler has a<br />

bypass valve, actuated electrically or<br />

pneumatically. The exhaust gases are<br />

routed through this valve and the socalled<br />

bypass channel past the cooler,<br />

until the required engine operating<br />

temperature is reached.<br />

With the engine at its operating<br />

temperature, the bypass is closed, so<br />

that the cooler can perform its actual<br />

task and reduce the temperature of<br />

the recirculated exhaust gases. The<br />

effective lowering of the combustion<br />

temperature achieved through<br />

this process combined with corresponding<br />

oxygen abatement reduces<br />

nitrogen oxi<strong>de</strong> emissions to a maximum<br />

<strong>de</strong>gree. Another advantage of<br />

the new EGR cooler is that it is an<br />

integrated assembly in which the individual<br />

components - EGR cooler<br />

with its coolant flow, bypass valve alternating<br />

on-<strong>de</strong>mand between cooler<br />

and bypass operation, and EGR valve<br />

ALUMINIUM · 1-2/2007<br />

EGR-cooler-module<br />

for controlling the EGR rate - merge<br />

into one EGR module. Moreover, aluminium<br />

makes it possible to combine<br />

the EGR module and intake manifold<br />

into one individual component. The<br />

result: an integrated intake manifold<br />

module with exhaust gas recirculation<br />

and cooling system.<br />

By fine-tuning a new welding technique<br />

<strong>de</strong>veloped for die-cast aluminium<br />

parts, it is now possible to weld<br />

together all the internal interfaces of<br />

the module rather than use the type of<br />

temperature-resistant seals and supplementary<br />

fasteners employed until<br />

now.<br />

Additionally to meeting the already<br />

mentioned strict criteria there is also<br />

the weight advantage of the new aluminium<br />

cooler. And because of the<br />

aluminium and its inherent corrosion<br />

protection, all requirements in terms<br />

of durability are likewise met.<br />

�<br />

MARKETS AND TECHNOLOGY<br />

AGR-Kühler-Modul<br />

schen Kühler- und Bypassbetrieb<br />

umschaltet, und das AGR-Ventil zur<br />

Steuerung <strong>de</strong>r AGR-Rate – sinnvoll<br />

zu einem AGR-Modul zusammengefasst<br />

wer<strong>de</strong>n konnten. Zu<strong>de</strong>m erlaubt<br />

<strong>de</strong>r Werkstoff <strong>Alu</strong>minium, das AGR-<br />

Modul und das Saugrohr in einem<br />

einzigen Bauteil zu verbauen. Das<br />

Ergebnis: ein integriertes Saugrohrmodul<br />

mit Abgasrückführ- und Abgaskühlsystem.<br />

Durch die gezielte Weiterentwicklung<br />

eines neuen Schweißverfahrens<br />

für <strong>Alu</strong>minium-Druckgussteile können<br />

alle internen Schnittstellen <strong>de</strong>s<br />

Moduls geschweißt wer<strong>de</strong>n, für die<br />

bisher temperaturbeständige Dichtungen<br />

und ergänzen<strong>de</strong> Schrauben<br />

eingesetzt wer<strong>de</strong>n mussten.<br />

Zusätzlich zur Erfüllung <strong>de</strong>r bereits<br />

genannten hohen Anfor<strong>de</strong>rungen ergibt<br />

sich beim neuen AGR-Kühler<br />

durch die Wahl von <strong>Alu</strong>miniumdruckguss<br />

ein Gewichtsvorteil. Zu<strong>de</strong>m wer<strong>de</strong>n<br />

durch die Werkstoffwahl und <strong>de</strong>n<br />

konstruktiven Korrosionsschutz alle<br />

Anfor<strong>de</strong>rungen in Bezug auf Dauerhaltbarkeit<br />

erfüllt.<br />

�<br />

Pierburg-Kühlereinsatz mit <strong>de</strong>r speziellen<br />

Lamellen-Rippenstruktur<br />

Pierburg-cooling unit with the patented<br />

discontinuous fin construction<br />

Fotos: Kolbenschmidt Pierburg<br />

87


ALUMINIUM IM BAUWESEN<br />

Energieeffizientes Bauen im Fokus von<br />

Politik und Wirtschaft<br />

Energiesparen<strong>de</strong>s und ressourcenschonen<strong>de</strong>s<br />

Bauen sind die zentralen<br />

Themen <strong>de</strong>r Baubranche.<br />

Kontinuierlich steigen<strong>de</strong> Energieund<br />

Rohstoffpreise sowie neue<br />

Verordnungen und Gesetze treiben<br />

Architekten und Bauherren dazu<br />

an, Gebäu<strong>de</strong> zu bauen, die immer<br />

weniger Energie benötigen. Wie<br />

eine höhere Energieeffizienz auch<br />

von Gebäu<strong>de</strong>n erreicht wer<strong>de</strong>n<br />

kann, war nicht nur Gegenstand<br />

<strong>de</strong>s Energiegipfels <strong>de</strong>r Bun<strong>de</strong>sregierung<br />

im Oktober letzten Jahres,<br />

auch die EU-Kommission hat<br />

strengere Energiesparvorgaben auf<br />

ihrer politischen Agenda. So überrascht<br />

es nicht, dass die BAU 2007<br />

im Januar in München energieeffizientes<br />

Bauen zu einem ihrer<br />

Schwerpunktthemen machte.<br />

Von zentraler Be<strong>de</strong>utung bei <strong>de</strong>r Planung<br />

und Realisierung von Gebäu<strong>de</strong>n<br />

ist die äußere Hülle. Sie beansprucht<br />

zwar nur rund 15 Prozent <strong>de</strong>r Baukosten,<br />

ist aber verantwortlich für <strong>de</strong>n<br />

größten Teil <strong>de</strong>s Energieverbrauchs<br />

bei Heizung, Kühlung, Lüftung und<br />

Beleuchtung, und dies für Jahrzehnte.<br />

Optimierte Fassa<strong>de</strong>n erzielen dagegen<br />

Neue Energie-Einsparverordnung<br />

Mit <strong>de</strong>r Neuregelung <strong>de</strong>r Energie-Einsparverordnung<br />

(EnEV) zum 1. Januar 2008<br />

durch die Bun<strong>de</strong>sregierung müssen<br />

Hausbesitzer einen Pass über <strong>de</strong>n Energieverbrauch<br />

ihres Gebäu<strong>de</strong>s vorlegen.<br />

Auch in Brüssel sollen die Energievorgaben<br />

<strong>de</strong>r Gebäu<strong>de</strong>-Richtlinie ab 2009 verschärft<br />

wer<strong>de</strong>n.<br />

CO 2 -Gebäu<strong>de</strong>sanierungsprogramm<br />

Rund drei Viertel <strong>de</strong>s Energiebedarfs im<br />

Privathaushalt wird für Raumheizung genutzt.<br />

Ein Gutteil <strong>de</strong>r Raumwärme geht<br />

durch Wän<strong>de</strong>, Fenster, Dach, Türen o<strong>de</strong>r<br />

<strong>de</strong>n Fußbo<strong>de</strong>n verloren. Es gibt damit ein<br />

großes Potenzial, die Energieeffizienz zu<br />

steigern: In <strong>de</strong>n bestehen<strong>de</strong>n Wohngebäu<strong>de</strong>n<br />

wird im Durchschnitt fast dreimal so<br />

bereits heute einen bis zu 60 Prozent<br />

geringeren Energieverbrauch. Dies<br />

spiegelt sich auch im Wärmedurchgangskoeffizienten<br />

für Fenster- und<br />

Fassa<strong>de</strong>nelemente wi<strong>de</strong>r, die von 3,4<br />

W/m 2 K in <strong>de</strong>n 1980er Jahren auf inzwischen<br />

1,4 W/m 2 K gesunken sind.<br />

Schüco: Energie sparen und<br />

gewinnen<br />

So stellte <strong>de</strong>r europäische Marktführer<br />

bei Gebäu<strong>de</strong>hüllen, Schüco<br />

International KG, auf <strong>de</strong>r BAU 2007<br />

anwen<strong>de</strong>rorientierte Programmerweiterungen<br />

vor, mit <strong>de</strong>nen sich Energie<br />

einsparen und gewinnen lässt: Mit<br />

entsprechen<strong>de</strong>n architektonischen<br />

Konzepten lässt sich fast die gesamte<br />

Gebäu<strong>de</strong>hülle zur Energiegewinnung<br />

durch Licht- und Sonneneinstrahlung<br />

nutzen und hoch wärmegedämmte<br />

Produkte aus <strong>Alu</strong>minium, Stahl und<br />

Kunststoff tragen dazu bei Energie<br />

einzusparen.<br />

Ein Beispiel sind die Schüco Prosol-Module:<br />

Sie leiten die erzeugte<br />

Energie über ein spezielles Profil für<br />

eine ver<strong>de</strong>ckte Führung elektrischer<br />

Leitungen in Fassa<strong>de</strong>n direkt zur gewünschten<br />

Verteilung im Gebäu<strong>de</strong>.<br />

Maßnahmen <strong>de</strong>s Gesetzgebers<br />

viel Energie für Heizung und Warmwasserbereitung<br />

verbraucht, als gemäß <strong>de</strong>n<br />

Anfor<strong>de</strong>rungen <strong>de</strong>r EnEV für Neubauten<br />

vorgeschrieben ist.<br />

Die Bun<strong>de</strong>sregierung hat ihr Programm<br />

zur CO 2 -Gebäu<strong>de</strong>sanierung für <strong>de</strong>n Zeitraum<br />

2006 bis 2009 auf jährlich rund 1,4<br />

Mrd. Euro aufgestockt. Geför<strong>de</strong>rt wer<strong>de</strong>n<br />

Maßnahmen zur CO 2 -Min<strong>de</strong>rung und zur<br />

Einsparung von Energie in Wohngebäu<strong>de</strong>n.<br />

Hierunter fallen z. B. die effizientere<br />

Gestaltung <strong>de</strong>r Gebäu<strong>de</strong>hülle durch<br />

Wärmedämmung von Dach und Außenwän<strong>de</strong>n<br />

o<strong>de</strong>r die Erneuerung <strong>de</strong>r Fenster.<br />

Außer<strong>de</strong>m ist eine finanzielle Unterstützung<br />

möglich, wenn Energiesparhäuser<br />

und Passivhäuser errichtet o<strong>de</strong>r erstmalig<br />

erworben wer<strong>de</strong>n.<br />

Und die unter energetischen Aspekten<br />

entwickelte Fassa<strong>de</strong> SMC 50.HI mit<br />

einem hochwärmegedämmten Fenstersystem<br />

hilft Energie einzusparen.<br />

Corus Bausysteme: Solararchitektur<br />

mit Profiltafeln<br />

Corus Bausysteme zeigte auf <strong>de</strong>r Messe,<br />

wie mit seinen Profiltafeln Kalzip<br />

<strong>Alu</strong>PlusSolar eine dachintegrierte,<br />

regenerative Energiegewinnung mittels<br />

Photovoltaik möglich wird. Die<br />

Solarmodule und die <strong>Alu</strong>minium-<br />

Profiltafeln wer<strong>de</strong>n dabei zu einer<br />

Einheit verschmolzen. Die Solarzellen<br />

sind ohne Aufstän<strong>de</strong>rung in die<br />

Fläche integriert. Die robuste Solarfolie<br />

wird dauerhaft auf die Profiltafeln<br />

laminiert. Da die Folie flexibel ist,<br />

können die Profiltafeln konvex o<strong>de</strong>r<br />

konkav verformt wer<strong>de</strong>n. Mit Kalzip<br />

<strong>Alu</strong>PlusSolar lassen sich Tonnen-,<br />

Shed- o<strong>de</strong>r Pultdächer ebenso einfach<br />

als Energiedach ausführen wie<br />

individuell geschwungene Formen<br />

bis zu einer maximalen Neigung von<br />

60 Grad.<br />

Alcoa setzt auf Verbundplatten<br />

Fast mutet es als Positionierung gegen<br />

<strong>de</strong>n Trend an, wenn energieeffizientes<br />

Bauen einmal nicht in das Zentrum<br />

<strong>de</strong>r Marktkommunikation gerückt<br />

wird. Alcoa Architectural Products<br />

präsentierte auf <strong>de</strong>r Bau 2007 u. a.<br />

seine Marke Reynobond und setzt<br />

auf die wachsen<strong>de</strong> Nachfrage nach<br />

<strong>Alu</strong>minium-Verbundplatten. 1,6 mal<br />

leichter als Vollaluminium sind die<br />

Sandwichelemente aus <strong>Alu</strong>miniumblechen<br />

mit Polyethylenkern sehr<br />

biegesteif und stoßfest. Außer<strong>de</strong>m<br />

<strong>de</strong>hnen sich die Paneele bei Temperaturschwankungen<br />

zwischen -50 und<br />

+ 80 °C kaum aus. Um die Nachfrage<br />

nach breiteren Verbundplatten bis<br />

2.000 mm künftig noch besser befriedigen<br />

zu können, hat das Unternehmen<br />

mit <strong>de</strong>m Bau einer neuen Bandbeschichtungsanlage<br />

begonnen, die<br />

speziell <strong>Alu</strong>minium in dieser Breite<br />

einbrennlackieren kann.<br />

�<br />

88 ALUMINIUM · 1-2/2007


Verän<strong>de</strong>rungen <strong>de</strong>r Altersstruktur,<br />

Globalisierung und Verknappung<br />

von Materialien, Rohstoffen und<br />

Energie prägen die Zukunft <strong>de</strong>s<br />

Fenster- und Fassa<strong>de</strong>nbaus. So<br />

<strong>de</strong>r Tenor einer Veranstaltung <strong>de</strong>s<br />

Instituts für Fenstertechnik (ift) im<br />

Herbst 2006, in <strong>de</strong>r die Trends <strong>de</strong>r<br />

Branche beleuchtet wur<strong>de</strong>n. Hier<br />

eine Zusammenfassung:<br />

Als zentraler Trend kristallisierte sich<br />

die Notwendigkeit <strong>de</strong>s schonen<strong>de</strong>n<br />

Umgangs mit Rohstoffen und Energien<br />

heraus. Wärmeschutz und Materialoptimierungen<br />

in <strong>de</strong>r Entwicklung<br />

von Konstruktionen seien <strong>de</strong>shalb die<br />

bestimmen<strong>de</strong>n Themen <strong>de</strong>r Zukunft.<br />

Deutschland nehme hier weltweit eine<br />

Spitzenstellung ein. Auch die Fenster-<br />

und Fassa<strong>de</strong>nbranche habe mit<br />

<strong>de</strong>r Photovoltaik und mit energetisch<br />

optimierten Bauteilen beste Chancen,<br />

diese Entwicklung erfolgreich zu nutzen.<br />

Dem ift zufolge bestimmen mehrere<br />

übergeordnete Trends die künftige<br />

Entwicklung <strong>de</strong>r Branche.<br />

Techniktrends<br />

Die heutigen Konstruktionen wer<strong>de</strong>n<br />

immer vielfältiger und spezialisierter.<br />

Dies erfor<strong>de</strong>rt <strong>de</strong>shalb auch neue<br />

Konzepte für Entwicklung, Fertigung,<br />

Qualitätssicherung und Wartung. Hier<br />

bedarf es einer intensiven Information<br />

<strong>de</strong>r Verarbeiter, Monteure und<br />

Nutzer seitens <strong>de</strong>r Hersteller. Alte<br />

Themen wie Wartung und Instandhaltung<br />

bekommen dabei eine neue<br />

Be<strong>de</strong>utung.<br />

Neue Konstruktionen wer<strong>de</strong>n<br />

stärker als Verbundkonstruktionen<br />

ausgeführt, die durch eine Spezialisierung<br />

<strong>de</strong>r jeweiligen Baugruppen<br />

Leistungseigenschaften wie Wärmeund<br />

Schallschutz o<strong>de</strong>r Einbruchhemmung<br />

weiter verbessern.<br />

Das ift ist ein eingetragener Verein, <strong>de</strong>r<br />

von <strong>de</strong>r Branche <strong>de</strong>r Fenster-, Fassa<strong>de</strong>n-,<br />

Tür- und Torhersteller sowie ihrer Zulieferer<br />

getragen wird.<br />

ALUMINIUM · 1-2/2007<br />

Der Bausatzgedanke, <strong>de</strong>r Komponenten<br />

wie Rahmen, Beschläge, Glas,<br />

Randverbund, Regenschutzschiene<br />

beinhaltet, wird die alten Konstruktionsnormen<br />

ersetzen. Dies bietet<br />

Chancen für eine schnelle und einfache<br />

Variation, Differenzierung und<br />

Innovation <strong>de</strong>r Produkte.<br />

Bei <strong>de</strong>r Wärmedämmung sind die<br />

Technologien für die nächsten fünf<br />

bis zehn Jahre bekannt. Gänzlich<br />

neue Techniken für die Zeit danach<br />

sind notwendig, um zu substanziellen<br />

Verbesserungen zu kommen. Beim<br />

Isolierglas sind beispielsweise die<br />

physikalischen Grenzen <strong>de</strong>r vorhan<strong>de</strong>nen<br />

Entwicklungslinie erreicht.<br />

Die ständige Verbesserung und<br />

Neuentwicklung von Solarzellen in<br />

Verbindung mit För<strong>de</strong>rprogrammen<br />

und einer Preisreduzierung ebnet<br />

<strong>de</strong>n Weg in die Fenster- und Fassa<strong>de</strong>nbranche.<br />

Farbstoffsolarzellen eröffnen<br />

neue gestalterische Möglichkeiten.<br />

Gesellschaftstrends<br />

Die Notwendigkeit weiterer Energiesparmaßnahmen<br />

etabliert sich weltweit<br />

mit je<strong>de</strong>r neuen Erhöhung <strong>de</strong>r<br />

Energiepreise als Megatrend. Deshalb<br />

sind Bauteile und Verfahren zur Energieeinsparung<br />

gefragt.<br />

Die Solarindustrie hat hervorragen<strong>de</strong><br />

Imagewerte in Bezug auf Innovation,<br />

Design und Akzeptanz und<br />

kann die Positionierung <strong>de</strong>s mo<strong>de</strong>rnen<br />

Fensters als Hightechprodukt mit<br />

höherem Preisniveau einleiten.<br />

Für Maßnahmen zur Energie- und<br />

Ressourceneinsparung gibt es national<br />

und weltweit För<strong>de</strong>rmöglichkeiten,<br />

die Investitionen anstoßen und<br />

erleichtern.<br />

Die Forschungs- und Innovationsstruktur<br />

muss sich in Deutschland<br />

auf allen Ebenen verbessern. Unternehmen,<br />

Hochschulen und Institute<br />

müssen in Kooperationen und Netzwerken<br />

leistungsfähige Produkte<br />

und Dienstleistungen entwickeln,<br />

validieren und global vermarkten.<br />

Dabei müssen neue mo<strong>de</strong>rne Formen<br />

<strong>de</strong>r Arbeitsteilung, <strong>de</strong>r Finanzierung<br />

ALUMINIUM IM BAUWESEN<br />

Übergeordnete Trends im Fenster- und Fassa<strong>de</strong>nbau<br />

Umwelt- und Energiefragen geben <strong>de</strong>n Ton an<br />

Schüco International KG<br />

Structural-Glazing-Vorhangfassa<strong>de</strong><br />

sowie <strong>de</strong>r Kommunikation genutzt<br />

wer<strong>de</strong>n.<br />

Produktnorm und CE-Kennzeichnung<br />

Die europäischen Normen <strong>de</strong>r Fenster-,<br />

Fassa<strong>de</strong>n, Tür- und Torbranche<br />

sind weitestgehend eingeführt und in<br />

großen Teilen schon bin<strong>de</strong>nd. Die ersten<br />

Überarbeitungen, beispielsweise<br />

<strong>de</strong>r Fassa<strong>de</strong>nnorm DIN EN 13830<br />

wer<strong>de</strong>n bereits in Angriff genommen.<br />

Alte Regeln bleiben dabei erhalten<br />

und wer<strong>de</strong>n präzisiert.<br />

Die Anbieter von <strong>Alu</strong>minium- und<br />

Kunststofffenstern sowie die RAL-<br />

Gütegemeinschaften haben für ihre<br />

Verarbeiter konsistente und regelgerechte<br />

Verfahren für die CE-Kennzeichnung<br />

und die werkseigene Produktionskontrolle<br />

erstellt. Lösungen<br />

für handwerklich strukturierte Hersteller<br />

befin<strong>de</strong>n sich in <strong>de</strong>r Entwicklung.<br />

In Deutschland kann für Nachweise<br />

von Fenstern und Außentüren<br />

im Rahmen <strong>de</strong>r CE-Kennzeichnung<br />

das Cascading System (Systeminhaber<br />

stellt Herstellern die Ergebnisse<br />

89


Schüco International KG A LUMINIUM IM BAUWESEN<br />

<strong>de</strong>r Erstprüfung (ITT) zur Verfügung)<br />

o<strong>de</strong>r das Share System (mehrere Hersteller<br />

nutzen dieselben Ergebnisse<br />

<strong>de</strong>r Erstprüfung (ITT)) genutzt wer<strong>de</strong>n.<br />

Bei<strong>de</strong> Systeme sind in <strong>de</strong>r DIN<br />

EN 14351-1 verankert.<br />

Weitere Normen und Fachregeln<br />

Die EG Richtlinie 2002/91/EG zur Ermittlung<br />

<strong>de</strong>r Gesamtenergieeffizienz<br />

wird in Deutschland durch die Novellierung<br />

<strong>de</strong>r Energieeinsparverordnung<br />

umgesetzt. In diesem Zuge wird<br />

auch ein Energieausweis eingeführt,<br />

Fensterprofil mit Einsatzelement<br />

<strong>de</strong>r <strong>de</strong>n Energieverbrauch eines Gebäu<strong>de</strong>s<br />

transparent macht und bei<br />

Gebäu<strong>de</strong>hüllen in Metall – I<strong>de</strong>en und Konzepte für die Zukunft<br />

European Kalzip Stu<strong>de</strong>nt Award 2007<br />

Die Corus Bausysteme GmbH produziert<br />

unter <strong>de</strong>r Marke Kalzip Dach- und Fassa<strong>de</strong>nsysteme<br />

aus <strong>Alu</strong>minium. International tätige<br />

Architekten nutzen Kalzip-Profiltafeln für<br />

ihre architektonischen Highlights. So gehört<br />

<strong>de</strong>r neue Barajas Airport in Madrid ebenso<br />

zu <strong>de</strong>n herausragen<strong>de</strong>n Referenzobjekten<br />

wie das BMW-Zentralgebäu<strong>de</strong> in Leipzig<br />

o<strong>de</strong>r das Imperial War Museum North<br />

Manchester von Daniel Libeskind. Unter<br />

<strong>de</strong>m Motto „Wrap a building!“ schreibt die<br />

Kalzip Business Unit erstmals <strong>de</strong>n European<br />

Kalzip Stu<strong>de</strong>nt Award 2007 aus, <strong>de</strong>r sich<br />

an Universitäten, Fachhochschulen und<br />

Design-Schulen aus ganz Europa richtet.<br />

Der Wettbewerb bietet <strong>de</strong>m aka<strong>de</strong>mischen<br />

Nachwuchs die Möglichkeit, ihre Design-<br />

Neubau, Verkauf und Neuvermietung<br />

obligatorisch zu erstellen ist.<br />

Dieser kann wahlweise über eine Bedarfsrechnung<br />

o<strong>de</strong>r eine Verbrauchsmessung<br />

erstellt wer<strong>de</strong>n. Für Wohngebäu<strong>de</strong><br />

än<strong>de</strong>rt sich gegenüber <strong>de</strong>r<br />

Methodik <strong>de</strong>r EnEV 2004 nichts. Bei<br />

Nichtwohngebäu<strong>de</strong>n müssen die Energieaufwendungen<br />

für künstliches<br />

Licht und Klimatisierung gemäß <strong>de</strong>r<br />

DIN V 18599 ermittelt wer<strong>de</strong>n, die<br />

auch für die Planung von Wohngebäu<strong>de</strong>n<br />

verwendbar ist.<br />

Brandschutznachweise können zur<br />

Zeit nach nationaler Norm DIN 4102<br />

und europäischer Norm EN 13501-1<br />

geführt wer<strong>de</strong>n. Diese sind die Grundlage<br />

für die Klassifizierung. Baustoffe<br />

mit bekannter Zusammensetzung und<br />

bekanntem Brandverhalten wer<strong>de</strong>n<br />

national in DIN 4102-4 und europäisch<br />

in „CWFT-Listen“ beschrieben.<br />

Markttrends<br />

Deutschland nimmt weltweit die<br />

Führungsrolle in <strong>de</strong>r Bau- und Wohnungstechnologie<br />

ein. Dies bietet beste<br />

Chancen auch für die Fenster- und<br />

Fassa<strong>de</strong>nbranche, aktiv zu wer<strong>de</strong>n.<br />

Eine klare Unterscheidung <strong>de</strong>r Produkte<br />

in einfache Konstruktionen, die<br />

Min<strong>de</strong>stanfor<strong>de</strong>rungen erfüllen, und<br />

vorstellungen und innovativen I<strong>de</strong>en für<br />

zukünftige Gebäu<strong>de</strong>hüllen im Kontext mo<strong>de</strong>rner<br />

architektonischer Anfor<strong>de</strong>rungen zu<br />

entwickeln. Stu<strong>de</strong>nten <strong>de</strong>r Fachrichtungen<br />

Architektur und Design können ihre Vorschläge<br />

zu folgen<strong>de</strong>n Themen einreichen:<br />

• Fassa<strong>de</strong><br />

• Dach<br />

• Hybridmaterialien<br />

• Optimierung bestehen<strong>de</strong>r Systeme.<br />

Die Aufgabe steht im Spannungsfeld ganz<br />

unterschiedlicher Aspekte wie Ökologie,<br />

(Licht)Durchlässigkeit, Geometrien, Oberflächenstruktur,<br />

Anpassung an die (natürliche)<br />

Umgebung, Vielseitigkeit o<strong>de</strong>r Standardi-<br />

mo<strong>de</strong>rne Hightechfenster macht das<br />

Angebot verständlicher. Hightechfenster<br />

mit Zusatznutzen sowie höchster<br />

Qualität und Gebrauchstauglichkeit<br />

eröffnen Chancen für ein Hochpreissegment.<br />

Prestigeprojekte und Events wie<br />

die Fußballweltmeisterschaft in<br />

Deutschland o<strong>de</strong>r die Olympia<strong>de</strong> in<br />

Peking o<strong>de</strong>r London wirken wie Katalysatoren<br />

für innovatives Bauen.<br />

Leistungsfähige Unternehmen können<br />

hier direkt Aufträge generieren.<br />

Kleinere Unternehmen können diese<br />

durch einen Imagetransfer für <strong>de</strong>n eigenen<br />

Markt nutzen.<br />

Deutschland und Europa sind in<br />

vielen ökologischen Marktsegmenten<br />

Weltmarktführer. Innovativen Herstellern<br />

von Fenster- und Fassa<strong>de</strong>ntechnologien<br />

bieten sich so Chancen<br />

in interessanten lokalen Wachstumsmärkten<br />

wie London, Kalifornien<br />

o<strong>de</strong>r Peking, in <strong>de</strong>nen ökologische<br />

Standards immer stärker gefor<strong>de</strong>rt<br />

wer<strong>de</strong>n.<br />

Zukunftsstudien bieten wichtige<br />

Hinweise und Instrumente zur Bestimmung<br />

möglicher Entwicklungslinien<br />

und bei <strong>de</strong>r Planung von Innovationen.<br />

Dies gilt es seitens <strong>de</strong>r<br />

Branche zu nutzen.<br />

�<br />

sierung in <strong>de</strong>r industriellen Massenproduktion.<br />

Bewertet wer<strong>de</strong>n alle Einsendungen<br />

nach <strong>de</strong>n Kriterien Kreativität, Vision, Funktionalität,<br />

Technologie, zukunftsweisen<strong>de</strong><br />

Entwicklungen und Marktreife.<br />

Eine europäisch besetzte Architekten-Jury<br />

ermittelt die Sieger. Die ersten bei<strong>de</strong>n Gewinner<br />

bekommen neben einem Geldbetrag<br />

auch die Gelegenheit, ein mehrmonatiges<br />

Praktikum im Wiener Büro von Coop<br />

Himmelb(l)au zu absolvieren. Die offizielle<br />

Preisvergabe fin<strong>de</strong>t am 27. April 2007 im<br />

Deutschen Architektur Zentrum (DAZ) in<br />

Berlin statt. An <strong>de</strong>m Wochenen<strong>de</strong> wer<strong>de</strong>n<br />

die prämierten Arbeiten zu<strong>de</strong>m im DAZ<br />

Berlin ausgestellt.<br />

Unter www.kalzip-stu<strong>de</strong>ntaward.com können<br />

interessierte Stu<strong>de</strong>nten ihre Arbeiten<br />

bis zum 15. März 2007 anmel<strong>de</strong>n und bis<br />

zum 13. April 2007 einreichen.<br />

90 ALUMINIUM · 1-2/2007


Fenstermarkt im Plus<br />

Die Hersteller von Fenstern und<br />

Fassa<strong>de</strong>n gehen für 2006 erstmals<br />

seit langem wie<strong>de</strong>r von einer positiven<br />

Entwicklung für ihre Branche<br />

aus, nach<strong>de</strong>m die seit über<br />

zehn Jahren anhalten<strong>de</strong> Talfahrt<br />

<strong>de</strong>r <strong>de</strong>utschen Bauwirtschaft gestoppt<br />

ist. Schon im Oktober 2006<br />

auf <strong>de</strong>r Glasstec verkün<strong>de</strong>te Bernhard<br />

Helbing, <strong>de</strong>r Präsi<strong>de</strong>nt <strong>de</strong>s<br />

Verban<strong>de</strong>s <strong>de</strong>r Fenster- und Fassa<strong>de</strong>nhersteller<br />

(VFF) in Frankfurt:<br />

„Wir rechnen mit einem Zuwachs<br />

von über fünf Prozent.“<br />

En<strong>de</strong> 2006 zeichnete sich für <strong>de</strong>n Fenstermarkt<br />

schließlich ein Zuwachs von<br />

11,6 auf 12,5 Mio. Fenstereinheiten<br />

ab. Ein Katalysator dieser Entwicklung:<br />

die drastisch gestiegenen Energiepreise,<br />

die <strong>de</strong>n Einbau mo<strong>de</strong>rner,<br />

wärmegedämmter Fenster begünstigen.<br />

Für <strong>de</strong>n Wohnbau rechnet die<br />

Branche mit einem Zuwachs von 9,7<br />

ALUMINIUM · 1-2/2007<br />

Prozent, für <strong>de</strong>n Nichtwohnbau mit<br />

einem Plus von 4,6 Prozent. Der Renovierungsmarkt<br />

legte um fast zehn<br />

Prozent, <strong>de</strong>r Neubau um 5,4 Prozent<br />

zu. Für all diese Marktsegmente waren<br />

die Vorjahrszahlen noch negativ.<br />

2007 wird <strong>de</strong>r Wirtschaftsbau neben<br />

<strong>de</strong>r Renovierung die treiben<strong>de</strong> Rolle<br />

für die weiterhin positive Branchenentwicklung<br />

sein.<br />

Bei <strong>de</strong>n Rahmenmaterialien für<br />

Fenster lassen sich für 2006 und<br />

2007 lediglich Absatztrends erkennen.<br />

So nahm Kunststoff 2006 überdurchschnittlich<br />

zu, Holz lag im<br />

Gesamttrend, während <strong>Alu</strong>minium<br />

zurückblieb. Dies dürfte sich schon<br />

im laufen<strong>de</strong>n Jahr wie<strong>de</strong>r än<strong>de</strong>rn,<br />

wenn sich das stärkere Wachstum <strong>de</strong>s<br />

Nichtwohnbaus mit seinen höheren<br />

Anteilen von Metallfenstern und -fassa<strong>de</strong>n<br />

auswirkt. 2007 wird <strong>de</strong>shalb<br />

<strong>de</strong>r <strong>Alu</strong>miniumanteil voraussichtlich<br />

überdurchschnittlich steigen. Im Fen-<br />

ALUMINIUM IM BAUWESEN<br />

ster- und Fassa<strong>de</strong>nbau steht weiterhin<br />

die Verbesserung <strong>de</strong>r Wärmedämmung<br />

im Zentrum <strong>de</strong>r Aufmerksamkeit.<br />

Denn mit <strong>de</strong>r Novellierung <strong>de</strong>r<br />

Energie-Einsparverordnung im Jahr<br />

2008 wer<strong>de</strong>n die Ansprüche an die<br />

Wärmedämmung <strong>de</strong>r Gebäu<strong>de</strong>hülle<br />

noch einmal erhöht. Und nach<strong>de</strong>m<br />

seit En<strong>de</strong> 2005 alle vorgehängten<br />

Fassa<strong>de</strong>n das CE-Zeichen führen<br />

müssen, steht ab Herbst 2007 auch<br />

<strong>de</strong>ssen Einführung für Fenster und<br />

Außentüren bevor.<br />

Größtes <strong>de</strong>utsches Büroprojekt mit Wicona-Fassa<strong>de</strong>n<br />

Vom damaligen Kölner Oberbürgermeister<br />

Konrad A<strong>de</strong>nauer 1924<br />

eingeweiht, galten die Rheinhallen<br />

lange Zeit als eine <strong>de</strong>r mo<strong>de</strong>rnsten<br />

Messeanlagen Deutschlands. Inzwischen<br />

ist <strong>de</strong>r Abbruch <strong>de</strong>r Hallen<br />

innerhalb <strong>de</strong>r stehen gebliebenen<br />

historischen Außenmauer<br />

weitgehend abgeschlossen.<br />

Neben <strong>de</strong>m unregelmäßigen Rechteck<br />

<strong>de</strong>r Fassa<strong>de</strong> von rund 200 x 300<br />

Metern bleiben <strong>de</strong>r Messeturm, ein<br />

Wahrzeichen <strong>de</strong>r Stadtsilhouette, und<br />

das alte Portalbauwerk Atrium am<br />

Messeplatz bestehen. In die expressionistische<br />

Fassa<strong>de</strong> von 1924 wird ein<br />

komplett neues riesiges Bürogebäu<strong>de</strong><br />

integriert. Als einer <strong>de</strong>r künftigen<br />

Mieter steht bereits <strong>de</strong>r Fernsehsen<strong>de</strong>r<br />

RTL fest, <strong>de</strong>r ab 2008 aus diesen<br />

historischen Hallen sen<strong>de</strong>n und hier<br />

die Deutschland-Zentrale einrichten<br />

wird. Die Bürofläche beträgt insgesamt<br />

rund 160.000 qm, RTL wird<br />

davon rund die Hälfte beanspruchen.<br />

Eine Nutzung <strong>de</strong>s Turms ist <strong>de</strong>rzeit<br />

noch offen, da er als Hochhaus gilt<br />

und so beson<strong>de</strong>ren Anfor<strong>de</strong>rungen<br />

entsprechen muss.<br />

Die Hallen spalten sich auf in 14<br />

Innenhöfe mit Attika, Hallen- und<br />

Außenfassa<strong>de</strong>. Das Hauptvolumen<br />

<strong>de</strong>r <strong>Alu</strong>miniumfassa<strong>de</strong>n, die allein<br />

ein Gewicht von 400 bis 450 Tonnen<br />

ergeben, liegt in <strong>de</strong>n Innenhöfen. Diese<br />

Fassa<strong>de</strong> wird bis zur Eröffnung im<br />

Jahre 2008 durch die Metallbaufirma<br />

Rupert App aus Leutkirch ausgeführt,<br />

die bereits mehrere Projekte dieser<br />

Größenordnung, u. a. die NordLB in<br />

Hannover, umgesetzt hat. Die technischen<br />

Voraussetzungen wur<strong>de</strong>n<br />

durch die Kölner Architekten HPP in<br />

Zusammenarbeit mit <strong>de</strong>m Fassa<strong>de</strong>nplaner<br />

AMP aus Bargtehei<strong>de</strong> gesetzt.<br />

Seit Oktober 2005 hat Hydro Building<br />

Systems aktiv zur technischen<br />

Umsetzung im Bereich Fassa<strong>de</strong>n bei<br />

<strong>de</strong>n Planern beigetragen. Die jetzige<br />

Ausführung wird in <strong>de</strong>r Wicona-Elementfassa<strong>de</strong>nkonstruktion<br />

Wictec EL<br />

umgesetzt. Bereits im Dezember 2006<br />

wur<strong>de</strong>n die ersten Fassa<strong>de</strong>nelemente<br />

Norsk Hydro<br />

Quelle: VFF<br />

auf <strong>de</strong>r Baustelle erwartet. Dabei han<strong>de</strong>lt<br />

es sich um rund 4.300 Elementteile<br />

mit je 100 Kilogramm Gewicht.<br />

Kölner Messeturm und historische Außenfassa<strong>de</strong><br />

91


RECYCLING<br />

Vorbericht<br />

9. Internationaler <strong>Alu</strong>minium Recycling Kongress <strong>de</strong>r OEA<br />

Am 26. und 27. Februar 2007 steht<br />

in Köln das Recyceln von <strong>Alu</strong>minium<br />

auf <strong>de</strong>m Veranstaltungskalen<strong>de</strong>r.<br />

An diesen Tagen lädt die Organisation<br />

of European <strong>Alu</strong>minium<br />

Refiners and Remelters (OEA) zum<br />

mittlerweile 9. Internationalen <strong>Alu</strong>minium<br />

Recycling Kongress ins<br />

Hotel Maritim ein.<br />

Unternehmer und Mitarbeiter <strong>de</strong>r<br />

<strong>Alu</strong>miniumrecycling-Industrie, Metallhändler,<br />

Journalisten, Behör<strong>de</strong>nvertreter,<br />

Angehörige von Hochschulen,<br />

also alle, die mit <strong>de</strong>m Recycling<br />

von <strong>Alu</strong>minium befasst sind, wer<strong>de</strong>n<br />

sich an <strong>de</strong>m Ort treffen, wo die erfolgreiche<br />

Kongress-Serie vor 17 Jahren<br />

begonnen wur<strong>de</strong>. Der Zeitpunkt <strong>de</strong>r<br />

Veranstaltung ist günstig gewählt. Die<br />

Konjunktur, das begrenzte Angebot<br />

an natürlichen Rohstoffen und <strong>de</strong>r<br />

ökologische Nutzen <strong>de</strong>s <strong>Alu</strong>miniumrecyclings<br />

haben <strong>Alu</strong>miniumschrott<br />

zu einem weltweit begehrten Rohstoff<br />

wer<strong>de</strong>n lassen. Hierdurch sieht<br />

sich die europäische <strong>Alu</strong>miniumrecycling-Industrie<br />

vor neue Heraus-<br />

for<strong>de</strong>rungen gestellt, die mit einem<br />

weitreichen<strong>de</strong>n Strukturwan<strong>de</strong>l <strong>de</strong>r<br />

mit <strong>de</strong>m Recycling befassten Industrie<br />

verbun<strong>de</strong>n ist.<br />

Den Einführungsvortrag wird Sean<br />

M. Stack halten, <strong>de</strong>r Europachef von<br />

Aleris Europe, einem Unternehmen,<br />

dass sich erst seit kurzem in Europa<br />

auf <strong>de</strong>m Gebiets <strong>de</strong>s <strong>Alu</strong>miniumrecyclings<br />

engagiert. Roland Scharf-<br />

Bergmann, Präsi<strong>de</strong>nt <strong>de</strong>r OEA, wird<br />

in seinem Vortrag eine Positionsbestimmung<br />

<strong>de</strong>r europäischen <strong>Alu</strong>miniumrecycling-Industrie<br />

vornehmen,<br />

die bestehen<strong>de</strong>n Herausfor<strong>de</strong>rungen<br />

darstellen und Wege zu ihrer Bewältigung<br />

aufzeigen. Günter Kirchner, Generalsekretär<br />

<strong>de</strong>r OEA und Vorsitzen<strong>de</strong>r<br />

<strong>de</strong>s Global <strong>Alu</strong>minium Recycling<br />

Committees (GARC), stellt vor allem<br />

auf die globale Be<strong>de</strong>utung <strong>de</strong>s recycelten<br />

<strong>Alu</strong>miniums als Rohstoffquelle<br />

ab. In <strong>de</strong>n letzten Jahren hat vor allem<br />

<strong>de</strong>r zunehmen<strong>de</strong> Abfluss von <strong>Alu</strong>miniumschrott<br />

nach China für Unruhe<br />

gesorgt. Ob zu Recht o<strong>de</strong>r zu Unrecht<br />

wird <strong>de</strong>r Vortrag eines Repräsentanten<br />

<strong>de</strong>r chinesischen <strong>Alu</strong>minium-<br />

Preview of the 9 th International <strong>Alu</strong>minium<br />

Recycling Congress of the OEA<br />

On 26 and 27 February 2007 in Cologne, the<br />

recycling of aluminium is on the calendar of<br />

events. On those dates the Organisation of<br />

European <strong>Alu</strong>minium Refiners and Remelters<br />

(OEA) is inviting interested parties to what<br />

will then be the 9th International <strong>Alu</strong>minium<br />

Recycling Congress. Companies and employees<br />

in the aluminium recycling industry,<br />

metal tra<strong>de</strong>rs, journalists, representatives of<br />

government authorities, in short all who are<br />

involved with the recycling of aluminium<br />

will meet at the place where this series of<br />

successful congresses began 17 years ago.<br />

The timing of the event is well chosen.<br />

The tra<strong>de</strong> position, the limited supply of<br />

natural raw materials and the ecological<br />

uses of aluminium recycling have promoted<br />

aluminium scrap to become a raw material<br />

in <strong>de</strong>mand all over the world. This presents<br />

Europe’s aluminium recycling industry with<br />

new challenges that entail far-reaching<br />

structural transformations in all aspects of<br />

recycling-related industry. The introductory<br />

lecture will be given by Sean M. Stack, Head<br />

of European operations at Aleris Europe, a<br />

company that has become engaged in the<br />

field of aluminium recycling only relatively<br />

recently. Roland Scharf-Bergmann, Presi<strong>de</strong>nt<br />

of the OEA, will <strong>de</strong>scribe the position<br />

adopted by the European recycling industry,<br />

set out the existing challenges and indicate<br />

ways to overcome them. Günter Kirchner,<br />

Secretary General of the OEA and Chair of<br />

the Global <strong>Alu</strong>minium Recycling Committees<br />

(GARC), will <strong>de</strong>al mainly with the global importance<br />

of recycled aluminium as a source<br />

of raw material. In recent years, above all<br />

the increased flow of aluminium scrap to<br />

recycling-Industrie zeigen. Die be<strong>de</strong>uten<strong>de</strong><br />

Rolle <strong>de</strong>s europäischen<br />

Metallhan<strong>de</strong>ls für die Versorgung mit<br />

sekundären Rohstoffen wird ebenso<br />

diskutiert wie das durch verstärkte<br />

Schrottexporte entstan<strong>de</strong>ne Spannungsfeld.<br />

Allein fünf Vorträge wer<strong>de</strong>n sich<br />

mit technischen Neuerungen auf<br />

<strong>de</strong>m Gebiet <strong>de</strong>r Erfassung, <strong>de</strong>r Aufbereitung<br />

und <strong>de</strong>m Einschmelzen von<br />

Schrotten und <strong>de</strong>r Verwertung <strong>de</strong>r<br />

beim Recyclingprozess anfallen<strong>de</strong>n<br />

Salzschlacke beschäftigen. Der Erfolg<br />

<strong>de</strong>r Recyclingbemühungen in Europa<br />

hängt wesentlich von <strong>de</strong>n rechtlichen<br />

Rahmenbedingungen ab. Aktuell stehen<br />

weitreichen<strong>de</strong> Reformen <strong>de</strong>r EU-<br />

Abfallrahmenrichtlinie an, über die<br />

berichtet wird. Vorträge über bestehen<strong>de</strong><br />

und künftige Preisbildungsmechanismen<br />

und Herausfor<strong>de</strong>rungen<br />

an das Recyceln von Verpackungen<br />

run<strong>de</strong>n das Bild <strong>de</strong>r interessanten<br />

Veranstaltung ab.<br />

Näheres zum Kongress direkt bei<br />

<strong>de</strong>r OEA: Tel: +49 (0)211 451 933 o<strong>de</strong>r<br />

unter www.oea-alurecycling.org. �<br />

China has been a cause for concern. Whether<br />

or not this is justified will be examined<br />

in a lecture by a representative of China’s<br />

aluminium recycling industry. The important<br />

part played by the metal tra<strong>de</strong> in relation<br />

to supplies of secondary raw materials will<br />

be discussed as well, as also will the stresses<br />

created by rising scrap exports.<br />

No less than 5 lectures will <strong>de</strong>al with<br />

technical innovations in the fields of the collection,<br />

preparation and melting of scrap and<br />

the recovery and use of salt slags produced<br />

during the recycling process. The success<br />

of recycling efforts in Europe <strong>de</strong>pends substantially<br />

on the legal boundary conditions<br />

imposed. At present far-reaching reform of<br />

the EU’s gui<strong>de</strong>lines on waste are due, and<br />

these will be reported. Lectures on existing<br />

and future pricing mechanisms and challenges<br />

related to the recycling of packaging<br />

materials will round off the picture of this<br />

interesting event. More information on the<br />

congress at www.oea-alurecycling.org.<br />

92 ALUMINIUM · 1-2/2007


Recycling von Folienschrotten<br />

Hydro vollen<strong>de</strong>t Metallkreislauf in Neuss<br />

Eine I<strong>de</strong>e, eine Pumpe, ein paar<br />

unnachgiebige Ingenieure - so<br />

vollen<strong>de</strong>t Hydro im <strong>Alu</strong>minium-<br />

Cluster Neuss <strong>de</strong>n Metallkreislauf<br />

und stärkt <strong>de</strong>n engen Verbund mit<br />

<strong>de</strong>n Nachbar-Walzwerken in<br />

Neuss und Grevenbroich.<br />

Die Gießerei im Rheinwerk Neuss von<br />

Hydro schmilzt nun jährlich 22.000<br />

Tonnen Folienschrotte aus <strong>de</strong>m Werk<br />

Grevenbroich um. „Das macht ökologisch<br />

Sinn, und es hilft im Kostenkampf<br />

angesichts <strong>de</strong>r hohen Strompreise,<br />

unsere Wettbewerbsfähigkeit<br />

zu stärken“, sagt Werkleiter Bernhard<br />

Eich.<br />

Hydro erzeugt in Deutschlands<br />

größter <strong>de</strong>utscher <strong>Alu</strong>miniumhütte<br />

in Neuss jährlich 224.000 Tonnen<br />

Flüssigmetall. Dagegen liefert die Gießerei<br />

<strong>de</strong>s Werkes mittlerweile bereits<br />

320.000 Tonnen Walzbarren an <strong>Alu</strong>norf<br />

nebenan, das dann <strong>Alu</strong>minumband<br />

an das Folienwalzwerk von Hydro<br />

in Grevenbroich liefert. Die Gießerei<br />

muss das Restmaterial zumeist<br />

�����������<br />

���������<br />

��������<br />

���������������������������<br />

�������������������<br />

�����������������������������������������<br />

��������������������������������������������<br />

������������������������������<br />

ALUMINIUM · 1-2/2007<br />

als Metallmasseln teuer zukaufen. Um<br />

hier zu sparen, suchte ein Team von<br />

Ingenieuren um Projektleiter Michael<br />

Jordan, zuletzt Tag und Nacht, eine<br />

Lösung für <strong>de</strong>n kostengünstigen, aber<br />

hochwertigen Folienschrott aus <strong>de</strong>m<br />

Hydro-Walzwerk in Grevenbroich.<br />

Von <strong>de</strong>r bis zu 6 Mikrometer<br />

hauchdünnen Folie, die Hydro aus<br />

Grevenbroich für Getränkeverbundkartons<br />

in viele Län<strong>de</strong>r liefert, ließen<br />

sich Prozessüberbleibsel bisher kaum<br />

einschmelzen. Denn auf <strong>de</strong>r großen<br />

Oberfläche <strong>de</strong>r Folie wirkt eine dünne<br />

Oxidschicht wie eine Isolierung. Außer<strong>de</strong>m<br />

hat zusammengepresste Folie<br />

eine Dichte, die wesentlich unter <strong>de</strong>r<br />

von flüssigem <strong>Alu</strong>minium liegt. So<br />

schwamm Folienabfall im Schmelzbad<br />

zuoberst auf <strong>de</strong>m flüssigen Metall,<br />

es entstand viel Krätze – und<br />

die dünne Folie verbrannte statt zu<br />

schmelzen. Die Ingenieure in Neuss<br />

kamen auf die I<strong>de</strong>e, eine elektromagnetische<br />

Pumpe zu verwen<strong>de</strong>n, die<br />

flüssiges Metall mit hoher Geschwindigkeit<br />

zirkulieren lässt. Das rotieren-<br />

�����������������<br />

�������������������������������������<br />

��������������������������������������<br />

���������������������������������������������<br />

����������������������������������������<br />

���������������������������������������<br />

����������������������������<br />

������������������������<br />

�������������� ������������������������������ � ������������������������������ � �����������������������������������<br />

��������������������������� � �������������������<br />

RECYCLING<br />

<strong>de</strong> Metall erzeugt einen Wirbelstrom<br />

im Inneren <strong>de</strong>r Pumpe, die daher<br />

„Vortex“ (Wirbel) heißt. Kommen die<br />

40 x 40 Zentimeter großen, aus Folie<br />

zusammengepressten Blöcke in <strong>de</strong>n<br />

Schmelzofen, presst die Schwerkraft<br />

<strong>de</strong>n Folienabfall in <strong>de</strong>n Wirbelstrom<br />

und unter die Oberfläche <strong>de</strong>s Metalls,<br />

wo Turbulenzströmungen entstehen.<br />

Im rotieren<strong>de</strong>n Metallstrom zersetzt<br />

sich <strong>de</strong>r Folienblock und schmilzt<br />

perfekt.<br />

Ein gutes Geschäft für bei<strong>de</strong> Standorte:<br />

„Früher konnten wir nur dicke<br />

walzblanke Schrotte umschmelzen,<br />

und unsere Kun<strong>de</strong>n mussten ihren<br />

Folienschrott bei unseren Konkurrenten<br />

einschmelzen lassen, die<br />

zu<strong>de</strong>m altmodische Technologie<br />

verwen<strong>de</strong>ten“, erklärt Gießereileiter<br />

Ulrich Bollmann. „Jetzt benutzen wir<br />

vorhan<strong>de</strong>ne Anlagen auf neue Weise,<br />

können so die dünne Folie effektiv<br />

umschmelzen – und das lohnt sich<br />

für uns und für unsere Kollegen in<br />

Grevenbroich.“<br />

�<br />

����������������<br />

������������������������������������<br />

����������������������������������<br />

���������������������������������������������<br />

�������������������������������<br />

93


TECHNOLOGY<br />

Recent advances in coil coating technology<br />

N. C. Davies, Banbury<br />

The application of coatings to<br />

continuous coils has been in existence<br />

as an industrial process for<br />

more than 50 years. The <strong>de</strong>velopments<br />

ma<strong>de</strong> over that period have<br />

led to an increase in both scale<br />

and speed. Coil coating has thus<br />

become the most efficient method<br />

of coating materials, allowing end<br />

users to displace this important<br />

practice from their plants as a<br />

fixed cost and into suppliers as a<br />

variable cost.<br />

The future competitiveness of coil<br />

coating within Europe has the following<br />

drivers: product quality and differentiation,<br />

cost and line versatility,<br />

environmental compliance. Achieving<br />

these technical, economic and<br />

legislative challenges is paramount<br />

for an industry seeking to maintain<br />

and expand in a world where globalisation<br />

pressures exist.<br />

Internationally, the coil coating<br />

process is the application of thousands<br />

of tons of chemicals, paints<br />

and lacquers to millions of square<br />

metres of surface. The fact that most<br />

of these coating materials have been<br />

solvent based immediately highlights<br />

the environmental compliance challenges<br />

facing the industry. Current<br />

and emerging legislation, such as the<br />

Solvent Emission Directive (SED)<br />

[1999/13/EC] in Europe, mean that<br />

coil coaters are continuously seeking<br />

“cleaner” technologies.<br />

Additionally, the End of Life Vehicle<br />

(ELV) Directive <strong>de</strong>mands that the<br />

coatings used in automotive applications<br />

are free of heavy metals, which<br />

then impacts on the metal pretreatment<br />

(the chemical layer between<br />

substrate and paint/lacquer) chemicals<br />

that must be chromium free.<br />

Although the primary concerns with<br />

chromium focus on its hexavalent<br />

form, many packaging end-users are<br />

also <strong>de</strong>manding the withdrawal of its<br />

trivalent form which has historically<br />

been used as a pretreatment in canning<br />

and other sheet packaging.<br />

In addition to these challenges coil<br />

coaters are always looking to increase<br />

their volume through the line. The<br />

overall line speed is in general limited<br />

by the time spent in the paint/lacquer<br />

curing ovens. Time at temperature is<br />

required to cure the organic film and<br />

also extreme care must be taken in<br />

balancing the coating line’s fume exhaust<br />

system with the coating’s solvent<br />

emission volume. Advances have<br />

been ma<strong>de</strong> in waterborne systems and<br />

higher solid coatings and these will be<br />

discussed further, as will alternative<br />

cure technology processes. It should<br />

also be stressed that probably in excess<br />

of 95% of all coated products will<br />

be post-formed, so all alloys and coatings<br />

that are specified must be tolerant<br />

to controlled <strong>de</strong>formation.<br />

In coil coating for can end stock<br />

relatively thin lacquers are applied<br />

to aluminium: utilising advances in<br />

line <strong>de</strong>sign and lacquer formulations,<br />

some lines are now reported to be<br />

operating at speeds above 250m/min.<br />

This is close to the limit of speed that<br />

can be achieved by conventional roll<br />

coat application technology. Any potential<br />

speed increases beyond this<br />

limit will require alternative application<br />

technologies or processes.<br />

Cleaning<br />

The bare aluminium strip surface<br />

presented to the first process step of<br />

cleaning has residual rolling oil from<br />

the cold rolling process, oxi<strong>de</strong> films<br />

generated during the high temperature<br />

rolling passes (most evi<strong>de</strong>nt on<br />

magnesium-containing alloys where<br />

MgO segregates to the<br />

surface) and <strong>de</strong>formed or<br />

surface active layers.<br />

For painted products,<br />

corrosion susceptibility, in<br />

most instances, has been<br />

found to be controlled by<br />

surface active layers. This<br />

has only been studied<br />

in <strong>de</strong>tail during the past<br />

<strong>de</strong>ca<strong>de</strong> [1, 2], initially<br />

through an industry-wi<strong>de</strong><br />

Brite-Euram programme<br />

focussing on filiform corrosion. These<br />

surface active layers arise from the<br />

high level of surface shear induced<br />

during rolling that transforms the<br />

near surface microstructure (Fig. 1).<br />

Deformed surfaces are characterised<br />

by an ultra-fine grain size that<br />

can be stabilised by magnesium oxi<strong>de</strong><br />

pinning in magnesium-containing<br />

alloys [3]. However, it is not the fine<br />

grain size that is responsible for the<br />

enhanced corrosion susceptibility of<br />

the surface layer. This susceptibility is<br />

promoted by the preferential precipitation<br />

of manganese-rich dispersoids<br />

during annealing treatments, which is<br />

related to the manganese solid solution<br />

level and the temperature and<br />

time of annealing.<br />

These <strong>de</strong>formed surface layers on<br />

aluminium alloys are produced most<br />

readily by hot rolling and, generally,<br />

the layer thickness of sheet and plate<br />

after hot rolling is of the or<strong>de</strong>r of a micron.<br />

The <strong>de</strong>formed layer thickness is<br />

progressively reduced by cold rolling<br />

so alloys that have been extensively<br />

cold rolled have thinner <strong>de</strong>formed<br />

layers that can more readily be removed<br />

by conventional etch cleaning<br />

operations. This means that resistance<br />

to corrosion can be improved by increasing<br />

the transfer gauge thickness<br />

so that after cold rolling the amount of<br />

surface to be removed at final gauge is<br />

0.2μm or less.<br />

The primary processes for cleaning<br />

aluminium are by spray or immersion<br />

in either acid or alkali solutions, although<br />

acid electrolytic processes are<br />

also used [4]. A line configuration may<br />

Fig. 1: 100 nm surface active layer on AA3105 cold rolled sheet<br />

94 ALUMINIUM · 1-2/2007


also inclu<strong>de</strong> a mild pre-clean step to<br />

reduce the lubricant residues or any<br />

surface <strong>de</strong>tritus.<br />

Cleaning in alkaline solutions often<br />

produces a non-uniform surface<br />

in that aluminium and its oxi<strong>de</strong> are<br />

soluble and magnesium oxi<strong>de</strong> is relatively<br />

insoluble, hence a roughened<br />

surface can result. However, alkali<br />

cleaners are very effective in the removal<br />

of organics. On the other hand<br />

an acid cleaner will consistently attack<br />

both types of oxi<strong>de</strong>, providing a<br />

more uniform surface.<br />

For historical reasons alkali cleaning<br />

was initially the preferred cleaning<br />

option but gradually there has<br />

been a move to acid cleaners where<br />

proprietary cleaners are based on<br />

sulphuric acid and incorporate hydrofluoric<br />

acid and surfactants. The<br />

cleaners work by the sulphuric acid<br />

removing organics and oxi<strong>de</strong>s and the<br />

HF attacking both the oxi<strong>de</strong>s and the<br />

aluminium substrate: the <strong>de</strong>gree of attack<br />

can be controlled by the amount<br />

of free fluori<strong>de</strong> in solution.<br />

Pretreatment<br />

The key functions of pretreatments<br />

or conversion treatments after cleaning<br />

is both to provi<strong>de</strong> good adhesion<br />

and to provi<strong>de</strong> corrosion protection.<br />

Pretreatment application is either by<br />

a dip/spray process followed by rinsing<br />

(rinse pretreatment) or by roll<br />

coating (no-rinse pretreatment). The<br />

volume of chemicals used in both<br />

processes differs consi<strong>de</strong>rably, with<br />

the dip/spray process giving rise to<br />

a large volume of contaminated rinse<br />

water requiring treatment before disposal.<br />

On the other hand, roll coating<br />

requires a precise amount of solution<br />

to be applied uniformly across the<br />

strip which is then dried in place; the<br />

reaction with aluminium consumes<br />

all of the chemicals and no products<br />

requiring subsequent removal are<br />

formed, thus avoiding any potential<br />

environmental issues.<br />

Historically chromium based pretreatments<br />

have been used based<br />

on chromate (Cr VI) and chromephosphate<br />

(Cr III) chemistries. Being<br />

highly acidic these pretreatments<br />

have often compensated for any ina<strong>de</strong>quacies<br />

in the cleaning process. For<br />

ALUMINIUM · 1-2/2007<br />

architectural products both types of<br />

chromium pretreatments have been<br />

used but, with the major carcinogenic<br />

concerns surrounding the use of Cr<br />

VI compounds, Cr VI is not used for<br />

packaging products.<br />

For rinse applications with Cr VI<br />

pretreatments the coating is formed<br />

by the reaction of solutions containing<br />

sodium dichromate and hydrofluoric<br />

acid. The HF attacks the residual surface<br />

oxi<strong>de</strong>s and aluminium, producing<br />

electrons which facilitate a redox<br />

reaction [5,6] resulting in the reduction<br />

of the hexavalent dichromate<br />

ion (Cr 2 O 7 ) to a trivalent chromium<br />

oxi<strong>de</strong> (Cr 2 O 3 ). Importantly excess<br />

Cr VI is retained in such films and,<br />

in downstream product applications<br />

where these films could be damaged,<br />

the excess hexavalent chromium reacts<br />

with water and the aluminium<br />

to produce a new conversion coating<br />

i.e. the pre-treatment system is selfrepairing.<br />

The no-rinse roll-coatable<br />

analogue of this system typically contains<br />

CrO 3 , HF and amorphous SiO 2<br />

as a carrier.<br />

For rinse applications of Cr III<br />

pretreatments, the reacting solutions<br />

contain CrO 3 , phosphoric acid and<br />

hydrofluoric acid. Similar oxidation/<br />

reduction reactions take place to the<br />

above, resulting in the <strong>de</strong>position of<br />

a trivalent chromium phosphate film.<br />

The no-rinse roll-coatable analogue of<br />

this system contains chromium phosphate,<br />

HF and a polymer, typically<br />

polyacrylic acid, which can act both<br />

as an adhesion promoter and corrosion<br />

inhibitor.<br />

As the market moves away from<br />

chromium pretreatments, the technical<br />

challenges are greater, not only because<br />

of the inherent corrosion resistance<br />

<strong>de</strong>man<strong>de</strong>d from pretreatments<br />

but also because of the less reactive<br />

nature of the Cr-free systems with<br />

the aluminium strip, thereby placing<br />

a greater emphasis on the efficiency<br />

and quality of the precursor cleaning<br />

step. Thus there is a greater <strong>de</strong>mand<br />

on non-Cr pretreatments to act as adhesion<br />

promoters with good uniform<br />

barrier properties.<br />

These adhesion and barrier aspects<br />

can be achieved by using a<br />

treatment to enhance the natural oxi<strong>de</strong><br />

layer, such as anodising or hydro-<br />

thermal treatment in water or steam.<br />

Anodising pretreatments have been<br />

used very effectively for many years<br />

although they are not in wi<strong>de</strong>spread<br />

use as coil line treatments. Coil line<br />

treatments are based on fast anodising<br />

in either sulphuric acid or phosphoric<br />

acid and these types of pretreatment<br />

have the advantages of speed, control<br />

and uniformity compared to most<br />

chemical conversion treatments (Fig.<br />

2); they rely on a balance between<br />

anodic film formation and chemical<br />

dissolution of the anodic film and are<br />

much un<strong>de</strong>r-utilised as chrome-free<br />

pretreatments.<br />

Fluorotitanic and fluorozirconic<br />

acid based pretreatments [7] are in<br />

fairly wi<strong>de</strong>spread use as chrome-free<br />

alternatives. Such pretreatments can<br />

certainly be effective but are more<br />

difficult to monitor in production<br />

compared to traditional chromebased<br />

systems. This is particularly an<br />

issue where polymeric additions are<br />

ma<strong>de</strong> to the formulation to improve<br />

performance. For such systems good<br />

adhesion is achieved through good<br />

surface coverage of a uniform film<br />

of either zirconium and/or titanium<br />

oxi<strong>de</strong>. However, adhesion is severely<br />

compromised if the film is too thick<br />

and this can lead to in-service coating<br />

failures that are unrelated to corrosion<br />

sensitivity.<br />

Pretreatment systems based on<br />

the use of adhesion promoters such<br />

as silanes [8], phosphonates and polyacrylic<br />

acids have been extensively<br />

researched. These pretreatments can<br />

certainly be very effective especially<br />

when applied as monolayers rather<br />

than thick films. They are probably<br />

most useful when used in combination<br />

with a thin anodising treatment<br />

(as a post-anodising step) or similar<br />

treatment to increase the barrier film<br />

thickness and to <strong>de</strong>velop a micro-surface<br />

roughness to enhance adhesion.<br />

Paints and lacquers<br />

TECHNOLOGY<br />

Architectural: The choice of a paint<br />

system <strong>de</strong>pends on a number of<br />

key factors including aesthetic appearance<br />

(sha<strong>de</strong>, gloss, roughness),<br />

mechanical properties (abrasion resistance,<br />

scratch resistance, impact<br />

resistance, formability), durability<br />

95


TECHNOLOGY<br />

Fig. 2: Schematic of electrolytic cleaning and continuous anodising film formation<br />

(colour and gloss retention, weathering<br />

resistance, corrosion resistance),<br />

environmental impact and cost.<br />

Most aluminium sheet will be rollcoated<br />

(Fig. 3) with a thin backing<br />

coat and a two-coat topcoat, although<br />

products with up to 4 layers of topcoat<br />

are available for specific applications.<br />

The initial coat is the primer, its dry<br />

thickness usually in the range of 5 to<br />

15 microns, to provi<strong>de</strong> adhesion to the<br />

pretreated metal and it may contain<br />

anti-corrosive pigments. The second<br />

coat, or topcoat, is usually in the range<br />

of 10 to 25 microns and it provi<strong>de</strong>s<br />

the colour and appearance to the final<br />

coated system along with the other<br />

key properties required to meet the<br />

product’s performance specification.<br />

An alternative approach is to produce<br />

a product with a basecoat (colour)<br />

with a clear topcoat (gloss).<br />

There are two types of resins<br />

used in <strong>de</strong>veloping liquid paints for<br />

coil coating, thermosetting and thermoplastic.<br />

The thermosets inclu<strong>de</strong><br />

acrylics, polyurethanes, polyesters<br />

and silicon polyesters. The polyesters<br />

are also used in pow<strong>de</strong>r spray applications.<br />

The thermoplastics inclu<strong>de</strong><br />

PVC-plastisols, PVDFs (polyvinyldifluori<strong>de</strong>)<br />

and polyami<strong>de</strong>-nylons. Each<br />

resin type can provi<strong>de</strong> a different balance<br />

of properties:<br />

� Polyesters provi<strong>de</strong> good all round<br />

properties including very good colour<br />

matching capability and colour retention<br />

combined with good flexibility,<br />

hardness, resistance to weathering<br />

and chemicals.<br />

� Vinyls provi<strong>de</strong> the best resistance<br />

to acid, alkalis and many solvents.<br />

The most common building block is<br />

polyvinyl chlori<strong>de</strong> (PVC). Fluorinated<br />

versions (PVDF) offer the best protection<br />

against weathering including UV<br />

resistance and for this reason they are<br />

mostly used in critical applications<br />

and prestige buildings.<br />

� Acrylics provi<strong>de</strong> high gloss plus<br />

yellowing and mar resistance.<br />

� Urethanes combine hardness and<br />

abrasion resistance coupled to good<br />

weathering performance.<br />

Packaging: Coil coating for packaging<br />

is dominated by the market for easyopen<br />

ends for beverage cans. Can<br />

end lacquers are normally applied<br />

at around 1-2.5g/m 2 on the external<br />

surface and 7-10g/m 2 on the internal.<br />

The internal coating, in particular,<br />

must withstand the high speed forming<br />

process of the end (above all the<br />

tab rivet) whilst protecting the beverage<br />

from the container (and vice<br />

versa). Historically this application<br />

was dominated by the highly ductile<br />

vinyl organosols (vinyl chlori<strong>de</strong>vinyl<br />

acetate copolymers dispersed<br />

in solvent) but recently a combination<br />

of environmental pressures and<br />

consumer health concerns has led to<br />

replacement of solvent based vinyls<br />

with variants including:<br />

� Water based<br />

� Vinyl (chlorine) free<br />

� Low BADGE (BADGE-free)<br />

� Bisphenol A-free.<br />

These <strong>de</strong>velopments are based on<br />

epoxy-ester or polyesters with enhanced<br />

flexibility.<br />

Alternative technologies<br />

In the challenges that face the coil<br />

coater, he/she is consistently examining<br />

alternative technologies. As part<br />

of continuous improvement exercises,<br />

coil coaters have worked closely with<br />

paint suppliers in the <strong>de</strong>velopment of<br />

both high-solids coatings and waterborne<br />

coatings. High solids coatings<br />

as their name implies, have a higher<br />

content of solid components than<br />

conventional solvent-borne systems.<br />

Typically coating systems with a sol-<br />

ids content of >85% fall into this<br />

category and, since they contain<br />

less solvent, they offer a significant<br />

reduction in VOC emissions<br />

compared to conventional systems.<br />

As well as reducing emissions,<br />

high-solids coatings can<br />

impart thicker application layers<br />

than conventional systems, leading<br />

to timesaving. The reduction<br />

in solvent however, means that<br />

such coatings are more sensitive to<br />

ina<strong>de</strong>quate surface preparation of the<br />

substrate.<br />

Water-borne coatings are systems<br />

that predominantly utilise water as<br />

the solvent to dissolve the bin<strong>de</strong>r.<br />

Typically up to 80% of the total solvent<br />

is water with the remain<strong>de</strong>r<br />

being organic co-solvents such as<br />

glycol ethers. Such systems benefit<br />

from large reductions in VOC emissions<br />

and an associated reduction in<br />

both fire risk and worker exposure<br />

to organic vapours. However, due to<br />

the corrosive nature of the water in<br />

the formulation, special equipment<br />

can often be required for application.<br />

Control of humidity is also critical to<br />

achieving the <strong>de</strong>sired film formation.<br />

Most resins have now been incorporated<br />

into water-borne coating formulations<br />

and they are finding wi<strong>de</strong>spread<br />

applications for packaging<br />

products. For architectural products<br />

the use of water-borne coatings has<br />

focused more on primers rather than<br />

the diverse range of paints used for<br />

topcoat functionality.<br />

Pow<strong>de</strong>r coating is another alternative,<br />

utilising 100% resin in a dry,<br />

pow<strong>de</strong>red form and working on the<br />

principle of attraction by oppositely<br />

charged species. The pow<strong>de</strong>r is <strong>de</strong>livered<br />

through a spray gun where it<br />

gains a low amperage, high-voltage<br />

positive charge.<br />

The surface to be coated is electrically<br />

groun<strong>de</strong>d so that the positively<br />

charged pow<strong>de</strong>r particles are attracted<br />

to it. The coated surface is then<br />

reacted in an oven where the pow<strong>de</strong>r<br />

melts and fuses into a smooth coating.<br />

This has been wi<strong>de</strong>ly used in the<br />

post-painting of individual parts but<br />

has had less impact, to date, in coil<br />

coating. Within Europe Otefal S.p.a. is<br />

the market lea<strong>de</strong>r for coil coating with<br />

line speeds typically operating at up<br />

96 ALUMINIUM · 1-2/2007


to 20m/min. The speed has been limited<br />

by the array of electrostatic guns<br />

that must be synchronised to achieve<br />

uniform film coverage. However,<br />

pow<strong>de</strong>r coating has the attraction of<br />

being solvent-free and can be cured<br />

using infra-red or induction heating<br />

technologies.<br />

Other application technologies for<br />

pow<strong>de</strong>r inclu<strong>de</strong> the pow<strong>de</strong>r cloud<br />

technique <strong>de</strong>veloped by MSC of Illinois<br />

and the electro magnetic brush<br />

(EMB) application technique <strong>de</strong>veloped<br />

by DSM resins in Europe. The<br />

pow<strong>de</strong>r cloud technology applies<br />

pow<strong>de</strong>r to the coil strip as it passes<br />

through a charged cloud of pow<strong>de</strong>r<br />

coating. The i<strong>de</strong>ntically charged<br />

pow<strong>de</strong>r particles repel each other and<br />

<strong>de</strong>posit on to the earthed coil strip.<br />

The EMB approach is based on technology<br />

that it is used for laser copiers<br />

and photocopiers.<br />

New <strong>de</strong>velopments in the formulation<br />

of pow<strong>de</strong>r coatings generally<br />

relate to their application in packaging<br />

products such as cans, where FDA<br />

approval is still pending. Significant<br />

advances have also been ma<strong>de</strong> in the<br />

<strong>de</strong>velopment of pow<strong>de</strong>r coatings for<br />

architectural products that require<br />

superior long-term durability and<br />

also pow<strong>de</strong>rs that can form thinner<br />

applied films.<br />

Interesting <strong>de</strong>velopments in oven<br />

technology have come out of Adphos<br />

AG [9] who have <strong>de</strong>veloped nir, near<br />

infra-red ovens to be used as boosters<br />

to conventional ovens or as stand<br />

alone systems. These are small footprint<br />

modules that utilise high intensity<br />

heat emissions from the near infra-red<br />

wavelength spectrum and can<br />

cure 20 micron coatings in less than<br />

3 seconds as compared to say 20 seconds.<br />

Using lamp systems for curing<br />

also means that they are only switched<br />

on when nee<strong>de</strong>d as compared to the<br />

ALUMINIUM · 1-2/2007<br />

Fig. 3: Schematic of roll<br />

coat application of paint<br />

to the strip<br />

continuous power requirement of<br />

convection ovens. However, as the<br />

solvents will be rapidly driven off, the<br />

extraction system has to be extremely<br />

efficient such that the LEL (lower explosion<br />

limit) is not excee<strong>de</strong>d.<br />

Other forms of radiation curing using<br />

ultraviolet (UV) or electron beam<br />

(EB) have been practised since the<br />

late 1960s. Although the growth rates<br />

of these technologies have been relatively<br />

slow, they have been continuous.<br />

Conceptually radiation curing<br />

could solve many of the coil coaters<br />

problems; they are liquid coatings<br />

applied to the substrate surface via<br />

roll coating and cured at room temperature<br />

in seconds without volatile<br />

materials being lost from the surface.<br />

However barriers to their use exist,<br />

including the capital equipment costs<br />

involved and the limited availability<br />

of formulations for particular applications.<br />

Electron beam and ultraviolet<br />

curing have <strong>de</strong>veloped in parallel<br />

since the 1960’s due to their similarities.<br />

Companies which produce UV<br />

curable formulations will generally<br />

also produce EB curables, the main<br />

difference being that UV requires<br />

a photoinitiator in the formulation<br />

whilst EB does not. The absence of a<br />

photoinitiator is EB’s main advantage<br />

over UV since photoinitiator residues<br />

remain in cured coatings and prompt<br />

worries over health, odour etc. Hence,<br />

UV coatings have not been used in<br />

coil coating for packaging applications.<br />

There are, however, currently<br />

initiatives to obtain FDA approval for<br />

the use of radcure coatings in direct<br />

food contact.<br />

For steel coil lines a UV curing<br />

system is often incorporated at the<br />

end of galvanising lines whereas, for<br />

aluminium architectural lines, opportunities<br />

may exist for thin functional<br />

(e.g. scratch resistance) coatings above<br />

the topcoat.<br />

References<br />

[1] H. Leth-Olsen, Filiform Corrosion of<br />

Painted <strong>Alu</strong>minium Coil Materials, PhD<br />

thesis, NTNU 1996.<br />

[2] K. Nisancioglu, J. H. Nordlien, A. Afseth<br />

and G. M. Scamans, Significance of Thermomechanical<br />

Processing in Determining<br />

Corrosion Behaviour and Surface Quality<br />

of <strong>Alu</strong>minium Alloys, 7th International<br />

Conference on <strong>Alu</strong>minium Alloys their<br />

Physical and Mechanical Properties, 111-<br />

125, 2000.<br />

[3] G. M. Scamans, A. Afseth, G. E. Thompson<br />

and X. Zhou, Ultra-fine Grain Sized<br />

Mechanically Alloyed Surface Layers on<br />

<strong>Alu</strong>minium Alloys, 8th International Conference<br />

on <strong>Alu</strong>minium Alloys, <strong>Alu</strong>minium<br />

Alloys their Physical and Mechanical<br />

Properties, 1461-1466, 2002.<br />

[4] J. Ball, P. K. F. Limbach, J. D. B. Sharman,<br />

A New Electrolytic Cleaning Cell. 1st<br />

International Symposium on <strong>Alu</strong>minium<br />

Surface Science and Technology (ASST<br />

1997), Antwerp, Belgium, May 1997,<br />

pp31-37 (ATB Metallurgie, Brussels, Ed.<br />

H. Terryn).<br />

[5] J. A. Treverton, N. C. Davies, An XPS<br />

study of Chromate Pretreatment of <strong>Alu</strong>minium,<br />

Metals Technology ,4, 480-489,<br />

1977.<br />

[6] J. S. Crompton, P. R. Andrews and E.<br />

McAlpine, Characteristics of a Conversion<br />

Coating on <strong>Alu</strong>minium, Surface and<br />

Interface Analysis, vol.13, no.2-3, 160-166,<br />

November 1988.<br />

[7] A. Ruiz Garzon, G. E. Thompson, P.<br />

Skeldon, T. Hashimoto, J. San<strong>de</strong>r, A. <strong>de</strong><br />

Zeeuw and P. Mitchell, Development of<br />

Zirconium-Based Conversion Coatings on<br />

AA3005 <strong>Alu</strong>minium Alloy, Proceedings<br />

of 4th International Symposium on <strong>Alu</strong>minium<br />

Surface Science and Technology<br />

(ASST 2006), Beaune, France, May 2006.<br />

[8] T. Schmidt-Hansberg, P. Schubach,<br />

A Comparative Study of Innovative <strong>Alu</strong>minium<br />

Pretreatments, 3rd International<br />

Symposium on <strong>Alu</strong>minium Surface Science<br />

and Technology, (ASST 2003), Bonn,<br />

Germany, May 2003, pp9-14 (ATB Metallurgie,<br />

Brussels, Ed. H. Terryn).<br />

[9] K. Bär, NIR – Booster Solutions – Pay-<br />

Back Within 12 Months! ECCA 38th Autumn<br />

Congress – Brussels, 21-23 November<br />

2004.<br />

Author<br />

TECHNOLOGY<br />

Dr. Nigel Davies is currently Managing<br />

Director of Innoval Technology Ltd, an<br />

in<strong>de</strong>pen<strong>de</strong>nt light metals technology consultancy<br />

based in Banbury, UK. Prior to<br />

this, he had worked for Alcan in a range<br />

of functions including having technical<br />

responsibility for Alcan’s (now Novelis’)<br />

European painted sheet division.<br />

97


FORSCHUNG<br />

Rührreibschweißen von artungleichen<br />

<strong>Alu</strong>miniumknet- und -druckgusslegierungen<br />

Das Rührreibschweißen (Friction<br />

Stir Welding – FSW) ist ein innovativer<br />

Fertigungsprozess zum Fügen<br />

von Leichtmetallen, beson<strong>de</strong>rs<br />

von <strong>Alu</strong>miniumlegierungen. Die<br />

Herstellung von <strong>Alu</strong>miniumverbindungen<br />

mit konventionellen<br />

Schmelzschweißverfahren erfüllt<br />

nicht immer und nicht bei je<strong>de</strong>r<br />

Legierung die von <strong>de</strong>r Industrie<br />

gestellten Qualitätsanfor<strong>de</strong>rungen.<br />

Das Rührreibschweißen stellt<br />

eine Alternative zu <strong>de</strong>n Schmelzschweißverfahren<br />

dar. Dies ist<br />

beson<strong>de</strong>rs auf die guten mechanischen<br />

Eigenschaften <strong>de</strong>r Schweißnähte,<br />

die Reproduzierbarkeit und<br />

die Robustheit <strong>de</strong>s Verfahrens<br />

zurückzuführen. Im Rahmen dieser<br />

Arbeit wer<strong>de</strong>n artungleiche<br />

Stumpfstoße gleicher Blechdicke<br />

mit <strong>de</strong>n Legierungen AlMg3,<br />

AlMgSi0,5 und GD ALSi10Mg hergestellt.<br />

Die Blechdicke <strong>de</strong>r eingesetzten<br />

Fügepartner beträgt 2 mm.<br />

Es wer<strong>de</strong>n die Gefügeausbildung<br />

als Folge <strong>de</strong>r eingebrachten<br />

Streckenenergie beschrieben und<br />

die mechanischen Eigenschaften<br />

<strong>de</strong>r Schweißnähte diskutiert.<br />

Beim FSW-Verfahren han<strong>de</strong>lt es sich<br />

um ein speziell zum Schweißen von<br />

a<br />

Sh. Sheikhi, J. F. dos Santos, Geesthacht<br />

<strong>Alu</strong>minium und <strong>Alu</strong>miniumlegierungen<br />

geeignetes Fügeverfahren.<br />

Friction Stir Welding (FSW) wur<strong>de</strong><br />

von TWI (The Welding Institute,<br />

Cambridge) entwickelt und 1991 patentiert<br />

[1].<br />

Das Reibrührschweißen erfolgt<br />

bei Temperaturen unterhalb <strong>de</strong>s<br />

Schmelzpunktes <strong>de</strong>r Fügepartner. Die<br />

Werkstoffe schmelzen nicht, son<strong>de</strong>rn<br />

wer<strong>de</strong>n lediglich plastifiziert und im<br />

Nahtbereich regelrecht ineinan<strong>de</strong>r<br />

verrührt. Da kein Schmelzbad entsteht,<br />

ist das Verfahren lageunabhängig.<br />

Das Reibrührschweißen zeichnet<br />

sich insbeson<strong>de</strong>re durch reproduzierbare<br />

und gute Schweißnahteigenschaften<br />

aus. Die Vorteile gegenüber<br />

herkömmlichen Schweißverfahren resultieren<br />

zum einen aus <strong>de</strong>m geringen<br />

Wärmeeintrag sowie <strong>de</strong>r einfachen<br />

Prozesskontrolle und -steuerung. Vorteile<br />

gegenüber <strong>de</strong>n herkömmlichen<br />

Schmelzschweißverfahren sind weiterhin:<br />

ein geringer Verzug, keine<br />

Poren- und Rissbildung und keine<br />

Entmischung <strong>de</strong>r Legierungsbestandteile.<br />

Eine spezielle Behandlung <strong>de</strong>r<br />

Fügekanten vor <strong>de</strong>m Schweißen ist<br />

nicht notwendig. Es sind we<strong>de</strong>r Zusatzwerkstoffe<br />

noch Schutzgase erfor<strong>de</strong>rlich,<br />

auch muss kein speziell geschultes<br />

Personal eingesetzt wer<strong>de</strong>n,<br />

was zu sehr geringen Betriebskosten<br />

führt. Beim Reibrührschweißen wird<br />

ein zylin<strong>de</strong>rförmiges Werkzeug (Abb.<br />

1-a) eingesetzt. Das Werkzeug besteht<br />

aus einem Stift (Pin), <strong>de</strong>r in <strong>de</strong>r Werkzeugschulter<br />

befestigt wird und nahezu<br />

verschleißfrei funktioniert. Die<br />

modulare Ausführung <strong>de</strong>s Werkzeugs<br />

erlaubt die Anpassung.<br />

b<br />

Abb. 1a) Werkzeug für das Reibrührschweißen; 1b) Prozessablauf beim Schweißen<br />

Zum Schweißen wird gemäß Abb.<br />

1-b das rotieren<strong>de</strong> Werkzeug langsam<br />

in <strong>de</strong>n Fügebereich eingebracht.<br />

Infolge <strong>de</strong>r Rotationsbewegung <strong>de</strong>s<br />

Werkzeugs sowie <strong>de</strong>s aufgebrachten<br />

Druckes wird zwischen Schulter und<br />

Blechen Reibungswärme erzeugt,<br />

die zum Plastifizieren <strong>de</strong>s Materials<br />

unter <strong>de</strong>r Schulter führt. Nach ausreichen<strong>de</strong>r<br />

Plastifizierung wird das<br />

rotieren<strong>de</strong> Werkzeug unter einer bestimmten<br />

Vorschubgeschwindigkeit<br />

(Schweißgeschwindigkeit) entlang<br />

<strong>de</strong>s zu schweißen<strong>de</strong>n Bereiches geführt.<br />

Die Rotationsrichtung und die<br />

Translationsbewegung <strong>de</strong>s Werkzeuges<br />

überlagern sich. Auf <strong>de</strong>r einen<br />

Seite <strong>de</strong>r Fügelinie sind die Bewegungsvektoren<br />

gleichgerichtet und<br />

auf <strong>de</strong>r an<strong>de</strong>ren Seite wirken sie entgegengesetzt<br />

zueinan<strong>de</strong>r. Die Seite<br />

mit gleicher Richtung <strong>de</strong>r Rotationsund<br />

<strong>de</strong>r Translationsbewegung wird<br />

mit Advancing-Seite bezeichnet. Die<br />

Retreating-Seite beschreibt die Seite<br />

mit entgegengesetzter Richtung <strong>de</strong>r<br />

Rotations- und <strong>de</strong>r Translationsbewegung.<br />

Das charakteristische Bild einer<br />

mit FSW produzierten Naht ist in Abb.<br />

2 dargestellt.<br />

In <strong>de</strong>r Mitte <strong>de</strong>r Naht liegt <strong>de</strong>r<br />

Nugget o<strong>de</strong>r die Rührzone mit einer<br />

zwiebelartigen Struktur. Dieser Bereich<br />

entsteht durch <strong>de</strong>n hohen Verformungsgrad<br />

im Bereich <strong>de</strong>s Stiftes<br />

sowie <strong>de</strong>r Reibungstemperatur. Die<br />

Form <strong>de</strong>s Nuggets ist abhängig von<br />

<strong>de</strong>n Schweißparametern. Das Gefüge<br />

in diesem Bereich ist feinkörnig ca. �<br />

2-5 μm [2]. Die zwiebelförmige Struktur<br />

entsteht dabei durch die Rotation<br />

98 ALUMINIUM · 1-2/2007


Abb. 2: Gefüge <strong>de</strong>r FSW-Naht<br />

und <strong>de</strong>n Vorschub <strong>de</strong>s Werkzeuges.<br />

Der thermomechanisch beeinflusste<br />

Bereich schließt sich am Rand <strong>de</strong>s<br />

Nuggets an. Das Material ist in diesem<br />

Bereich aufgrund <strong>de</strong>s Rühreffektes<br />

und <strong>de</strong>s Temperaturfel<strong>de</strong>s thermisch<br />

beeinflusst und plastisch verformt<br />

[2]. Die Wärmeeinflusszone schließt<br />

an diesem Bereich an. Dieser Bereich<br />

ist nicht <strong>de</strong>formiert, erfährt jedoch<br />

aufgrund <strong>de</strong>r Temperatureinwirkung<br />

eine Verän<strong>de</strong>rung <strong>de</strong>s Gefüges infolge<br />

von Ausscheidungen. Infolge <strong>de</strong>r<br />

unterschiedlichen Bereiche in <strong>de</strong>r<br />

Schweißnaht variieren die mechanischen<br />

Kennwerte quer zur Naht.<br />

So ist die Festigkeit im Bereich <strong>de</strong>s<br />

Nuggets innerhalb <strong>de</strong>r Schweißnaht<br />

am höchsten, in Einzelfällen (5xxx-<br />

Legierungen, die nicht kalt verfestigt<br />

sind) kann eine höhere Festigkeit als<br />

im Grundwerkstoff erreicht wer<strong>de</strong>n.<br />

FSW zeichnet sich durch reproduzierbare<br />

und gute Schweißnahteigenschaften<br />

aus. Die Vorteile gegenüber<br />

herkömmlichen Schweißverfahren<br />

resultieren zum einen aus <strong>de</strong>m gerin-<br />

ALUMINIUM · 1-2/2007<br />

gen Wärmeeintrag und zum an<strong>de</strong>ren<br />

daraus, dass jegliche <strong>Alu</strong>miniumlegierungen<br />

mit diesem Verfahren geschweißt<br />

wer<strong>de</strong>n können.<br />

Mit <strong>de</strong>m Rührreibschweißen sind<br />

sämtliche artgleiche und artungleiche<br />

<strong>Alu</strong>miniumlegierungen schweißbar.<br />

Diese können in verschie<strong>de</strong>nen<br />

Nahtkonfigurationen (wie Stumpfstoß,<br />

Stumpfstoß/Parallelstoß, Überlappstoß,<br />

Parallelstoß, T-Stöße und<br />

Kehlnaht) hergestellt wer<strong>de</strong>n [3].<br />

Material<br />

Im folgen<strong>de</strong>n sind Beispiele für artungleiche<br />

Rührreibschweißnähte dargestellt.<br />

Die Schweißversuche wur<strong>de</strong>n<br />

mit <strong>de</strong>n folgen<strong>de</strong>n Werkstoffen gemäß<br />

Tabelle 1 durchgeführt. Dabei wur<strong>de</strong>n<br />

artungleiche Stumpfstöße gleicher<br />

Blechdicke mit <strong>de</strong>n Legierungen<br />

AlMg3, AlMgSi0,5/6060-T4 und GD<br />

ALSi10Mg hergestellt. Die Blechdicke<br />

<strong>de</strong>r eingesetzten Fügepartner<br />

beträgt 2 mm. Die mechanischen<br />

Eigenschaften wie z. B. Dehngrenze<br />

Mechanische<br />

Legierung<br />

Eigenschaften AlMg/5754-O AlMgSi0.5/6060-T4 GD AlSi10Mg<br />

R [MPa] p0,2 120 90 150<br />

R [MPa] m 220 185 288<br />

A [%] 26 27 6<br />

Vikershärte HV0,2 59 62 88<br />

Biegewinkel [°] 160 160 30<br />

Tabelle 2: Mechanische Eigenschaften <strong>de</strong>r verwen<strong>de</strong>ten Werkstoffe<br />

R p0,2 , Zugfestigkeit R m , Bruch<strong>de</strong>hnung<br />

A <strong>de</strong>r verwen<strong>de</strong>ten Grundwerkstoffe<br />

variiert gemäß Tabelle 2 sehr. Alle<br />

Schweißnähte wur<strong>de</strong>n mit einem<br />

Werkzeug bestehend aus einem �<br />

13 mm konkaven Schulter- und einem<br />

� 5 mm Stiftbereich hergestellt.<br />

Ergebnisse<br />

Die Entwicklung einer FSW-Verbindung<br />

mit abnehmen<strong>de</strong>r Streckenenergie<br />

bei einer Drehzahl von 2000 min -1 ,<br />

ist am Beispiel AlMg3 - DGAlSi10Mg<br />

in Abb. 3 dargestellt. Bei dieser Werkstoffkombination<br />

wur<strong>de</strong> ein sprö<strong>de</strong>r<br />

<strong>Alu</strong>miniumdruckguss mit einer nicht<br />

aushärtbaren, gewalzten <strong>Alu</strong>miniumlegierungen<br />

gefügt. Bei kleinen<br />

Vorschüben und <strong>de</strong>mentsprechend<br />

großer Wärmeeinbringung zeigt sich<br />

<strong>de</strong>utlich die Struktur <strong>de</strong>s Nugget. Mit<br />

abnehmen<strong>de</strong>r Streckenenergie verschlechtert<br />

sich optisch die Durchmischung<br />

<strong>de</strong>s Kernbereiches und<br />

führt zu Fehlern in <strong>de</strong>r Schweißnaht.<br />

Typischer Weise sind diese Fehler<br />

auf <strong>de</strong>r Advancing-Seite <strong>de</strong>r Rührzone<br />

zu fin<strong>de</strong>n. Die Streckenenergie q s<br />

[J/mm] wird als Quotient <strong>de</strong>s theoretischen<br />

Energiestroms q [W] und <strong>de</strong>r<br />

Schweißgeschwindigkeit v sch [mm/s]<br />

ermittelt [4].<br />

q s = (4/3 x � x ��x Fz x N x r sch ) / v sch<br />

[J/mm] (Gleichung 1)<br />

Der Energiestrom q [W] ergibt<br />

sich aus <strong>de</strong>m Reibungskoeffizienten<br />

� = 0,2, <strong>de</strong>r Schweißkraft Fz [N], <strong>de</strong>r<br />

Drehzahl N [s -1 ] und <strong>de</strong>m Schulterradius<br />

r sch [m]. Der Reibungskoeffizient<br />

verän<strong>de</strong>rt sich mit <strong>de</strong>m Plastifizierungsgrad<br />

bzw. mit <strong>de</strong>r Erhöhung <strong>de</strong>r<br />

Temperatur [5]. Die Erhöhung <strong>de</strong>r<br />

Schweißparameter (Kraft und Drehzahl)<br />

führt zu einer Erhöhung <strong>de</strong>s Energiestroms.<br />

Langsamere Schweißgeschwindigkeiten<br />

führen zu einer Erhöhung<br />

<strong>de</strong>r Streckenenergie und umgekehrt.<br />

Es muss betont wer<strong>de</strong>n, dass<br />

die Gleichung 1 die Streckenenergie<br />

Zusammensetzung in Gewichts-%<br />

Legierung<br />

Si Fe Cu Mn Mg Cr Ni Zn Ti Al<br />

AlMg3/5754-O 0,189 0,301 0,053 0,251 2,66 0,056 --- 0,033 0,033 Rest<br />

AlMgSi0.5/6060-T4 0,3-0,6 0,1-0,3 0,1 0,1 0,35-0,6 0,05 --- 0,15 0,1 Rest<br />

GD AlSi10Mg 9,0-11,0 1,0 1,0 0,001-0,4 0,00-0,5 --- 0,1 0,15 --- Rest<br />

Tab. 1: Chemische Zusammensetzung <strong>de</strong>r verwen<strong>de</strong>ten Werkstoffe<br />

FORSCHUNG<br />

99


FORSCHUNG<br />

Abb. 3: Entstehung von Bin<strong>de</strong>fehler in Abhängigkeit von <strong>de</strong>r Streckenenergie<br />

nicht richtig beschreiben kann, da die<br />

Wärmeentwicklung durch die Verformung<br />

<strong>de</strong>s Gefüges nicht berücksichtigt<br />

wird.<br />

Mit optimierten Schweißparametern<br />

können fehlerfreie Schweißnähte<br />

produziert wer<strong>de</strong>n. Der Querschliff<br />

in Abb. 4 stellt eine Stumpfstoßverbindung<br />

<strong>de</strong>r Legierungen AlMg3 und<br />

AlMgSi0,5 (von links nach rechts) dar.<br />

Durch die unterschiedliche Ätzung<br />

<strong>de</strong>r Werkstoffe ist <strong>de</strong>r Materialverbund<br />

in <strong>de</strong>r Rührzone zu erkennen.<br />

Die Schweißnaht einer rührreibgeschweißten<br />

Druckgusslegierung<br />

GD AlSi10Mg mit <strong>de</strong>r Legierung<br />

AlMgSi0,5 ist in Abb. 5 und mit <strong>de</strong>r<br />

Legierung AlMg3 in Abb. 6 dargestellt.<br />

Es ist <strong>de</strong>utlich zu sehen, dass die Materialpaarung<br />

in Abb. 6 zu einer bes-<br />

Abb. 4: Makroschliff FSW-Schweißverbindung<br />

AlMg3/AlMgSi0,5<br />

Abb. 5: Makroschliff FSW-Schweißverbindung<br />

GD AlSi10Mg/AlMgSi0,5<br />

Abb. 6: Makroschliff FSW-Schweißverbindung<br />

GD AlSi10Mg/AlMg3<br />

seren Mischung<br />

<strong>de</strong>r Fügepartner<br />

in <strong>de</strong>r Rührzone<br />

führt.<br />

Der Verlauf<br />

<strong>de</strong>s Spannungs-<br />

Dehnungs-Diagrammes<br />

<strong>de</strong>r<br />

AlMg3/GDAl-<br />

Si10Mg-Verbindung<br />

ist, stellvertretend<br />

für<br />

die weiteren<br />

Verbindungen,<br />

in Abb. 7 dargelegt.<br />

Die Verbindungenerreichen<br />

somit<br />

eine Zugfestigkeit von R m = 225 MPa,<br />

welche <strong>de</strong>m Wert <strong>de</strong>s Grundwerkstoffes<br />

AlMg3 in etwa entspricht.<br />

Die verbleiben<strong>de</strong>n Proben erreichen<br />

bei<strong>de</strong> eine Bruch<strong>de</strong>hnung von A = 12<br />

%. Mit ihren Materialeigenschaften,<br />

Abb. 7: Spannungs-Dehnungskurven<br />

Abb. 8: Bruchlage von geschweißten Zugproben<br />

bewegen sie sich zwischen <strong>de</strong>m sprö<strong>de</strong>n<br />

Druckguss und <strong>de</strong>m duktilen<br />

Walzblech.<br />

Im Zugversuch versagten die Proben<br />

parallel zur Schweißnaht im Bereich<br />

<strong>de</strong>s Fügepartners mit <strong>de</strong>r geringeren<br />

Festigkeit. Die Lage <strong>de</strong>s Bruches<br />

ist in Abb. 8 abgebil<strong>de</strong>t.<br />

Die Bruch<strong>de</strong>hnung A bezieht sich<br />

auf die Anfangslänge L 0 <strong>de</strong>r Proben.<br />

Bei einer FSW-Verbindung setzt sich<br />

nun diese Länge nicht aus einem homogen<br />

Stück, son<strong>de</strong>rn aus verschie<strong>de</strong>nen<br />

Zonen mit unterschiedlichen<br />

Legierungen und Eigenschaften zusammen.<br />

Daher konzentriert sich die<br />

Dehnung hauptsächlich auf einem<br />

Bereich innerhalb <strong>de</strong>r Probe und führt<br />

zu einer relativ niedrigen Bruch<strong>de</strong>hnung.<br />

Die in Tabelle 3 angegebenen<br />

Werte für R P0,2 , R m , <strong>de</strong>r Bruch<strong>de</strong>hnung<br />

A und <strong>de</strong>s Biegewinkels stellen <strong>de</strong>n<br />

Durchschnitt aus min<strong>de</strong>stens drei artgleichen<br />

Proben dar.<br />

100 ALUMINIUM · 1-2/2007<br />

a<br />

b<br />

c


Die Zugfestigkeit <strong>de</strong>r geschweißten<br />

Proben erreicht im Verhältnis zum<br />

jeweils schwächeren Fügepartner<br />

gemäß Tabelle 3 97 % für die erste<br />

Verbindung, 94 % für die zweite Verbindung<br />

und 100% für die dritte Verbindung.<br />

Die Duktilität <strong>de</strong>r Schweißnähte<br />

kann durch <strong>de</strong>n Biegewinkel<br />

ausgedruckt wer<strong>de</strong>n. Bei <strong>de</strong>r Werkstoffkombination<br />

1 wird <strong>de</strong>r gleiche<br />

Biegewinkel erreicht wie bei <strong>de</strong>n<br />

eingesetzten Grundwerkstoffen. Die<br />

Werkstoffkombinationen 2 und 3 zeigen<br />

einen <strong>de</strong>utlichen höheren Biegewinkel<br />

im Vergleich zum Druckguss.<br />

Dies ist zum einen auf die gute Vermischung<br />

<strong>de</strong>r Grundwerkstoffe und<br />

zum an<strong>de</strong>ren auf die Reduzierung <strong>de</strong>r<br />

Korngröße in <strong>de</strong>r Rührzone zurückzuführen.<br />

Die Erhöhung <strong>de</strong>r Duktilität<br />

durch ein feinkörniges Gefüge infolge<br />

<strong>de</strong>s Rührreibschweißens wird in <strong>de</strong>r<br />

Literatur [6, 7] mit unterschiedlichen<br />

Versuchen bewertet.<br />

Aufgrund <strong>de</strong>s Schweißvorganges<br />

entsteht eine sehr feinkörnige Struktur<br />

im Bereich <strong>de</strong>r Rührzone <strong>de</strong>r Nähte,<br />

dies kann am besten aus <strong>de</strong>m Vergleich<br />

<strong>de</strong>r Mikrostruktur <strong>de</strong>s Druckgusses<br />

im Grundwerkstoff und im<br />

Nugget ver<strong>de</strong>utlicht wer<strong>de</strong>n (Abb. 9).<br />

Die Korngröße im unbeeinflussten<br />

Grundwerkstoff beträgt 20 bis 30 μm.<br />

Aufgrund <strong>de</strong>s Schweißverfahrens entsteht<br />

ein rekristallisiertes Gefüge mit<br />

einer Korngröße von etwa 5 μm. Dies<br />

führt zu einer Verbesserung <strong>de</strong>r Duktilität<br />

<strong>de</strong>r Druckgusslegierung. Darüber<br />

hinaus können Fehler im Druckguss<br />

wie z. B. Poren o<strong>de</strong>r Risse im Bereich<br />

<strong>de</strong>r Rührzone behoben wer<strong>de</strong>n [6].<br />

Somit bietet das Rührreibschweißen<br />

die Möglichkeiten, das Gefüge <strong>de</strong>s<br />

Werkstoffes lokal, <strong>de</strong>r Belastung entsprechend,<br />

zu verän<strong>de</strong>rn.<br />

Zusammenfassung<br />

Das Schweißen von <strong>Alu</strong>miniumlegierungen<br />

kann fehlerfrei realisiert wer<strong>de</strong>n.<br />

Eine Einschränkung hinsichtlich<br />

<strong>de</strong>r Werkstoffkombination aus unter-<br />

ALUMINIUM · 1-2/2007<br />

schiedlichen <strong>Alu</strong>miniumlegierungen<br />

besteht nicht. Im Rahmen dieser Arbeit<br />

wur<strong>de</strong> <strong>de</strong>r Einsatz <strong>de</strong>s Verfahrens<br />

am Beispiel von artungleichen<br />

Mischverbindungen <strong>de</strong>monstriert<br />

und bewertet.<br />

Es konnte gezeigt wer<strong>de</strong>n, dass <strong>de</strong>r<br />

Materialfluss in <strong>de</strong>r Rührzone sich<br />

abhängig von <strong>de</strong>r Streckenenergie<br />

verhält. Die Abnahme <strong>de</strong>r Streckenenergie<br />

resultierte aus <strong>de</strong>r Bildung<br />

von Fehlstellen im Materialverbund<br />

<strong>de</strong>r Rührzone – ein Hinweis auf die<br />

falsche Parameterkombination.<br />

Mit <strong>de</strong>r richtigen Parameterkombination<br />

wur<strong>de</strong>n fehlerfreie artungleiche<br />

Stumpfstöße mit <strong>de</strong>n Legierungen<br />

AlMg3, AlMgSi0,5 / 6060-T4 und GD<br />

ALSi10Mg hergestellt. Die Zugproben<br />

versagten im jeweils schwächeren<br />

Grundwerkstoff weit entfernt von<br />

<strong>de</strong>r Naht. Aufgrund <strong>de</strong>r feinen Mikrostruktur<br />

in <strong>de</strong>n Schweißnähten<br />

konnte eine Verbesserung <strong>de</strong>r Duktilität<br />

gegenüber <strong>de</strong>r <strong>de</strong>s Druckgusses<br />

festgestellt wer<strong>de</strong>n.<br />

Die Betrachtung <strong>de</strong>s Gefüges<br />

ver<strong>de</strong>utlicht, dass eine Kornfeinung<br />

insbeson<strong>de</strong>re <strong>de</strong>s Gusswerkstoffes<br />

stattgefun<strong>de</strong>n hat. Somit besteht die<br />

Möglichkeit, <strong>de</strong>n Rührreibprozess<br />

zur gezielten lokalen Än<strong>de</strong>rung <strong>de</strong>s<br />

Gefüges und als Reparaturverfahren<br />

für typische Unregelmäßigkeiten in<br />

Gussbauteilen (wie oberflächennahe<br />

Risse etc.) einzusetzen.<br />

Danksagung<br />

Die Autoren bedanken sich bei C.<br />

Schilling und M. Nüchtern für die<br />

Durchführung <strong>de</strong>r Versuche ganz<br />

herzlich.<br />

Literatur<br />

1. W. M. Thomas, D. E. Nicholas, C. J.<br />

Needham: Improvements relating to friction<br />

welding; Patent No. EP 0 615 480 B1;<br />

1994.<br />

2. I. Ballerstein: Feasibility study of friction<br />

stir welding of ship components; Diploma<br />

thesis; Technical University Ham-<br />

Werkstoffkombinationen R [MPa] P0,2 R [MPa] m A [%] Biegewinkel [°]<br />

AlMg3 / AlMgSi0.5 100 180 12 160<br />

AlMgSi0.5 / GD AlSi10Mg 90 175 10 75<br />

AlMg3 / GD AlSi10Mg 110 225 12 75<br />

Tab. 3: Mechanische Eigenschaften <strong>de</strong>r FSW-Proben<br />

Abb. 9: Gefüge <strong>de</strong>r Druckgusslegierung im<br />

Grundwerkstoff (a) und in <strong>de</strong>r Rührzone (b)<br />

burg-Harburg; 2000.<br />

3. P. L. Threadgill: Friction stir welding<br />

– the state of the art –; TWI Research Report;<br />

1999.<br />

4. O. T. Midling, G. Rorvik: Effect of tool<br />

shoul<strong>de</strong>r material on heat input during<br />

friction stir welding; 1st International<br />

Symposium on Friction Stir Welding 14-<br />

16 June 1999; California, USA; 1999.<br />

5. C. M. Chen, R. Kovacevic: Finite element<br />

mo<strong>de</strong>ling of friction stir welding<br />

- thermal and thermmechanical analysis;<br />

International Journal of Machine Tools<br />

& Manufacture; 2003; Vol. 43, p. 1319-<br />

1326.<br />

6. W. M. Thomas, D. G. Staines, I. M. Norris,<br />

and E. R. Watts: Friction Stir Welding<br />

– Process Developments; 12th International<br />

Conference on the Joining of Materials<br />

(JOM-12); Helsingor, Denmark; 20-23<br />

March 2005.<br />

7. S. Sheikhi, J. F. dos Santos: Eigenschaften<br />

von rührreibgeschweißten <strong>Alu</strong>minium-<br />

Mischverbindungen; Schlüsseltechnologie<br />

Leichtmetallguss im Automobilbau,<br />

17./18. November 2005 - Bad Nauheim.<br />

Autoren<br />

FORSCHUNG<br />

Dr. Jorge F. dos Santos leitet die Gruppe<br />

Fügetechnologie am Institut für Werkstoffforschung<br />

<strong>de</strong>s GKSS Forschungszentrums<br />

Geesthacht GmbH.<br />

Dr.-Ing. Sharam Sheikhi ist Projektingenieur<br />

am Institut für Werkstoffforschung<br />

<strong>de</strong>s GKSS.<br />

101<br />

a<br />

b


VERANSTALTUNGEN<br />

22 nd ASK Metal Forming: „Forming the Future”<br />

Presenter: Institute of Metal Forming<br />

(IBF) and Institute of Ferrous<br />

Metallurgy (IEHK), RWTH Aachen<br />

University, 8 and 9 March 2007.<br />

New materials, forming procedures,<br />

machines and comprehensive simulation<br />

and optimisation methods are<br />

the basis for rapid improvements in<br />

the <strong>de</strong>velopment of the forming technology.<br />

In many cases this leads to increasingly<br />

powerful, customised endproducts<br />

and cost-effective process<br />

chains. The 22 nd ASK Metal Forming<br />

will inclu<strong>de</strong> contributions from the<br />

scientific and industrial communities,<br />

encompassing a broad spectrum<br />

of topics from the seemingly classic to<br />

state-of-the-art future technologies.<br />

Forging and rolling can open up<br />

new markets and ensure market<br />

The Coatings Summit<br />

5 to 6 February 2007, Vienna, Austria<br />

Top-level speakers from Asia, America<br />

and Europe, from global groups<br />

and medium-sized power players, will<br />

share their insight into vital and emerging<br />

issues of the coatings industry.<br />

They will i<strong>de</strong>ntify trends and discuss<br />

key drivers, be it the changing nature<br />

of sourcing and manufacturing, market<br />

entry strategies or new regions to<br />

source creativity and innovation.<br />

Further information:<br />

European Coatings Conference<br />

Tel: +49 (0)511 9910-270<br />

esther.schwencke@coatings.<strong>de</strong><br />

www.coatings.<strong>de</strong><br />

R+T 2007<br />

10. bis 14. Februar 2007, Stuttgart<br />

Themenschwerpunkte <strong>de</strong>r internationalen<br />

Fachmesse in Stuttgart sind <strong>de</strong>r<br />

Rolla<strong>de</strong>n-, Jalousie- und Markisenbau<br />

sowie <strong>de</strong>r Sonnenschutz, Tor- und<br />

Fensterbau. Das Fachpublikum erstreckt<br />

sich auch auf Architekten und<br />

Fachplaner.<br />

Weitere Infos:<br />

Messe Stuttgart<br />

Tel: +49 (0)711 2589-0<br />

info@messe-stuttgart.<strong>de</strong><br />

www.messe-stuttgart.<strong>de</strong><br />

shares by material <strong>de</strong>velopment,<br />

process simulations and process<br />

monitoring. Moreover, it is possible<br />

to overcome the past limitations<br />

of forming technology by applying<br />

mo<strong>de</strong>rn <strong>de</strong>velopments. For example,<br />

new flexible forming procedures like<br />

strip profile rolling, incremental sheet<br />

forming or flexible ring profile rolling<br />

enable the cost-effective production<br />

of small lot sizes and bad optimised<br />

lightweight products. Miniaturisation<br />

opens up new markets for micro-parts<br />

ma<strong>de</strong> of metal. Mo<strong>de</strong>rn simulation<br />

techniques and material mo<strong>de</strong>ls support<br />

the process planning by predictions<br />

of grain structure, part quality<br />

and process capability.<br />

Simultaneously to the lectures,<br />

there will be an exhibition, where interested<br />

companies will present prod-<br />

Bauen und Energie<br />

15. bis 18. Februar 2007, Wien<br />

Die internationale Messe für alle, die<br />

beim Bauen, Renovieren, Mo<strong>de</strong>rnisieren,<br />

und Energie sparen auf Kosteneffizienz<br />

und Qualität achten.<br />

Weitere Infos:<br />

Reed Exhibitions Messe Wien<br />

Tel: +43 (0)1 727 20-0<br />

info@messe.at<br />

www.messe.at<br />

3. Landshuter Leichtbau-Colloquium<br />

22. und 23. Februar 2007, Landshut<br />

Das Colloquium zum Thema „Leichtbau<br />

- von <strong>de</strong>r I<strong>de</strong>e zum Produkt“ bietet<br />

ein Forum, um ausgesuchte Leichtbaulösungen<br />

zu präsentieren. Der Leichtbau<br />

soll dabei über <strong>de</strong>n gesamten Produktlebenszyklus<br />

von <strong>de</strong>r I<strong>de</strong>e bis zum<br />

fertigen Produkt und <strong>de</strong>ssen Wie<strong>de</strong>rverwertung<br />

diskutiert wer<strong>de</strong>n.<br />

Weitere Infos:<br />

Fachhochschule Landshut<br />

Tel: +49 (0)871 506 134<br />

info@leichtbau-cluster.<strong>de</strong><br />

www.leichtbau-cluster.<strong>de</strong><br />

2007 SME Annual Meeting Exhibit<br />

25 to 28 February 2007, Denver, U.S.<br />

The meeting covers a broad range of<br />

topics regarding mineral and metallur-<br />

ucts and services. In the afternoon of<br />

the second day, the participants will<br />

get the facility to attend <strong>de</strong>monstrations<br />

at the constructions of the IBF of<br />

the RWTH Aachen. There is also the<br />

opportunity to visit the IEHK and the<br />

Centre of Metal Construction.<br />

The Colloquium is addressed to all<br />

responsible persons in the steel- and<br />

non-ferrous metal industry <strong>de</strong>aling<br />

with the production, <strong>de</strong>sign, plant<br />

construction, manufacturing, inspection<br />

and applications of innovative<br />

products. All presentations will be<br />

translated simultaneously into English.<br />

Further information:<br />

Dipl.-lng. Marcus Urban<br />

Tel: +49 (0)241 8095927<br />

ask@ ibf.rwth-aachen.<strong>de</strong><br />

www. ibf. rwth-aachen .<strong>de</strong><br />

gical processing. SME will celebrate its<br />

50 year anniversary.<br />

Further information:<br />

Society for Mining, Metallurgy and Exploration<br />

Tel: +1(303) 973-9550<br />

meetings@smenet.org<br />

www.smenet.org<br />

TMS 2007 Annual Meeting Exhibition<br />

25 Feb. to 1 March 2007, Orlando, U.S.<br />

More than 140 exhibitors from some<br />

20 countries will present solutions to<br />

technical challenges in a vast array of<br />

areas: e.g. cast shop technology, emerging<br />

materials, environmental management,<br />

industrial process control and<br />

automation, primary production equiment<br />

and services, technology resources,<br />

surface processes.<br />

Further information:<br />

The Minerals, Metals & Materials<br />

Society<br />

Tel: +1(724) 776 9000<br />

mtgserv@tms.org<br />

www.tms.org<br />

7. KBU-Kolloquium: Bergbauliche Abfälle<br />

und Emissionshan<strong>de</strong>l<br />

1. und 2. März 2007, Aachen<br />

Eine gemeinsame Tagung <strong>de</strong>s Lehrund<br />

Forschungsgebietes Berg- und<br />

102 ALUMINIUM · 1-2/2007


Umweltrecht <strong>de</strong>r RWTH Aachen und<br />

<strong>de</strong>r GDMB Gesellschaft für Bergbau,<br />

Metallurgie, Rohstoff- und Umwelttechnik.<br />

Die Themen sind unter an<strong>de</strong>rem:<br />

Die Anfor<strong>de</strong>rungen an die<br />

Verwertung mineralischer Abfälle,<br />

die Verordnung mineralische Abfälle,<br />

Einsatzmöglichkeiten bergbaulicher<br />

Abfälle für Baustoffe, Emissionshan<strong>de</strong>lsrecht,<br />

NAP II.<br />

Weitere Infos:<br />

GDMB<br />

Tel: +49 (0)5323 937 90<br />

gdmb@dgmb.<strong>de</strong><br />

www.gdmb.<strong>de</strong><br />

EFB-Kolloquium „Blechverarbeitung“<br />

06. und 07. März 2007, Fellbach<br />

Das Kolloquium steht unter <strong>de</strong>m Leitthema<br />

„Neue Wege zum wirtschaftlichen<br />

Leichtbau – Innovative Lösungen<br />

zur Blechumformung und mechanischen<br />

Fügetechnik“. In <strong>de</strong>n einzelnen<br />

Sektionen wer<strong>de</strong>n die aktuellen Fragestellungen<br />

zu höchstfesten Stählen und<br />

an<strong>de</strong>ren Werkstoffen sowie zu Verfahren<br />

in <strong>de</strong>r Fügetechnik und Simulation<br />

im Leichtbau aufgegriffen.<br />

Weitere Infos:<br />

Europäische Forschungsgesellschaft<br />

für Blechverarbeitung<br />

Tel: +49 (0)511 97175-0<br />

info@efb.<strong>de</strong><br />

www.efb.<strong>de</strong><br />

metall München<br />

07 to 10 March 2007, Munich, Germany<br />

European specialist tra<strong>de</strong> fair for metalworking<br />

in industry and tra<strong>de</strong>. The fair<br />

will present solutions for areas such as<br />

tool machines, precision tools, components,<br />

component modules and accessories,<br />

manufacturing and process<br />

automation, measuring technology and<br />

quality assurance.<br />

Further information:<br />

Gesellschaft für Handwerksmessen<br />

Tel: +49 (0)89 949 55-0<br />

messe@ghm.<strong>de</strong><br />

www.ghm.<strong>de</strong><br />

Metal Build 2007<br />

12 to 15 March 2007, Moscow, Russia<br />

Metal Build 2007 is the fifth anniversary<br />

exhibition of metal in construction<br />

and architecture, covering all<br />

questions from materials for metal<br />

constructions to their processings up<br />

to finished products.<br />

ALUMINIUM · 1-2/2007<br />

Fortbildung<br />

Einführung in die Technologie <strong>de</strong>s <strong>Alu</strong>miniums, 12.-14.02.2007, Aachen<br />

DGM Deutsche Gesellschaft für Materialkun<strong>de</strong>, Tel.: 069 75306 757,<br />

E-Mail: np@dgm.<strong>de</strong>, www.dgm.<strong>de</strong><br />

Die neue Gefahrstoffverordnung in <strong>de</strong>r Praxis, 13.-14.02.2007, Stuttgart<br />

VDI Wissensforum, Tel.: 0211 6214 201,<br />

E-Mail: wissensforum@vdi.<strong>de</strong>, www.vdi-wissensforum.<strong>de</strong><br />

Neue Werkstoffnormung und neue Werkstoffbezeichnungen für<br />

metallische Werkstoffe in Europa, 15.02.2007, Essen<br />

Haus <strong>de</strong>r Technik, Tel.: 0201 1803 344,<br />

E-Mail: information@hdt-essen.<strong>de</strong>, www.hdt-essen.<strong>de</strong><br />

Betriebswirtschaftliche Grundlagen für technische Führungskräfte<br />

22.-23.02.2007, Mainz<br />

Ostbayer. Technologie-Transfer-Institut (Otti), Tel.: 0941 29688 21,<br />

E-Mail: margit.zierl@otti.<strong>de</strong>, www.otti.<strong>de</strong><br />

Der Sicherheitsbeauftragte, 26.-27. Februar 2007, Hannover<br />

TÜV Nord Aka<strong>de</strong>mie, Tel: 0511 986 1910,<br />

E-Mail: bcramer@tuev-nord.<strong>de</strong>, www.tuevnordaka<strong>de</strong>mie.<strong>de</strong><br />

Systematische Beurteilung technischer Scha<strong>de</strong>nsfälle<br />

11.-16.03.2007, Ermatingen, CH<br />

DGM Deutsche Gesellschaft für Materialkun<strong>de</strong>, Tel.: 069 75306 757,<br />

E-Mail: np@dgm.<strong>de</strong>, www.dgm.<strong>de</strong><br />

Einführung in die Metallkun<strong>de</strong> für Ingenieure und Techniker,<br />

13.-16.03.2007, Darmstadt<br />

DGM Deutsche Gesellschaft für Materialkun<strong>de</strong>, Tel.: 069 75306 757,<br />

E-Mail: np@dgm.<strong>de</strong>, www.dgm.<strong>de</strong><br />

Trends in <strong>de</strong>r Nutzfahrzeugindustrie, 20.-21.03.2007, München<br />

Euroforum, Tel.: 0211 9686 3611,<br />

E-Mail: theresia.strehler@euroforum.com, www.euroforum.<strong>de</strong><br />

Further information:<br />

Tel: +7 (495) 956-48-22<br />

metalbuild@m-expo.ru<br />

www.metal-build.ru<br />

DFO-Leichtmetall-Tagung<br />

20. und 21. März 2007, Neuss<br />

Thema <strong>de</strong>r Tagung: Die Oberflächenbehandlung<br />

von Leichtmetallen. Im<br />

Vor<strong>de</strong>rgrund stehen die Vorbehandlung,<br />

anodische Oxidation und PVD-<br />

/Plasmabeschichtung von <strong>Alu</strong>minium.<br />

Es wer<strong>de</strong>n mo<strong>de</strong>rne Korrosions- und<br />

Verschleißschutzsysteme vorgestellt.<br />

Weitere Tagungsthemen betreffen <strong>de</strong>n<br />

Werkstoff Magnesium.<br />

Weitere Infos:<br />

Deutsche Forschungsgesellschaft für<br />

Oberflächenbehandlung e. V. (DFO)<br />

Tel: +49 (0)2131 40 811 10<br />

service@dfo-online.<strong>de</strong><br />

www.dfo-online.<strong>de</strong><br />

EVENTS<br />

Russia <strong>Alu</strong>minium Casting Conference<br />

27 to 29 March 2007, Moscow, Russia<br />

The conference is organised by <strong>Alu</strong>sil-<br />

MVT un<strong>de</strong>r the assistance of Russian<br />

Association of Foundrymen and <strong>Alu</strong>minium<br />

Extru<strong>de</strong>rs Association. Subjects<br />

are: markets, applications and<br />

research, melt preparation, ingot and<br />

continuous casting, manufacture of<br />

castings, environment and safety. The<br />

conference will be supplemented by<br />

the exhibition of state-of-the-art casting<br />

equipment and technologies.<br />

Further information:<br />

Tel: +7 (495) 785-2005<br />

main@alusil.ru<br />

www.alusil.net<br />

103


UMWELTPREIS<br />

BDI-Umweltpreiswettbewerb 2007/08<br />

Umweltfreundlichkeit siegt<br />

Der Bun<strong>de</strong>sverband <strong>de</strong>r <strong>de</strong>utschen<br />

Industrie (BDI) hat <strong>de</strong>n Umweltpreiswettbewerb<br />

für die Industrie<br />

2007/08 erneut ausgeschrieben.<br />

Der Wettbewerb ist Teil <strong>de</strong>s europäischen<br />

Umweltpreises <strong>de</strong>r EU-<br />

Kommission. Die Sieger <strong>de</strong>r nationalen<br />

Wettbewerbe nehmen damit<br />

auch auf europäischer Ebene teil.<br />

Insgesamt benennt <strong>de</strong>r BDI-Umweltwettbewerb<br />

fünf Preiskategorien.<br />

Preiskategorien<br />

• Umweltfreundliche Technologien<br />

• Umweltfreundliche Produkte<br />

• Umweltorientierte Unternehmensführung<br />

• Umweltschutz-Technologietransfer<br />

in Entwicklungs- und Schwellenlän<strong>de</strong>r<br />

und Staaten Osteuropas<br />

• Kreislaufwirtschaft, Recycling und<br />

Abfallmanagement.<br />

Über die nationalen Preisträger und<br />

die Benennungen zum europäischen<br />

Wettbewerb entschei<strong>de</strong>t eine Jury<br />

aus namhaften Persönlichkeiten aus<br />

Wirtschaft, Wissenschaft, Politik und<br />

Umweltorganisationen. Vorgeschaltet<br />

ist eine fachliche Prüfung durch<br />

das Fraunhofer-Institut für Systemund<br />

Innovationsforschung (ISI) in<br />

Karlsruhe. Der Beurteilung <strong>de</strong>r eingehen<strong>de</strong>n<br />

Bewerbungen liegen – neben<br />

<strong>de</strong>n allgemeinen Kriterien Umweltentlastung,<br />

Ressourcenschonung, wirtschaftlicher<br />

sowie gesellschaftlicher<br />

Nutzen (Nachhaltigkeit) und Innovationsleistung<br />

– folgen<strong>de</strong> spezifische<br />

Anfor<strong>de</strong>rungen in <strong>de</strong>n einzelnen Preiskategorien<br />

zugrun<strong>de</strong>:<br />

Umweltfreundliche Technologien<br />

• Entwicklung innovativer Verfahren<br />

zur Verringerung von Umwelt<br />

belastungen an <strong>de</strong>r Quelle ihres<br />

Entstehens sowie zur Schonung<br />

von Ressourcen.<br />

• Erfüllung von Umweltstandards<br />

und Umweltentlastungen über<br />

gesetzliche Vorgaben hinaus.<br />

• Vorrang integrierter Prozesse vor<br />

104<br />

end-of-pipe-Lösungen sowie von<br />

Verfahren und Technologien mit<br />

größerer Anwendungsbreite.<br />

Umweltverträgliche Produkte<br />

• Umweltentlastung durch innovative,<br />

ökoeffiziente Produkte<br />

und Dienstleistungen.<br />

• Einbeziehung von Ressourcenschonung,<br />

Energieeffizienz, Recycling-<br />

und Entsorgungsfreundlichkeit<br />

bei <strong>de</strong>r Produktentwicklung<br />

und -gestaltung.<br />

• Beson<strong>de</strong>re Berücksichtigung neuer<br />

Produkte, die bereits am Markt<br />

vorhan<strong>de</strong>ne Güter verbessern<br />

bzw. ersetzen und zumin<strong>de</strong>st als<br />

Prototyp vorliegen.<br />

Umweltorientierte<br />

Unternehmensführung<br />

• Entwicklung einer integrierten<br />

umweltorientierten Unternehmenspolitik,<br />

z. B. in Form ganzheitlicher<br />

Umweltschutzkonzepte o<strong>de</strong>r Umweltleitlinien.<br />

• Art und Grad <strong>de</strong>r Einbeziehung <strong>de</strong>r<br />

Belegschaft in das Unternehmenskonzept,<br />

beispielsweise durch Ausund<br />

Weiterbildung in Umweltfragen.<br />

• Kommunikation mit externen<br />

Zielgruppen.<br />

• Übernahme von Produktverantwortung,<br />

z. B. durch Rücknahmeund<br />

Recyclinggarantien.<br />

Umweltschutz-Technologietransfer<br />

Diese Kategorie bezieht Technologien<br />

und Produkte wie auch das Umweltschutzmanagement<br />

ein. Dabei sind<br />

folgen<strong>de</strong> Kriterien wichtig:<br />

• Beispielhafte Zusammenarbeit mit<br />

einem privaten Partner o<strong>de</strong>r einer<br />

öffentlichen Einrichtung im Sinne<br />

einer langfristig tragfähigen Entwicklung.<br />

• Lösung eines spezifischen regionalen<br />

Umweltproblems unter Berücksichtigung<br />

<strong>de</strong>r speziellen An-<br />

for<strong>de</strong>rungen sowie <strong>de</strong>r vorhan<strong>de</strong>nen<br />

Ressourcen und Fähigkeiten<br />

in diesen Län<strong>de</strong>rn.<br />

• Eignung zur weiteren Verbreitung<br />

und künftigen Weiterentwicklung.<br />

Kreislaufwirtschaft, Recycling<br />

und Abfallmanagement<br />

• Entwicklung von hochwertigen-<br />

Recyclingmaßnahmen (produktionsintegrierte<br />

Verfahren wer<strong>de</strong>n<br />

unter <strong>de</strong>r Kategorie „Umweltfreundliche<br />

Technologien“ erfasst).<br />

• Innovative und effiziente Systeme<br />

zur Sammlung, Verwertung und<br />

zum Wie<strong>de</strong>reinsatz von Material,<br />

Komponenten und Produkten.<br />

• Vermarktung und Wie<strong>de</strong>rverwendung<br />

<strong>de</strong>r rezyklierten Materialien<br />

und Produkte.<br />

• Ressourcenschonen<strong>de</strong>s und kosteneffizientes<br />

Abfallmanagement.<br />

Teilnahmebedingungen<br />

Am BDI-Wettbewerb können Unternehmen<br />

und Organisationen aus <strong>de</strong>r<br />

Industrie teilnehmen. Institutionen,<br />

die nicht <strong>de</strong>m industriellen Bereich<br />

angehören, sind teilnahmeberechtigt,<br />

wenn ihr Projekt in Zusammenarbeit<br />

mit <strong>de</strong>r Industrie entwickelt wur<strong>de</strong><br />

und bereits industrielle Anwendung<br />

gefun<strong>de</strong>n hat. Ferner sollten die Projekte<br />

die Ausrichtung auf eine nachhaltige<br />

Entwicklung erkennen lassen,<br />

über gesetzliche Vorschriften und<br />

Auflagen hinausgehen und sich entwe<strong>de</strong>r<br />

in operationaler Phase o<strong>de</strong>r<br />

praktizierter Anwendung befin<strong>de</strong>n.<br />

Die Bewerbungsunterlagen zur Teilnahme<br />

am BDI-Umweltpreiswettbewerb<br />

für die <strong>de</strong>utsche Industrie<br />

2005/06 sind bis spätestens 15. Juni<br />

2007 einzureichen. Die Bekanntgabe<br />

<strong>de</strong>r nationalen Preisträger und die<br />

Verleihung <strong>de</strong>r i<strong>de</strong>ellen Auszeichnungen<br />

erfolgen im Rahmen <strong>de</strong>r BDI-<br />

Jahrestagung voraussichtlich im Juni<br />

2008 in Berlin mit einer begleiten<strong>de</strong>n<br />

Ausstellung für die Preisträger. Die<br />

<strong>de</strong>taillierten Bewerbungsformalitäten<br />

sind auf <strong>de</strong>r Homepage <strong>de</strong>s BDI abrufbar.<br />

�<br />

ALUMINIUM · 1-2/2007


Virtual Fabrication of <strong>Alu</strong>minium Products<br />

This book contains the results of a major<br />

project of the European aluminium<br />

industries and their aca<strong>de</strong>mic partners<br />

on “virtual fabrication”. Its three<br />

chapters give an overview over:<br />

1. The production, processing and<br />

quality <strong>de</strong>tails of semi-finished products<br />

(sheet and extrusions) of some<br />

typical conventional wrought aluminium<br />

alloys and products.<br />

2. The fundamental physical processes<br />

and recent mo<strong>de</strong>lling approaches<br />

of casting, <strong>de</strong>formation and annealing<br />

processes and microstructures.<br />

3. Their integration and application<br />

in “through process simulations” of<br />

plant production.<br />

“Virtual fabrication“ <strong>de</strong>fines a new<br />

tool to simulate industrial processes<br />

with integrated mo<strong>de</strong>ls that can predict<br />

related properties and applied to<br />

many purposes, such as:<br />

• Improvement of industrial production<br />

processes and product quality<br />

• Improvement of research and <strong>de</strong>-<br />

Umschlüsselung DIN zu EN<br />

Europäische <strong>Alu</strong>miniumwerkstoffe<br />

Der europäische Binnenmarkt benötigt<br />

gemeinsame Normen, die die<br />

Einschränkungen für <strong>de</strong>n freien Warenverkehr<br />

abbauen helfen. Die se<br />

europäische Normung hat auch mit<br />

Blick auf <strong>de</strong>n Werkstoff <strong>Alu</strong>minium<br />

zu großen Verän<strong>de</strong>rungen geführt. In<br />

relativ kurzer Zeit mussten die nationalen<br />

Normen durch europäische<br />

Normen ersetzt wer<strong>de</strong>n, in <strong>de</strong>nen Bezeichnungssysteme<br />

und Zustandsbezeichnungen<br />

für Werkstoff geän<strong>de</strong>rt<br />

wur<strong>de</strong>n.<br />

Um <strong>de</strong>m Anwen<strong>de</strong>r die Umschlüsselung<br />

alt/neu für <strong>Alu</strong>minium und<br />

seine Le gie rungen zu erleichtern,<br />

sollte ein einfach zu handhaben<strong>de</strong>s<br />

Hilfsmittel erarbeitet wer<strong>de</strong>n. Damit<br />

war <strong>de</strong>r Startschuss für das Beuth-Pocket<br />

gefallen.<br />

Die lange Zeit <strong>de</strong>r Erstellung ver<strong>de</strong>utlicht,<br />

wie viel Arbeit in <strong>de</strong>m<br />

handlichen, kleinformatigen Nachschlagewerk<br />

steckt. Es durchdringt<br />

ALUMINIUM · 1-2/2007<br />

velopment quality for process and<br />

product optimization<br />

• Design of microstructural states<br />

and resulting specific material properties<br />

• Design most effective and efficient<br />

fabrication and processing routes<br />

• Reduce significantly the number<br />

of expensive test runs in productive<br />

plants<br />

• Reduce cost and time to market of<br />

new products and processes<br />

• Standardize aluminium alloys for<br />

application and to enhance recyclability.<br />

The targeted audience groups are:<br />

• industrial production engineers<br />

working on fabrication and processing<br />

sites<br />

• engineers <strong>de</strong>aling with product<br />

<strong>de</strong>velopment and aluminium applications<br />

• scientists and stu<strong>de</strong>nts working<br />

in aca<strong>de</strong>mic and industrial research<br />

laboratories.<br />

das Dickicht und ermöglicht einen<br />

schnellen Zugriff auf oft mühsam zusammengesuchte<br />

Fakten: Das Nachschlagewerk<br />

bringt Transparenz in<br />

die Fülle <strong>de</strong>r Norm-Dokumente. Es<br />

klärt die Be<strong>de</strong>utung von Kürzeln und<br />

Kennzeichen, vermittelt wichtige Informationen<br />

für <strong>de</strong>n betrieblichen<br />

Alltag und verweist nicht zuletzt auf<br />

die gängigen Normen.<br />

Herausgekommen ist das Beuth<br />

Pocket “Europäische <strong>Alu</strong>miniumwerk<br />

stoffe“, das in 1. Auflage 2006<br />

zweisprachig <strong>de</strong>utsch/englisch erschienen<br />

ist.<br />

Beuth Pocket<br />

H.-W. Wenglorz, Europäische <strong>Alu</strong>miniumwerkstoffe<br />

/ European <strong>Alu</strong>minium<br />

Materials<br />

1. Aufl. 2006. 294 S. 21 x 10,5 cm.<br />

Brosch. 29,80 Euro.<br />

ISBN 978-3-410-16287-2<br />

Beuth Verlag GmbH<br />

NEW BOOKS<br />

Virtual Fabrication of <strong>Alu</strong>minium<br />

Products, Jürgen Hirsch (Editor)<br />

Hardcover, 406 pages,<br />

October 2006<br />

£85.00 / €127.50<br />

ISBN: 3-527-31363-X<br />

Bei zerstörungsfreien Prüfungen (ZfP)<br />

wird verstärkt auf die Kombination verschie<strong>de</strong>ner<br />

Verfahren gesetzt, um die<br />

Sicherheit unserer technischen Umgebung<br />

zu erhöhen. Sowohl für kombinierte<br />

Me tho<strong>de</strong>n wie auch für Einzelprüfungen<br />

stellen zwei DIN-Taschenbücher (TB) das<br />

normentechnische Knowhow zur Verfügung.<br />

DIN-TB 56 „Materialprüfnormen<br />

für metallische Werkstoffe 2“ enthält die<br />

Normen und Norm-Entwürfe für die Volumenverfahren<br />

<strong>de</strong>r ZfP. Ergänzend dazu<br />

ist DIN-TB 370 „Materialprüfnormen für<br />

metallische Werkstoffe 4“ erschienen, das<br />

die Normen zu Oberflächenverfahren und<br />

zu an<strong>de</strong>ren ZfP-Verfahren umfasst.<br />

DIN-TB 56, Materialprüf normen für metalli<br />

sche Werkstoffe 2. 7. Aufl. 2006. 640<br />

S. A5. Brosch. 125,30 Euro. ISBN 978-3-<br />

410-16300-8. Beuth-Verlag GmbH<br />

DIN-TB 370, Materialprüfnormen für<br />

me tallische Werkstoffe 4. 2006. 560 S.<br />

A5. Brosch. 106,90 Euro. ISBN 978-3-410-<br />

16313-8., Beuth Verlag GmbH<br />

105


FIRMENSCHRIFTEN<br />

SECO/Warwick<br />

<strong>Alu</strong>minium Annealing Furnaces<br />

SECO/Warwick provi<strong>de</strong>s customengineered<br />

aluminium coil and foil<br />

annealing furnaces with capacities<br />

ranging from single coil modular furnaces<br />

to multi-zone furnaces with<br />

tight zone control. The company<br />

continues to <strong>de</strong>velop technologies to<br />

improve equipment performance and<br />

efficiency. Two significant improvements<br />

for coil and foil processing<br />

inclu<strong>de</strong>:<br />

Messerfabrik Neuenkamp<br />

Neuer Schneidtechnik-Katalog<br />

Die Messerfabrik Neuenkamp GmbH,<br />

ein Mitglied <strong>de</strong>r internationalen<br />

Dienes-Gruppe, bietet eine breite Palette<br />

von Serviceleistungen rund um<br />

die Schneidtechnik. Zielgruppe ist die<br />

verarbeiten<strong>de</strong> Industrie von Stahl und<br />

NE-Metallen.<br />

Ein neuer Produktkatalog gibt einen<br />

Überblick über das Produkt- und<br />

Serviceprogramm, angefangen bei<br />

Rollscherenmessern über Distanz-<br />

und Druckverteilungsringe, Sepa-<br />

Schüco International<br />

Nachhaltigkeitsbericht „SustainIng“<br />

Effiziente Lösungen und nachhaltige<br />

Produkte, die höchste Ansprüche hinsichtlich<br />

Komfort und Design erfüllen,<br />

müssen kein Wi<strong>de</strong>rspruch sein. In <strong>de</strong>r<br />

Natur gibt es zahlreiche Beispiele für<br />

<strong>de</strong>n perfekten Umgang mit Energie<br />

und Material. Vor diesem Hintergrund<br />

beschäftigt sich <strong>de</strong>r aktuelle Schüco-<br />

Nachhaltigkeitsbericht „SustainIng“<br />

mit natürlichen Ansätzen für die zukunftsorientierte<br />

Gebäu<strong>de</strong>hülle. Die<br />

68-seitige Broschüre rich tet sich vor<br />

allem an Investoren und Architekten.<br />

Sie informiert über <strong>de</strong>n nachhaltigen<br />

Umgang mit <strong>de</strong>r Umwelt sowie darü-<br />

� Mass flow <strong>de</strong>sign to protect load<br />

surfaces that are vulnerable to damage<br />

during high atmosphere flow.<br />

� Vortex flow jet heating that reduces<br />

cycle time by taking advantage<br />

of the high heat transfer produced<br />

through convection heating.<br />

The updated brochure is available<br />

online at www.secowarwick.com or<br />

via e-mail (info@secowarwick.com)<br />

for a print copy.<br />

rierwerkzeuge, komplette Schnei<strong>de</strong>einheiten<br />

bis hin zu Messerträgersystemen<br />

und zur Poliermaschine.<br />

Die abgebil<strong>de</strong>ten Mo<strong>de</strong>lle stehen<br />

beispielhaft für eine Vielzahl individueller<br />

Konfigurationen, die auf spezielle<br />

Kun <strong>de</strong>nanfor<strong>de</strong>rungen entwickelt<br />

wer <strong>de</strong>n.<br />

Der Katalog ist in <strong>de</strong>utscher und<br />

englischer Sprache erhältlich und<br />

kann unter info@neuenkamp.<strong>de</strong> angefor<strong>de</strong>rt<br />

wer<strong>de</strong>n.<br />

ber, wie sich Gebäu<strong>de</strong>hüllen an die<br />

weltweit unterschiedlichen Klimaverhältnisse<br />

anpassen lassen. Außer<strong>de</strong>m<br />

präsentiert <strong>de</strong>r Bericht überraschen<strong>de</strong><br />

Analogien aus <strong>de</strong>r Welt <strong>de</strong>r<br />

Bionik. „SustainIng“ beschreibt nicht<br />

allein mögliche Zukunftsszenarien,<br />

son<strong>de</strong>rn zeigt auch vorhan<strong>de</strong>ne Lösungsmöglichkeiten<br />

auf. Prominente<br />

Wissenschaftler wie Ernst Ullrich von<br />

Weizsäcker kommen zu Wort.<br />

Die Broschüre liegt in <strong>de</strong>utscher<br />

und englischer Sprache vor und kann<br />

unter www.schueco.<strong>de</strong>/architekten<br />

angefor<strong>de</strong>rt wer<strong>de</strong>n.<br />

106 ALUMINIUM · 1-2/2007


Schuitema, H.<br />

„Heavy duty“ Magnesium. Entwicklung und Druckguss-Produktion<br />

eines 6-Zylin<strong>de</strong>r Magnesium Bedplate<br />

Druckgusspraxis 6/2006, S. 243-246<br />

Nach <strong>de</strong>n neuen EU-Vorschriften, die ab 2008 die Grenzwerte<br />

für Schadstoffe weiter reduzieren, dürfen Pkw nicht mehr als<br />

140 g/km CO 2 ausstoßen. Dies erfor<strong>de</strong>rt weitere Anstrengungen<br />

zur Gewichtsmin<strong>de</strong>rung: durch verbesserte Effizienz <strong>de</strong>r Verbrennung<br />

(„innermotorische Maßnahmen“), Reduzierung <strong>de</strong>r<br />

Antriebsverluste im Antriebsstrang, aerodynamische Feinarbeit<br />

und Gewichtsoptimierung durch die Verwendung leichter<br />

Werkstoffe. Ein süd<strong>de</strong>utscher OEM hat sich für die Verwendung<br />

von mehr Magnesium entschie<strong>de</strong>n, um das Gewicht <strong>de</strong>s Motors<br />

zu reduzieren. Ein weiterer Aspekt ist die Verbesserung <strong>de</strong>r<br />

Gewichtsverteilung (geringere Belastung <strong>de</strong>r Vor<strong>de</strong>rachse), was<br />

zum dynamischeren Fahrverhalten beiträgt. Die Verwendung<br />

von Magnesium in einer Größenordnung von 20 kg gilt bis jetzt<br />

als einzigartig im mo<strong>de</strong>rnen Motorenbau. In <strong>de</strong>r Vergangenheit<br />

gab es keine geeigneten Legierungen, die die gefor<strong>de</strong>rten Werte<br />

für mechanische Festigkeit und Kriechverhalten bei hoher thermischer<br />

und dynamischer Belastung aufweisen. 3 Bild.<br />

ALUMINIUM 1/2 (2007) Werkstoffeigenschaften<br />

Sequeria, W., Kind, R., An<strong>de</strong>rsen, S., Greeless, G.<br />

Voraussage und Validierung von Verformungen und Eigenspannungen<br />

in einem <strong>Alu</strong>miniumdruckgussteil mit Betrachtung<br />

<strong>de</strong>r für <strong>de</strong>n Druckgießprozeß relevanten Parameter<br />

Druckgusspraxis 6/2006, S. 235-242<br />

Das Druckgießverfahren bietet eine exzellente Dimensionsgenauigkeit<br />

bei <strong>de</strong>r Herstellung dünnwandiger NE-Gussteile.<br />

Trotz<strong>de</strong>m treten während <strong>de</strong>r Produktion an manchen Gussteilen<br />

Maßhaltigkeitsprobleme auf. Die Tatsache, dass <strong>de</strong>r Formhohlraum<br />

innerhalb <strong>de</strong>r notwendigen Toleranzen liegt, und das<br />

unregelmäßige Auftreten <strong>de</strong>r Fehler machen die Suche nach<br />

<strong>de</strong>r Ursache <strong>de</strong>s Problems schwierig. Es ist nicht sinnvoll, die<br />

Belastungsanalyse eines Teils durchzuführen, wenn die sich<br />

während <strong>de</strong>s Gießprozesses entwickeln<strong>de</strong>n Eigenspannungen<br />

unbekannt sind. Schwanken<strong>de</strong> Temperaturverteilungen im<br />

Gussteil sind beim Druckgießen hauptsächlich durch Wandstärkenübergänge<br />

sowie durch die Anordnung von Kühlelementen<br />

und durch die Formsprüheinrichtung begrün<strong>de</strong>t. Nach<br />

<strong>de</strong>r Entnahme aus <strong>de</strong>r Form erfährt das Teil eine thermische<br />

Behandlung, die von <strong>de</strong>r Abkühlung auf Raumtemperatur an<br />

ruhen<strong>de</strong>r Luft bis zur Abschreckung in einem Kühlmedium reichen<br />

kann. Die Abkühlung führt zu Verformungen und Eigenspannungen<br />

im Gussteil – eine <strong>de</strong>r Hauptursachen für Dimensionsabweichungen<br />

im Druckgussteil. Der Artikel diskutiert<br />

die Verformung eines Sicherheitsbauteiles aus <strong>Alu</strong>minium, die<br />

mittels computergestützter Verifizierung ermittelt wur<strong>de</strong>. Die<br />

Ergebnisse wer<strong>de</strong>n mit <strong>de</strong>n Resultaten verglichen, die aus <strong>de</strong>r<br />

Anwendung eines Prozessoptimierungstools für die Abkühlung<br />

von Druckgussteilen von <strong>de</strong>r Formentnahme auf Raumtemperatur<br />

erhalten wur<strong>de</strong>n. Die Ausbildung von Eigenspannungen und<br />

ihre praktische Be<strong>de</strong>utung wer<strong>de</strong>n diskutiert. 13 Bild., 9 Que.<br />

ALUMINIUM 1/2 (2007) Formguss<br />

R. P. Pawlek<br />

Dramatic changes in primary aluminium smelting between<br />

1984 and 2005<br />

ALUMINIUM 82 (2006) 12, p. 1206 pp.<br />

Although still using basically century-old technology, the primary<br />

aluminium industry has again doubled in capacity during<br />

the last twenty years. This is a dramatic increase, even if<br />

the 1984 figures for several of then communist economies are<br />

uncertain. On a macro-economic scale, this industry has been<br />

ALUMINIUM · 1-2/2007<br />

LITERATURE SERVICE<br />

transformed more than most by global forces: by the rise of<br />

market economies in China and the former Soviet republics,<br />

and by rising energy costs. In the next twenty years, even with<br />

practically inexhaustible ores, primary aluminium capacity will<br />

be overtaken by recycled aluminium due to energy costs. 6 images,<br />

2 Tab.<br />

ALUMINIUM 1/2 (2007) <strong>Alu</strong>minium-Industrie<br />

B. Rieth<br />

Coil Coating – weltweit ein Wachstumsmarkt<br />

ALUMINIUM 82 (2006) 12, p. 1170 pp.<br />

„Finish first – fabricate later” – unter diesem Slogan wird das<br />

Coil Coating zunehmend als eine kostengünstige Alternative<br />

zur konventionellen Stücklackierung eingesetzt. Organische<br />

Beschichtungslinien vereinen chemische, thermische und<br />

mechanische Prozesse und bieten <strong>de</strong>n Anwen<strong>de</strong>rn ein breites<br />

Spektrum an Funktions-, Farb- und Dekorvarianten. Nachfolgend<br />

soll – losgelöst von <strong>de</strong>n technischen Details – ein Überblick<br />

über Märkte, Anlagentechnik und die Akteure gegeben<br />

wer<strong>de</strong>n. 11 Bild.<br />

ALUMINIUM 1/2 (2007) Oberflächenbehandlung<br />

Anon.<br />

Die <strong>de</strong>utsche Gießereiindustrie – eine Branche mit Perspektiven<br />

ALUMINIUM 82 (2006) 12, p. 1163 pp.<br />

Deutschland zählt heute weltweit zu <strong>de</strong>n führen<strong>de</strong>n Gießereinationen.<br />

Hinter <strong>de</strong>n bevölkerungsreichen Län<strong>de</strong>rn China, USA,<br />

Russland und Japan steht Deutschland an fünfter Stelle in <strong>de</strong>r<br />

Welt. In Europa ist die <strong>de</strong>utsche Gießereibranche seit Jahren mit<br />

Abstand führend. Wie lässt sich dieser Erfolg angesichts <strong>de</strong>r allgemein<br />

beklagten Standortnachteile in Deutschland erklären?<br />

Dieser Frage geht <strong>de</strong>r Bericht nach. Für 2006 ist die Gießereibranche<br />

optimistisch, das hohe Rekordniveau aus <strong>de</strong>m Vorjahr<br />

zumin<strong>de</strong>st halten zu können. Diese Zuversicht wird durch <strong>de</strong>n<br />

Verlauf <strong>de</strong>s ersten Halbjahres 2006 bestätigt. 4 Bild.<br />

ALUMINIUM 1/2 (2007) Formguss<br />

Kraynik, A. M.<br />

The Structure of Random Foam<br />

Advanced Engineering Materials 2006, 8, No. 9, S. 900-906<br />

Surface Evolver mo<strong>de</strong>ls of soap foam with a wi<strong>de</strong> range of<br />

cell-size distributions are used to investigate random cellular<br />

morphology. Geometric properties of foams and foam cells are<br />

analyzed. A simple accurate theory relates the total surface area<br />

of foam to the cell-size distribution. The total surface area is<br />

approximately equal to the total edge length when both quantities<br />

are scaled by average cell volume. Voronoi structures are<br />

significantly different from foams, which raises questions over<br />

their use for predicting structure-property relationships. 22 images,<br />

13 sources.<br />

ALUMINIUM 1/2 (2007) Werkstoffe, Metallkun<strong>de</strong><br />

McElwain, D.L.S., Roberts, A.P., Wilkins, A. H.<br />

Yield Functions for Porous Materials with Cubic Symmetry<br />

Using Different Definitions of Yield<br />

Advanced Engineering Materials, 2006, 8, No. 9, S. 870-876<br />

Plastic yield criteria for porous ductile materials are explored<br />

numerically using the finite-element technique. The cases of<br />

107<br />


LITERATURSERVICE<br />

spherical voids arranged in simple cubic, body-centred cubic<br />

and face-centred cubic arrays are investigated with void volume<br />

fractions ranging from 2 % through to the percolation limit (over<br />

90%). Arbitrary triaxial macroscopic stress states and two <strong>de</strong>finitions<br />

of yield are explored. The numerical data <strong>de</strong>monstrates<br />

that the yield criteria <strong>de</strong>pend linearly on the <strong>de</strong>terminant of<br />

the macroscopic stress tensor for the case of simple-cubic and<br />

body-centred cubic arrays – in contrast to the famous Gurson-<br />

Tvergaard-Needleman (GTN) formula – while there is no such<br />

<strong>de</strong>pen<strong>de</strong>nce for face-centred cubic arrays within the accuracy<br />

of the finite-element discretisation. The data are well fit by a<br />

simple extension of the GTN formula which is valid for all void<br />

volume fractions, with yield-function convexity constraining<br />

the form of the extension in terms of parameters in the original<br />

formula. Simple cubic structures are more resistant to shear,<br />

while body-centred and face-centred structures are more resistant<br />

to hydrostatic pressure. The two yield surfaces corresponding<br />

to the two <strong>de</strong>finitions of yield are not related by a simple<br />

scaling.10 images, 21 sources.<br />

ALUMINIUM 1/2 (2007) Werkstoffe, Metallkun<strong>de</strong><br />

Shashikala, A.R., Rani, R.U., Sharma, A.. K., Mayanna, S.M.,<br />

Untersuchungen zur selektiven Schwarzverchromung auf<br />

<strong>Alu</strong>miniumlegierungen für Solaranwendungen / Studies on<br />

solar selective black chrome plating on aluminium alloys<br />

Galvanotechnik 10/2006, S. 2387-2400<br />

Selektive Solarbeschichtungen absorbieren die Sonneneinstrahlung<br />

und wan<strong>de</strong>ln sie in Wärmeenergie für <strong>de</strong>n Hausgebrauch<br />

und industrielle Anwendungen um. Die Schwarzverchromung<br />

wird häufig aufgrund ihrer haltbaren, nicht reflektieren<strong>de</strong>n<br />

Oberfläche und ihrer beständigen optischen Eigenschaften<br />

für Automobile, Phototechnik, Solarkollektoren und optische<br />

Geräte verwen<strong>de</strong>t. Schwarzchromschichten wer<strong>de</strong>n auf verschie<strong>de</strong>ne<br />

Werkstoffe wie Kupfer o<strong>de</strong>r Stahl abgeschie<strong>de</strong>n.<br />

Trotz neuer Entwicklungen wer<strong>de</strong>n zur Herstellung dünner<br />

Schichten Chrom(VI)elektrolyte eingesetzt. In <strong>de</strong>r vorliegen<strong>de</strong>n<br />

Studie wird die Auswirkung verschie<strong>de</strong>ner Unterschichten<br />

(cyanidisches/nicht cyanidisches Kupfer, galvanisches und<br />

stromloses Nickel) auf die Stabilität und solare Selektivität von<br />

Schwarzchromschichten auf <strong>Alu</strong>miniumlegierungen untersucht.<br />

8 Bild., 23 Que. Beitrag in dt. u. engl. Sprache).<br />

ALUMINIUM 1/2 (2007) Oberflächenbehandlung<br />

Stratemeier, S., Senk, D., Grosse, A., Kurth, B.<br />

Eigenschaften von mechanisch hergestelltem Desoxidationsaluminium<br />

stahl und eisen 126 (2006) Nr. 11, S. 45-55<br />

Im Jahr 2004 wur<strong>de</strong>n in <strong>de</strong>r <strong>de</strong>utschen Stahlindustrie rund 76.000<br />

t <strong>Alu</strong>minium verbraucht. Dieses sog. „Desoxidationsaluminium“<br />

wird in <strong>de</strong>r Stahlmetallurgie als Granalien und Einteilern eingesetzt,<br />

die aus <strong>Alu</strong>miniumschrotten umgeschmolzen wer<strong>de</strong>n.<br />

Eine mögliche Alternative zu thermisch hergestelltem Desoxidationsaluminium<br />

ist die Verwendung von sauberem granulierten<br />

Al-Schrott. Der Beitrag untersucht die Eignung von mechanisch<br />

hergestelltem Desoxidationsaluminium aus Schrotten für <strong>de</strong>n<br />

Einsatz in <strong>de</strong>r Stahlmetallurgie. 10 Bild, 5 Que.<br />

ALUMINIUM 1/2 (2007) Gewinnung<br />

Nogowizin, B.<br />

Geometrische Gestaltung <strong>de</strong>r Gießläufe für Druckgussstücke<br />

Druckgusspraxis 6/2006, S. 247-253<br />

Die Ausschnitttechnik erstreckt sich nicht nur auf <strong>de</strong>n Anschnitt,<br />

son<strong>de</strong>rn auch auf die Gestaltung und die Anordnung <strong>de</strong>r Gießläufe,<br />

<strong>de</strong>r Überläufe und <strong>de</strong>r Entlüftung. Der Artikel thematisiert<br />

die Darstellung <strong>de</strong>r geometrischen Gestaltung <strong>de</strong>r Elemente und<br />

ihre Berechnungen für die Gießlauf-Anschnittsysteme, die zur<br />

Entwicklung <strong>de</strong>r erfor<strong>de</strong>rlichen computergestützten Entwurfsprogramme<br />

angewandt wer<strong>de</strong>n können. Es ist nicht das Ziel,<br />

wie ein Gießlaufanschnittsystem für ein bestimmtes Gussstück<br />

zu konstruieren sei, vielmehr wird die Aufmerksamkeit auf die<br />

verschie<strong>de</strong>nen Einflussgrößen bei <strong>de</strong>r Gestaltung von Gießläufen<br />

gelenkt. 7 Bild., 5 Que.<br />

ALUMINIUM 1/2 (2007) Formguss<br />

Pidvysotskyy, V., Matuszyk, P.J., Bloching, H.<br />

Analysis of the Influence of the Specimen Shape on the<br />

Zone of Homogeneous Stress in Tensile Test / Untersuchung<br />

<strong>de</strong>s Einflusses <strong>de</strong>r Probenform im Bereich homogener Spannungen<br />

beim Zugversuch (Beitrag in engl. Sprache)<br />

MP Materialprüfung 2006, 10, S. 498-503<br />

Im vorliegen<strong>de</strong>n Beitrag wer<strong>de</strong>n die Ergebnisse aus Untersuchungen<br />

zum Einfluss <strong>de</strong>r Probengeometrie und <strong>de</strong>r Einspannlänge<br />

auf die homogene Dehnung in <strong>de</strong>r Originalprüflänge<br />

vorgestellt. Alle Versuche wur<strong>de</strong>n mit einem austenitischen<br />

Stahl 316 L und bei verschie<strong>de</strong>nen Querschnitten <strong>de</strong>r Flachproben<br />

durchgeführt. Die Berechnungen <strong>de</strong>s Verformungsprozesses<br />

wur<strong>de</strong>n mittels <strong>de</strong>r Finite-Elemente-Metho<strong>de</strong> unter Nutzung<br />

<strong>de</strong>s Programms Abaqus/Explicit ausgeführt. Es wer<strong>de</strong>n die<br />

Korrelation zwischen <strong>de</strong>r Dehnungsverteilung in <strong>de</strong>n Proben<br />

und verschie<strong>de</strong>nen Parametern, wie zum Beispiel <strong>de</strong>m Übergangsradius<br />

und <strong>de</strong>r Einspannlänge, beleuchtet. 9 Bild., 9 Que.<br />

ALUMINIUM 1/2 (2007) Werkstoffeigenschaften<br />

Haberkorn, G., Blümcke, E.W., Thoma, K.<br />

Durchgängige Betrachtung einer Stanznietverbindung mit<br />

Fokus auf dynamische Belastungen<br />

MP Materialprüfung 2006, 10, S. 486-492<br />

Im Zuge <strong>de</strong>s Leichtbaus von Fahrzeugkarosserien kommen<br />

neben einer Vielzahl von Materialien auch zahlreiche unterschiedliche<br />

Fügetechniken zur Anwendung. Um diese in <strong>de</strong>r numerischen<br />

Berechnung zu berücksichtigen, sind umfangreiche<br />

Kenntnisse <strong>de</strong>r Phänomenologie <strong>de</strong>r Verbindung einschließlich<br />

<strong>de</strong>s Versagens notwendig. Es wird eine Möglichkeit <strong>de</strong>r Untersuchung<br />

von mechanischen Verbindungen am Beispiel <strong>de</strong>r<br />

Stanznietverbindung aufgezeigt. Dies umfasst die Kombination<br />

von Versuchen und <strong>de</strong>r numerischen Simulation, welche bei<br />

<strong>de</strong>r Prozesssimulation beginnt und über ein Detailmo<strong>de</strong>ll hin<br />

zum abstrahierten Simulationsmo<strong>de</strong>ll für die Gesamtfahrzeugberechnung<br />

führt. Erste Ergebnisse wer<strong>de</strong>n vorgestellt und auf<br />

ihre Relevanz im Kontext einer Gesamtfahrzeug-Crashsimulation<br />

hin bewertet. 11 Bild., 8 Que.<br />

ALUMINIUM 1/2 (2007) Verbin<strong>de</strong>n<br />

Für Schrifttum zum Thema „<strong>Alu</strong>minium“ ist <strong>de</strong>r Gesamtverband <strong>de</strong>r <strong>Alu</strong>miniumindustrie e.V. (GDA)<br />

<strong>de</strong>r kompetente Ansprechpartner. Die hier referierten Beiträge repräsentieren lediglich einen Ausschnitt<br />

aus <strong>de</strong>m umfassen<strong>de</strong>n aktuellen Bestand <strong>de</strong>r GDA-Bibliothek.<br />

Die von <strong>de</strong>r <strong>Alu</strong>minium-Zentrale seit <strong>de</strong>n dreißiger Jahren kontinuierlich aufgebaute Fach-Bibliothek<br />

wird duch <strong>de</strong>n GDA weitergeführt, ausgebaut und auf die neuen Medien umgestellt. Sie steht allen<br />

Interessenten offen.<br />

Ansprechpartner ist Dr. Karsten Hein, E-Mail: karsten.hein@aluinfo.<strong>de</strong><br />

108 ALUMINIUM · 1-2/2007


Patentblatt November 2006<br />

Al-Legierung für lithographisches Blech.<br />

Alcan International Ltd., Montreal, Quebec,<br />

CA. (C22C 21/00, OS 102 42 018,<br />

AT 11.09.2002)<br />

Al-Cu-Mg-Ag-Mn-Legierung für Bauanwendungen,<br />

die hohe Festigkeit und<br />

hohe Duktilität erfor<strong>de</strong>rn. Alcan Rolled<br />

Products Ravenswood LLC, Ravenswood,<br />

W.Va., US; Alcan Rhenalu, Paris,<br />

FR. (C22C 21/12, EPA 1 641 952, EP-AT<br />

26.05.2004)<br />

Verfahren zur Herstellung von Al-Mg-<br />

Si-Legierung mit hervorragen<strong>de</strong>r Bake-<br />

Har<strong>de</strong>nability und Falzbarkeit. Nippon<br />

Light Metal Co. Ltd., Tokio/Tokyo, JP.<br />

(C22F 1/05, EPA 1 702 995, EP-AT<br />

13.12.2004)<br />

Zn-Al-Eutektoid-Feuerverzinkung von<br />

nicht rosten<strong>de</strong>m Stahl. University of Cincinnati,<br />

Cincinatti, Ohio, US. (C23C 2/06,<br />

1 709 21, EP-AT 21.01.2005)<br />

Kupfer enthalten<strong>de</strong>r, mehrfädiger<br />

NbÌ3ÌAl-Supraleitungsdraht und Verfahren<br />

zu <strong>de</strong>ssen Herstellung. Japan,<br />

vertreten durch <strong>de</strong>n Generaldirektor <strong>de</strong>s<br />

Nationalen Metallforschungsinstitutes,<br />

Tsukuba, Ibaraki, JP. (H01B 12/10, PS<br />

100 55 628, AT 09.11.2000)<br />

Herstellungsverfahren für einen ultrafeinen<br />

Multifilament-Supraleiterdraht aus<br />

Nb3(Al, Ge) o<strong>de</strong>r Nb3(Al, Si). JAPAN as<br />

represented by NATIONAL RESEARCH<br />

INSTITUTE FOR METALS, Tsukuba,<br />

JP. (H01L 39/24, EP 1 058 321, EP-AT<br />

05.06.2000)<br />

Zeolithkatalysator, Träger auf Basis von<br />

Silizium-<strong>Alu</strong>minium-Matrix und Zeolith<br />

und Verfahren zum Hydrocracken von<br />

Kohlenwasserstoffchargen. Institut Français<br />

du Pétrole, Rueil-Malmaison, Hauts<strong>de</strong>-Seine,<br />

FR. (B01J 29/08, EPA 1 711 260,<br />

EP-AT 16.12.2004)<br />

Kontinuierlich graviertes, laminiertes<br />

<strong>Alu</strong>minium und <strong>de</strong>ssen Benutzung in<br />

Paneelen. Lloveras Calvo, Juan, San Feliu<br />

<strong>de</strong> Codinas, ES. (B21B 15/00, EPA 1 710<br />

026, EP-AT 06.04.2005)<br />

Verfahren zur Herstellung von <strong>Alu</strong>minium-Kokillenguss<br />

mit <strong>de</strong>m Zweck eine Gefügeverbesserung<br />

bei <strong>de</strong>n gegossenen<br />

Teilen zu erreichen. Fuchs, Hermann,<br />

57520 Steinebach, DE. (B22D 21/04, OS<br />

10 2005 001 243, AT 11.01.2005)<br />

Verfahren zur Herstellung eines Bauteils<br />

durch Fügen mit <strong>Alu</strong>minium. Rolls-Royce<br />

Deutschland Ltd & Co KG, 15827 Dahlewitz,<br />

DE. (B23K 1/19, OS 102 38 551,<br />

AT 22.08.2002)<br />

ALUMINIUM · 1-2/2007<br />

Tube aus Metall, insbeson<strong>de</strong>re <strong>Alu</strong>minium.<br />

Karl Höll GmbH & Co KG, 40764<br />

Langenfeld, DE. (B65D 35/16, GM 203 16<br />

148, AT 18.10.2003)<br />

Vorrichtung zur Sicherung von als Paket<br />

gelagerten <strong>Alu</strong>minium-Stranggussprodukten,<br />

so genannten Masseln, zu Transportzwecken.<br />

Signo<strong>de</strong> System GmbH,<br />

46535 Dinslaken, DE. (B65D 85/20, GM<br />

20 2006 012 782, AT 21.08.2006)<br />

Verfahren zur Herstellung von Sinterkörpern<br />

aus Yttrium-<strong>Alu</strong>minium-Granat<br />

und ein Formkörper. NGK Insulators,<br />

Ltd., Nagoya, Aichi, JP. (C04B 35/44, EP<br />

1 433 764, EP-AT 22.12.2003)<br />

Behan<strong>de</strong>ln von Abstandhaltern in gestapelten<br />

<strong>Alu</strong>minium-Blöcken. Alcoa Inc.,<br />

Pittsburgh, Pa., US. (C21D 1/70, EP 1 215<br />

289, EP-AT 11.12.2001)<br />

Reinigung von <strong>Alu</strong>minium-Gusslegierungen<br />

mittels Zugabe von Bor. Bayerische<br />

Motoren Werke AG, 80809 München,<br />

DE. (C22B 21/06, EP 1 264 903,<br />

EP-AT 03.05.2003)<br />

Verstellbare <strong>Alu</strong>minium-Dachhaken mit<br />

Einrastfunktion zur Befestigung von<br />

Solarmodulen und Solarthermieanlagen<br />

auf Dächern und Schrägdächern. Citak,<br />

Fatma, 33689 Bielefeld, DE. (E04D 13/18,<br />

OS 10 2005 058 065, AT 06.12.2005)<br />

Mehrschichtiges Gleitteil aus einer auf<br />

<strong>Alu</strong>minium basieren<strong>de</strong>n Legierung.<br />

Daido Metal Co. Ltd., Nagoya, Aichi, JP.<br />

(F16C 33/12, PS 10 2004 025 557, AT<br />

25.05.2004)<br />

Isolierverbund für <strong>Alu</strong>minium-Profile.<br />

Henkenjohann, Johann, 33415 Verl,<br />

DE. (F16S 3/02, GM 298 21 183, AT<br />

26.11.1998)<br />

<strong>Alu</strong>minium Strahlungsplatte für eine<br />

Unter<strong>de</strong>cke. Riello, Franco, Milano, IT;<br />

Riello, Andrea, Milano, IT; Donati, Giuseppe,<br />

Cenate Sopra, Bergamo, IT; Donati,<br />

Francesco, Cenate Sopra, Bergamo,<br />

IT. (F24D 3/16, EPA 1 703 215, EP-AT<br />

22.02.2005)<br />

Detektorbän<strong>de</strong>r enthaltend <strong>Alu</strong>minium,<br />

Silizium, Titan und Zirkonium. Oeste,<br />

Franz Dietrich, 35274 Kirchhain, DE.<br />

(G01N 27/26, OS 10 2005 021 625, AT<br />

05.05.2005)<br />

<strong>Alu</strong>miniumlegierung zur Herstellung<br />

von Gussformteilen. Alcoa Inc., Pittsburgh,<br />

Pa., US. (C22C 21/00, EPA 1 709<br />

210, EP-AT 31.01.2005)<br />

Verschleißfester gestreckter Körper aus<br />

<strong>Alu</strong>miniumlegierung, Herstellungsverfahren<br />

dafür und Kolben für Auto-Klimaanlage.<br />

Sumitomo Electric Industries,<br />

Ltd., Osaka, JP; Toyoda Automatic Loom<br />

PATENTE<br />

Works, Ltd., Kariya, Aichi, JP. (C22C<br />

21/02, OS 102 32 159, AT 16.07.2002)<br />

Verfahren zum Herstellen einer hochscha<strong>de</strong>nstoleranten<strong>Alu</strong>miniumlegierung.<br />

Corus <strong>Alu</strong>minium Walzprodukte<br />

GmbH, 56070 Koblenz, DE. (C22F 1/04,<br />

WO 2005 049878, WO-AT 29.10.2004)<br />

Einrichtung zur Herstellung gegossener<br />

Halbfabrikate aus Leichtmetall. Stolfig,<br />

Peter, 85290 Geisenfeld, DE. (B22D 21/04,<br />

OS 10 2005 024 025, AT 21.05.2005)<br />

Verfahren zum Leichtmetall-Legierungs-<br />

Sintern. Schwäbische Hüttenwerke<br />

GmbH, 73433 Aalen, DE. (C22C 1/04,<br />

EPA 1 709 209, EP-AT 26.11.2004)<br />

Sinterkörper auf Eisenbasis mit hervorragen<strong>de</strong>n<br />

Eigenschaften zum Einbetten<br />

durch Eingießen in Leichtmetall-Legierung<br />

und Verfahren zu seiner Herstellung.<br />

NIPPON PISTON RING CO., LTD.,<br />

Saitama, JP; Fuji Jukogyo K.K., Tokio/Tokyo,<br />

JP. (C22C 33/02, PS 103 60 824, AT<br />

23.12.2003)<br />

Maschinenteil aus einer Leichtmetall-<br />

Gusslegierung, insbeson<strong>de</strong>re Pleuel<br />

für Hubkolbenmaschinen. Bayerische<br />

Motoren Werke AG, 80809 München,<br />

DE. (F16C 7/02, PS 43 32 444, AT<br />

23.09.1993)<br />

Sammelbehälter für Magnesium o. dgl.<br />

Thielemann, Frank, 63776 Mömbris, DE.<br />

(F16L 3/14, GM 20 2005 008 220, AT<br />

25.05.2005)<br />

Druckgussbauteil, aus Magnesium, vornehmlich<br />

zur Verwendung in Kraftfahrzeugen.<br />

Volkswagen AG, 38440 Wolfsburg,<br />

DE. (F16S 5/00, OS 100 02 262, AT<br />

19.01.2000)<br />

Verfahren zu Herstellung elektrisch<br />

ALUMINIUM veröffentlicht unter<br />

dieser Rubrik regelmäßig einen Überblick<br />

über wichtige, <strong>de</strong>n Werkstoff<br />

<strong>Alu</strong>minium betreffen<strong>de</strong> Patente. Die<br />

ausführlichen Patentblätter und auch<br />

weiterführen<strong>de</strong> Informationen dazu<br />

stehen <strong>de</strong>r Redaktion nicht zur Verfügung.<br />

Interessenten können diese<br />

beziehen o<strong>de</strong>r einsehen bei <strong>de</strong>r<br />

Mittel<strong>de</strong>utschen Informations-, Patent-,<br />

Online-Service GmbH (mipo),<br />

Julius-Ebeling-Str. 6,<br />

D-06112 Halle an <strong>de</strong>r Saale,<br />

Tel. 0345/29398-0<br />

Fax 0345/29398-40,<br />

www.mipo.<strong>de</strong><br />

Die Gesellschaft bietet darüber hinaus<br />

weitere „Patent“-Dienstleistungen<br />

an.<br />

109<br />


PATENTE<br />

leitfähiger und optimal haftfähiger<br />

Oberflächenbereiche auf chemisch und/<br />

o<strong>de</strong>r galvanisch beschichteten und/o<strong>de</strong>r<br />

lackierten Spritzgussteilen aus Magnesiumlegierungen.<br />

Fa. Alfred R. Franz,<br />

82538 Geretsried, DE. (C25D 5/00, PS<br />

198 51 278, AT 06.11.1998)<br />

Schutzschicht für eine aluminiumhaltige<br />

Legierung für <strong>de</strong>n Einsatz bei hohen<br />

Temperaturen, sowie Verfahren zur<br />

Herstellung einer solchen Schutzschicht.<br />

Forschungszentrum Jülich GmbH, 52428<br />

Jülich, DE.(C23C 8/02, EPA 1 706 518,<br />

EP-AT 20.11.2004)<br />

Verfahren zum Umformen eines Ausgangsprofils<br />

od. dgl. Werkstückes sowie<br />

Profil dafür. Alcan Technology &<br />

Management AG, Neuhausen am Rheinfall,<br />

CH. (B21D 26/02, PS 199 55 506, AT<br />

18.11.1999)<br />

Verfahren zur Herstellung eines Verpackungsmaterials.<br />

Alcan Technology &<br />

Management Ltd., Neuhausen am Rheinfall,<br />

CH. (B32B 37/12, EPA 1 621 333, EP-<br />

AT 01.07.2004)<br />

Verbundplatte mit zwei Deckschichten<br />

und einem Kern sowie <strong>de</strong>ren Verwendung<br />

und Herstellung. Alcan Technology<br />

& Management AG, Neuhausen am<br />

Rheinfall, CH. (B32B 5/16, PS 43 17 315,<br />

AT 25.05.1993)<br />

Stossfängersystem. Alcan Technology &<br />

Management AG, Neuhausen am Rheinfall,<br />

CH. (B60R 19/26, GM 20 2005 016<br />

564, AT 20.10.2005)<br />

Stoßstange mit Halterungen. Alcan<br />

Technology & Management AG, Neuhausen<br />

am Rheinfall, CH. (B60R 19/34, OS 10<br />

2006 019 653, AT 25.04.2006)<br />

Flexibler Träger mit elektrisch leitfähiger<br />

Struktur. Alcan Technology & Management<br />

Ltd., Neuhausen am Rheinfall,<br />

CH. (H01B 7/08, EPA 1 704 572, EP-AT<br />

17.12.2004)<br />

Verfahren zum Verschließen eines Behälters<br />

sowie Schraubverschluss hierfür.<br />

Alcoa Deutschland GmbH Verpackungswerke,<br />

67547 Worms, DE. (B67C 7/00,<br />

OS 199 42 507, AT 07.09.1999)<br />

Halterungselemente für Bauplatten. Corus<br />

Bausysteme GmbH, 56070 Koblenz,<br />

DE. (E04D 3/36, EP 1 147 270, EP-AT<br />

04.01.2000)<br />

Verkleidungsblech. Corus Bausysteme<br />

GmbH, 56070 Koblenz, DE. (E04F 13/12,<br />

GM 200 16 964, AT 27.09.2000)<br />

Bandkanten-Planheitssteuerung. Hydro<br />

<strong>Alu</strong>minium Deutschland GmbH, 53117<br />

Bonn, DE. (B21B 37/32, PS 102 06 758,<br />

AT 19.02.2002)<br />

Gießform zum Gießen von Metallschmelze.<br />

Hydro <strong>Alu</strong>minium <strong>Alu</strong>cast GmbH,<br />

66763 Dillingen, DE. (B22C 1/20, OS 10<br />

2005 023 051, AT 13.05.2005)<br />

Dauergießform und Gießformeinsatz.<br />

Hydro <strong>Alu</strong>minium Mandl&Berger GmbH,<br />

Linz, AT. (B22C 9/06, PS 10 2005 054<br />

616, AT 16.11.2005)<br />

Verfahren und Vorrichtungen zum Fügen<br />

von min<strong>de</strong>stens zwei Bauteilen aus<br />

artverschie<strong>de</strong>nen Werkstoffen. Hydro<br />

<strong>Alu</strong>minium Deutschland GmbH, 51149<br />

Köln, DE. (B23K 20/12, OS 10 2005 019<br />

758, AT 28.04.2005)<br />

Fassa<strong>de</strong> o<strong>de</strong>r Glasdach in Brandschutzausführung<br />

mit einer aus vertikalen<br />

und horizontalen Profilen bestehen<strong>de</strong>n<br />

Tragkonstruktion. Norsk Hydro ASA,<br />

Oslo, NO. (E04B 1/94, EP 1 120 504, EP-<br />

AT 20.01.2001)<br />

Verbin<strong>de</strong>r für Rahmen von Fenstern,<br />

Türen, Fassa<strong>de</strong>n und <strong>de</strong>rgleichen Konstruktionen.<br />

Norsk Hydro ASA, Oslo,<br />

NO. (E04B 2/96, EP 1 249 550, EP-AT<br />

10.04.2002)<br />

Deckleiste für Fenster. Norsk Hydro<br />

ASA, Oslo, NO. (E06B 3/30, EPA 1 712<br />

719, EP-AT 04.04.2006)<br />

Einbausystem für <strong>de</strong>n Einbau eines Paneelran<strong>de</strong>s<br />

in einen Pfosten. Norsk Hydro<br />

ASA, Oslo, NO. (E06B 3/54, EPA 1<br />

710 386, EP-AT 04.04.2006)<br />

Tür, Fenster o<strong>de</strong>r ähnliches mit einer<br />

drehen<strong>de</strong>n Abdichtung zwischen Flügel<br />

und Rahmen. Norsk Hydro ASA, Oslo,<br />

NO. (E06B 7/22, EPA 1 712 723, EP-AT<br />

04.04.2006)<br />

Lagervorrichtung für einen Sandbehälter,<br />

<strong>de</strong>r in einer Formvorrichtung für<br />

verlorenen Guss vibriert wird. Fata <strong>Alu</strong>minium<br />

S.p.A., Rivoli, IT. (B22C 15/10,<br />

EP 1 153 679, EP-AT 09.05.2000)<br />

Metallschmelzentransportbehälter. Nippon<br />

Crucible Co., Ltd., Tokio/Tokyo, JP;<br />

Daiki <strong>Alu</strong>minium Industry Co., Ltd., Yaoshi,<br />

Osaka, JP. (B22D 35/00, EPA 1 702<br />

700, EP-AT 23.07.2004<br />

Gelän<strong>de</strong>anpassbarer Zaun. ALTEC <strong>Alu</strong>minium<br />

Technik Hans-J. Gebauer GmbH,<br />

56727 Mayen, DE. (E04H 17/14, GM 298<br />

10 603, AT 12.06.1998)<br />

Verfahren zur Herstellung eines Fensterbankabschlusses.<br />

RBB <strong>Alu</strong>minium Profiltechnik<br />

AG, 54531 Wallscheid, DE. (E06B<br />

1/70, PS 102 50748, AT 31.10.2002)<br />

Fenster- o<strong>de</strong>r Türpfosten. Reynaers <strong>Alu</strong>minium,<br />

N.V., Duffel, BE. (E06B 3/263,<br />

EPA 1 705 334, EP-AT 13.02.2006)<br />

Zylin<strong>de</strong>rblock für eine Brennkraftma-<br />

schine und Verfahren zur Herstellung<br />

eines Zylin<strong>de</strong>rblocks. KS <strong>Alu</strong>minium-<br />

Technologie AG, 74172 Neckarsulm,<br />

DE. (F02F 1/00, PS 10 2004 005 458, AT<br />

04.02.2004)<br />

Profilanordnung und Einfassprofil für<br />

eine Profilanordnung. MayTec <strong>Alu</strong>minium<br />

Systemtechnik GmbH, 85221 Dachau,<br />

DE. (F16B 5/06, GM 203 21 258, AT<br />

24.04.2003)<br />

Beschichtung für einen Solarabsorber.<br />

ALANOD <strong>Alu</strong>minium-Veredlung<br />

GmbH & Co. KG, 58256 Ennepetal, DE.<br />

(F24J 2/48, PS 10 2004 060 982, AT<br />

17.12.2004)<br />

Zarge für ein Fenster o<strong>de</strong>r eine Tür in<br />

wärmegedämmter Ausführung. Hermann<br />

Gutmann Werke GmbH, 91781<br />

Weißenburg, DE. (E06B 1/32, PS 100 40<br />

497, AT 18.08.2000)<br />

Halteprofil sowie Fenster- o<strong>de</strong>r Türkonstruktion.<br />

Hermann Gutmann Werke<br />

AG, 91781 Weißenburg, DE. (E06B 3/58,<br />

OS 10 2005 023 257, AT 20.05.2005)<br />

Patentblatt Dezember 2006<br />

Verfahren zur Herstellung einer auf<br />

Al-Mg-Si basieren<strong>de</strong>n <strong>Alu</strong>miniumlegierungsplatte<br />

mit hervorragen<strong>de</strong>r Bake-<br />

Har<strong>de</strong>nability. Nippon Light Metal Co.<br />

Ltd., Tokio/Tokyo, JP. (C22C 1/05, EPA<br />

1 715 067, EP-AT 22.12.2004)<br />

Cr-Al-Stahl für Hochtemperaturanwendungen.<br />

Sandvik Intellectual Property<br />

AB, Sandviken, SE. (C22C 38/06, EPA 1<br />

721 023, EP-AT 21.12.2005)<br />

<strong>Alu</strong>minium-Zirkonium-Antiperspirantien<br />

mit verbesserter Wirksamkeit.<br />

Reheis, Inc., Berkeley Heights, N.J., US.<br />

(A61K 8/00, EPA 1 715 831, EP-AT<br />

19.01.2005)<br />

<strong>Alu</strong>minium-Fahrzeugfelge und Verfahren<br />

zum Herstellen einer solchen. bdbreyton-<strong>de</strong>sign<br />

GmbH, 78333 Stockach,<br />

DE. (B22D 17/14, OS 10 2005 026 829,<br />

AT 09.06.2005)<br />

Fortsetzung <strong>de</strong>r Dezember-Auswertung in<br />

<strong>de</strong>r nächsten Ausgabe <strong>de</strong>r ALUMINIUM.<br />

Für<br />

Abonnenten<br />

www.alu-archiv.<strong>de</strong><br />

Wissen auf Abruf<br />

110 ALUMINIUM · 1-2/2007


Lieferverzeichnis<br />

International Journal for Industry, Research and Application<br />

How do your products and services come to appear every month in the<br />

list of supply sources, on the internet – www.<strong>Alu</strong>-<strong>web</strong>.<strong>de</strong> – and in the<br />

annual list of supply sources published by ALUMINIUM ?<br />

� Please mark the main group relevant to you<br />

� Extrusion � Rolling technology<br />

� Foundry � Smelting technology<br />

� Indicate the sub-group and/or key word<br />

(if necessary, ask us for the list of key words)<br />

_______________________ _______________________<br />

_______________________ _______________________<br />

_______________________ _______________________<br />

� Enter your text, not forgetting your on-line address:<br />

Line 1: ............................................................................................................................................<br />

Line 2: ............................................................................................................................................<br />

Line 3: ............................................................................................................................................<br />

Line 4: ............................................................................................................................................<br />

Line 5: ............................................................................................................................................<br />

Line 6: ............................................................................................................................................<br />

(Maximum 35 characters per line, including spaces.<br />

Price per line for each issue EUR 5,00 + VAT – minimum or<strong>de</strong>r 10 issues = 1 year.<br />

Logos are calculated according to the lines they occupy: 1 line = 2 mm).<br />

_______________________________________________________________<br />

Place/Date Company stamp / Signature<br />

� … and send this form to us by fax or post:<br />

Fax number For information Giesel Verlag GmbH, ALUMINIUM<br />

+49-511/7304-157 Tel.: -142 Rehkamp 3, D-30916 Isernhagen<br />

ALUMINIUM · 1-2/2007<br />

We will gladly send you a quotation!<br />

111


Lieferverzeichnis<br />

1<br />

Smelting technology<br />

Hüttentechnik<br />

1.1 Raw materials<br />

1.2 Storage facilities for smelting<br />

1.3 Ano<strong>de</strong> production<br />

1.4 Ano<strong>de</strong> rodding<br />

1.5 Casthouse (foundry)<br />

1.6 Casting machines<br />

1.7 Current supply<br />

1.8 Electrolysis cell (pot)<br />

1.9 Potroom<br />

1.10 Laboratory<br />

1.11 Emptying the catho<strong>de</strong> shell<br />

1.12 Catho<strong>de</strong> repair shop<br />

1.13 Second-hand plant<br />

1.14 <strong>Alu</strong>minium alloys<br />

1.2 Storage facilities<br />

for smelting<br />

Lagermöglichkeiten<br />

in <strong>de</strong>r Hütte<br />

Möller Materials Handling GmbH<br />

Ha<strong>de</strong>rslebener Straße 7<br />

D-25421 Pinneberg<br />

Telefon: 04101 788-0<br />

Telefax: 04101 788-115<br />

E-Mail: info@moeller-mh.com<br />

Internet: www.moeller-mh.com<br />

Kontakt: Herr Dipl.-Ing. Timo Letz<br />

OUTOKUMPU Technology GmbH<br />

Tel.: +49 (0) 2203 / 9921-0<br />

www.outokumputechnology.com<br />

� Conveying systems<br />

bulk materials<br />

För<strong>de</strong>ranlagen für Schüttgüter<br />

(Hüttenaluminiumherstellung)<br />

Möller Materials Handling GmbH<br />

Internet: www.moeller-mh.com<br />

see Storage facilities for smelting 1.2<br />

� Unloading/Loading equipment<br />

Entla<strong>de</strong>-/Bela<strong>de</strong>einrichtungen<br />

Möller Materials Handling GmbH<br />

Internet: www.moeller-mh.com<br />

see Storage facilities for smelting 1.2<br />

1.3 Ano<strong>de</strong> production<br />

Ano<strong>de</strong>nherstellung<br />

OUTOKUMPU Technology GmbH<br />

Tel.: +49 (0) 2203 / 9921-0<br />

www.outokumputechnology.com<br />

1.1 Rohstoffe<br />

1.2 Lagermöglichkeiten in <strong>de</strong>r Hütte<br />

1.3 Ano<strong>de</strong>nherstellung<br />

1.4 Ano<strong>de</strong>nschlägerei<br />

1.5 Gießerei<br />

1.6 Gießmaschinen<br />

1.7 Stromversorgung<br />

1.8 Elektrolyseofen<br />

1.9 Elektrolysehalle<br />

1.10 Labor<br />

1.11 Ofenwannenentleeren<br />

1.12 Katho<strong>de</strong>nreparaturwerkstatt<br />

1.13 Gebrauchtanlagen<br />

1.14 <strong>Alu</strong>miniumlegierungen<br />

� Auto firing systems<br />

Automatische Feuerungssysteme<br />

RIEDHAMMER GmbH<br />

D-90332 Nürnberg<br />

E-Mail: goe<strong>de</strong>.frank@riedhammer.<strong>de</strong><br />

Internet: www.riedhammer.<strong>de</strong><br />

� Exhaust gas treatment<br />

Abgasbehandlung<br />

ALSTOM Norway AS<br />

Tel. +47 22 12 70 00<br />

Internet: www.environment.power.alstom.com<br />

� Hydraulic presses for<br />

prebaked ano<strong>de</strong>s<br />

Hydraulische Pressen zur<br />

Herstellung von Ano<strong>de</strong>n<br />

LAEIS GmbH<br />

Am Scheerleck 7, L-6868 Wecker, Luxembourg<br />

Phone:+352 27612 0<br />

Fax: +352 27612 109<br />

E-Mail: info@laeis-gmbh.com<br />

Internet: www.laeis-gmbh.com<br />

Contact: Dr. Alfred Kaiser<br />

� Open top and closed<br />

type baking furnaces<br />

Offene und geschlossene Ringöfen<br />

RIEDHAMMER GmbH<br />

D-90332 Nürnberg<br />

E-Mail: goe<strong>de</strong>.frank@riedhammer.<strong>de</strong><br />

Internet: www.riedhammer.<strong>de</strong><br />

1.4 Ano<strong>de</strong> rodding<br />

Ano<strong>de</strong>nanschlägerei<br />

OUTOKUMPU Technology GmbH<br />

Tel.: +49 (0) 2203 / 9921-0<br />

www.outokumputechnology.com<br />

� Removal of bath residues from<br />

the surface of spent ano<strong>de</strong>s<br />

Entfernen <strong>de</strong>r Badreste von <strong>de</strong>r Oberfläche<br />

<strong>de</strong>r verbrauchten Ano<strong>de</strong>n<br />

GLAMA Maschinenbau GmbH<br />

Hornstraße 19<br />

D-45964 Gladbeck<br />

Telefon 02043 / 9738-0<br />

Telefax 02043 / 9738-50<br />

� Transport of finished ano<strong>de</strong><br />

elements to the pot room<br />

Transport <strong>de</strong>r fertigen Ano<strong>de</strong>nelemente<br />

in Elektrolysehalle<br />

Vollert GmbH + Co. KG<br />

Anlagenbau<br />

Stadtseestraße 12<br />

D-74189 Weinsberg<br />

Tel. +49 (0) 7134 / 52-228<br />

Fax +49 (0) 7134 / 52-203<br />

E-Mail vertrieb@vollert.<strong>de</strong><br />

Internet www.vollert.<strong>de</strong><br />

Hovestr. 10 . D-48431 Rheine<br />

Telefon + 49 (0) 59 7158-0<br />

Fax + 49 (0) 59 7158-209<br />

E-Mail info@windhoff.<strong>de</strong><br />

Internet www.windhoff.<strong>de</strong><br />

112 ALUMINIUM · 1-2/2007


1.5 Casthouse (foundry)<br />

Gießerei<br />

INOTHERM INDUSTRIEOFEN-<br />

UND WÄRMETECHNIK GMBH<br />

Konstantinstraße 1a<br />

D 41238 Mönchengladbach<br />

Telefon +49 (02166) 987990<br />

Telefax +49 (02166) 987996<br />

E-Mail: info@inotherm-gmbh.<strong>de</strong><br />

Internet: www.inotherm-gmbh.<strong>de</strong><br />

THERMCON OVENS BV<br />

Stopinc AG<br />

Bösch 83 a<br />

CH-6331 Hünenberg<br />

Tel. +41/41-785 75 00<br />

Fax +41/41-785 75 01<br />

E-Mail: interstop@stopinc.ch<br />

Internet: www.stopinc.ch<br />

� Transport of liquid metal<br />

to the casthouse<br />

Transport von Flüssigmetall<br />

in Gießereien<br />

� Dross skimming of<br />

liquid metal<br />

Abkrätzen <strong>de</strong>s Flüssigmetalls<br />

GLAMA Maschinenbau GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

� Melting/holding/casting<br />

furnaces<br />

Schmelz-/Halte- und Giessöfen<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

ALUMINIUM · 1-2/2007<br />

see Extrusion 2<br />

SIGNODE® SYSTEM GMBH<br />

Packaging Equipment<br />

Non-Ferrous Specialist Team DSWE<br />

Magnusstr. 18, 46535 Dinslaken/Germany<br />

Telefon: +49 (0) 2064 / 69-210<br />

Telefax: +49 (0) 2064 / 69-489<br />

E-Mail: g.laks@signo<strong>de</strong>-europe.com<br />

Internet: www.signo<strong>de</strong>.com<br />

Contact: Mr. Gerard Laks<br />

GLAMA Maschinenbau GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

MARX GmbH & Co. KG<br />

www.marx-gmbh.<strong>de</strong><br />

see Melt operations 4.13<br />

Vollert GmbH + Co. KG<br />

Anlagenbau<br />

see Transport of finished ano<strong>de</strong> elements<br />

to the pot room 1.4<br />

Windhoff Bahn- und<br />

Anlagentechnik GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

� Measurement & Testing<br />

Temperaturmessung<br />

Gießereiprodukte – Foundry Products<br />

Balthasar Floriszstraat 34-36/oh<br />

NL-1071 VD AMSTERDAM<br />

Tel.: +31 20 693-5209, Fax -5762<br />

Internet: www.srsamsterdam.com<br />

� Metal treatment in the<br />

holding furnace<br />

Metallbehandlung in Halteöfen<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

� Transfer to the<br />

casting furnace<br />

Überführung in Gießofen<br />

GLAMA Maschinenbau GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

Drache Umwelttechnik<br />

GmbH<br />

Werner-v.-Siemens-Straße 9/24-26<br />

D 65582 Diez/Lahn<br />

Telefon 06432/607-0<br />

Telefax 06432/607-52<br />

Internet: www.drache-gmbh.<strong>de</strong><br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

Vollert GmbH + Co. KG<br />

Anlagenbau<br />

see Transport of finished ano<strong>de</strong> elements<br />

to the pot room 1.4<br />

Windhoff Bahn- und<br />

Anlagentechnik GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

� Treatment of casthouse<br />

off gases<br />

Behandlung <strong>de</strong>r Gießereiabgase<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

� Degassing, filtration and<br />

grain refinement<br />

Entgasung, Filtern, Kornfeinung<br />

Drache Umwelttechnik<br />

GmbH<br />

Werner-v.-Siemens-Straße 9/24-26<br />

D 65582 Diez/Lahn<br />

Telefon 06432/607-0<br />

Telefax 06432/607-52<br />

Internet: www.drache-gmbh.<strong>de</strong><br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

Lieferverzeichnis<br />

� Bone ash<br />

Knochenasche<br />

IMPERIAL-OEL-IMPORT<br />

Bergstraße 11, D 20095 Hamburg<br />

Tel. 040/338533-0, Fax: 040/338533-85<br />

E-Mail: info@imperial-oel-import.<strong>de</strong><br />

� Furnace charging with<br />

molten metal<br />

Ofenbeschickung mit Flüssigmetall<br />

GLAMA Maschinenbau GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

1.6 Casting machines<br />

Gießmaschinen<br />

THERMCON OVENS BV<br />

see Extrusion 2<br />

� Pig casting machines<br />

(sow casters)<br />

Masselgießmaschine (Sowcaster)<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

HERTWICH ENGINEERING GmbH<br />

Maschinen und Industrieanlagen<br />

Weinbergerstraße 6, A-5280 Braunau am Inn<br />

Phone +437722/806-0<br />

Fax +437722/806-122<br />

E-Mail: info@hertwich.com<br />

Internet: www.hertwich.com<br />

see Equipment and accessories 2.11<br />

� Rolling and extrusion ingot<br />

and T-bars<br />

Formatgießerei (Walzbarren o<strong>de</strong>r<br />

Pressbolzen o<strong>de</strong>r T-Barren)<br />

Cast-Tec GmbH & Co. KG<br />

Fertigungstechnik & Service<br />

D-44536 Lünen, Brunnenstraße 138<br />

Telefon: 02306/20310-0<br />

Telefax: 02306/20310-11<br />

E-Mail: Info@cast-tec.<strong>de</strong><br />

Internet: www.cast-tec.<strong>de</strong><br />

113


Lieferverzeichnis<br />

HERTWICH ENGINEERING GmbH<br />

Maschinen und Industrieanlagen<br />

Weinbergerstraße 6, A-5280 Braunau am Inn<br />

Phone +437722/806-0<br />

Fax +437722/806-122<br />

E-Mail: info@hertwich.com<br />

Internet: www.hertwich.com<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

� Vertical semi-continuous<br />

DC casting<br />

Vertikales Stranggießen<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

see Equipment and accessories 2.11<br />

� Horizontal continuous casting<br />

Horizontales Stranggießen<br />

HERTWICH ENGINEERING GmbH<br />

Maschinen und Industrieanlagen<br />

Weinbergerstraße 6, A-5280 Braunau am Inn<br />

Phone +437722/806-0<br />

Fax +437722/806-122<br />

E-Mail: info@hertwich.com<br />

Internet: www.hertwich.com<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

� Scales<br />

Waagen<br />

HERTWICH ENGINEERING GmbH<br />

Maschinen und Industrieanlagen<br />

Weinbergerstraße 6, A-5280 Braunau am Inn<br />

Phone +437722/806-0<br />

Fax +437722/806-122<br />

E-Mail: info@hertwich.com<br />

Internet: www.hertwich.com<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

� Sawing<br />

Sägen<br />

HERTWICH ENGINEERING GmbH<br />

Maschinen und Industrieanlagen<br />

Weinbergerstraße 6, A-5280 Braunau am Inn<br />

Phone +437722/806-0<br />

Fax +437722/806-122<br />

E-Mail: info@hertwich.com<br />

Internet: www.hertwich.com<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

� Heat treatment of extrusion<br />

ingot (homogenisation)<br />

Formatebehandlung<br />

(homogenisieren)<br />

HERTWICH ENGINEERING GmbH<br />

Maschinen und Industrieanlagen<br />

Weinbergerstraße 6, A-5280 Braunau am Inn<br />

Phone +437722/806-0<br />

Fax +437722/806-122<br />

E-Mail: info@hertwich.com<br />

Internet: www.hertwich.com<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

� Casthouse machines<br />

Gießereimaschinen<br />

Cast-Tec GmbH & Co. KG<br />

Fertigungstechnik & Service<br />

see Casting machines 1.6<br />

1.7 Current supply<br />

Stromversorgung<br />

� Busbars<br />

Stromschienen<br />

Cast-Tec GmbH & Co. KG<br />

Fertigungstechnik & Service<br />

see Casting machines 1.6<br />

1.8 Electrolysis cell<br />

(pot)<br />

Elektrolyseofen<br />

� Insulating bricks<br />

Isoliersteine<br />

Promat GmbH – Techn. Wärmedämmung<br />

Scheifenkamp 16, D-40878 Ratingen<br />

Tel. +49 (0) 2102 / 493-0, Fax -493 115<br />

verkauf3@promat.<strong>de</strong>, www.promat.<strong>de</strong><br />

� Pot feeding systems<br />

Beschickungseinrichtungen<br />

für Elektrolysezellen<br />

Möller Materials Handling GmbH<br />

Internet: www.moeller-mh.com<br />

see Storage facilities for smelting 1.2<br />

� Slurries and parting agents<br />

Schlichten und Trennmittel<br />

ESK Ceramics GmbH & Co. KG<br />

Max-Schaidhauf-Straße 25<br />

87437 Kempten, Germany<br />

Tel.: +49 831 5618-0, Fax: -345<br />

Internet: www.esk.com<br />

1.9 Potroom<br />

Elektrolysehalle<br />

T.T. Tomorrow Technology S.p.A.<br />

Via <strong>de</strong>ll’Artigianato 18<br />

Due Carrare, Padova 35020, Italy<br />

Telefon +39 049 912 8800<br />

Telefax +39 049 912 8888<br />

E-Mail: gmagarotto@tomorrowtechnology.it<br />

Contact: Giovanni Magarotto<br />

� Ano<strong>de</strong> changing machine<br />

Ano<strong>de</strong>nwechselmaschine<br />

GLAMA Maschinenbau GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

� Tapping vehicles<br />

Schöpffahrzeuge<br />

GLAMA Maschinenbau GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

� Crustbreakers<br />

Krustenbrecher<br />

GLAMA Maschinenbau GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

� Dry absorption units for<br />

electrolysis exhaust gases<br />

Trockenabsorptionsanlage für<br />

Elektrolyseofenabgase<br />

ALSTOM Norway AS<br />

Tel. +47 22 12 70 00<br />

Internet: www.environment.power.alstom.com<br />

� Ano<strong>de</strong> transport equipment<br />

Ano<strong>de</strong>n Transporteinrichtungen<br />

GLAMA Maschinenbau GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

� HF Measurementtechnology<br />

HF Messtechnik<br />

OPSIS AB<br />

Box 244, S-24402 Furulund, Schwe<strong>de</strong>n<br />

Tel. +46 (0) 46-72 25 00, Fax -72 25 01<br />

E-Mail: info@opsis.se<br />

Internet: www.opsis.se<br />

114 ALUMINIUM · 1-2/2007


2 Extrusion<br />

Strangpressen<br />

2.1 Extrusion billet preparation<br />

2.2 Extrusion equipment<br />

2.3 Section handling<br />

2.4 Heat treatment<br />

2.5 Measurement and control equipment<br />

2.6 Die preparation and care<br />

2.7 Second-hand extrusion plant<br />

2.8 Consultancy, expert opinion<br />

2.9 Surface finishing of sections<br />

2.10 Machining of sections<br />

2.11 Equipment and accessories<br />

2.12 Services<br />

www.otto-junker-group.com<br />

Jägerhausstr. 22<br />

D – 52152 Simmerath<br />

Telefon: +49 2473 601 0<br />

Telefax: +49 2473 601 600<br />

E-Mail: info@otto-junker.<strong>de</strong><br />

Kontakt: Herr Teichert<br />

Rudolf-Diesel-Str. 1-3<br />

D – 78239 Rielasingen-Worblingen<br />

Telefon +49 7731 5998-0<br />

Telefax +49 7731 5998-90<br />

E-Mail info@elhaus.<strong>de</strong><br />

Kontakt: Herr Dr. Menzler<br />

De Chamotte 4<br />

NL – 4191 GT GELDERMALSEN<br />

Telefon: +31 345 574141<br />

Telefax: +31 345 576322<br />

E-Mail: info@thermcon.com<br />

Kontakt: Herr Schmidt<br />

Kingsbury Road<br />

Curdworth<br />

UK - SUTTON COLDFIELD B76 9EE<br />

Telefon: +44 1675 470551<br />

Telefax: +44 1675 470645<br />

E-Mail: info@otto-junker.co.uk<br />

Kontakt: Mr. Beard<br />

ALUMINIUM · 1-2/2007<br />

2.1 Pressbolzenbereitstellung<br />

2.2 Strangpresseinrichtungen<br />

2.3 Profilhandling<br />

2.4 Wärmebehandlung<br />

2.5 Mess- und Regeleinrichtungen<br />

2.6 Werkzeugbereitstellung und -pflege<br />

2.7 Gebrauchte Strangpressanlagen<br />

2.8 Beratung, Gutachten<br />

2.9 Oberflächenveredlung von Profilen<br />

2.10 Profilbearbeitung<br />

2.11 Ausrüstungen und Hilfsmittel<br />

2.12 Dienstleistungen<br />

2.1 Extrusion billet<br />

preparation<br />

Pressbolzenbereitstellung<br />

SIGNODE® SYSTEM GMBH<br />

Packaging Equipment<br />

Non-Ferrous Specialist Team DSWE<br />

Magnusstr. 18, 46535 Dinslaken/Germany<br />

Telefon: +49 (0) 2064 / 69-210<br />

Telefax: +49 (0) 2064 / 69-489<br />

E-Mail: g.laks@signo<strong>de</strong>-europe.com<br />

Internet: www.signo<strong>de</strong>.com<br />

Contact: Mr. Gerard Laks<br />

� Billet heating furnaces<br />

Öfen zur Bolzenerwärmung<br />

Am großen Teich 16+27<br />

D-58640 Iserlohn<br />

Tel. +49 (0) 2371 / 4346-0<br />

Fax +49 (0) 2371 / 4346-43<br />

E-Mail: verkauf@ias-gmbh.<strong>de</strong><br />

Internet: www.ias-gmbh.<strong>de</strong><br />

MARX GmbH & Co. KG<br />

www.marx-gmbh.<strong>de</strong><br />

see Melt operations 4.13<br />

Sistem Teknik Ltd. Sti.<br />

DES San. Sit. 102 SOK No: 6/8<br />

Y.Dudullu, TR-34775 Istanbul/Turkey<br />

Tel.: +90 216 420 86 24<br />

Fax: +90 216 420 23 22<br />

Lieferverzeichnis<br />

� Billet heating units<br />

Anlagen zur Bolzenerwärmung<br />

OTTO JUNKER GmbH<br />

ELHAUS INDUSTRIEANLAGEN GmbH<br />

OTTO JUNKER (UK) LTD.<br />

see Extrusion 2<br />

� Billet transport and<br />

storage equipment<br />

Bolzen-Transport- und<br />

Lagereinrichtungen<br />

OTTO JUNKER GmbH<br />

ELHAUS INDUSTRIEANLAGEN GmbH<br />

see Extrusion 2<br />

� Hot shears<br />

Warmscheren<br />

OTTO JUNKER GmbH<br />

ELHAUS INDUSTRIEANLAGEN GmbH<br />

THERMCON OVENS BV<br />

see Extrusion 2<br />

2.2 Extrusion equipment<br />

Strangpresseinrichtungen<br />

Oilgear Towler GmbH<br />

Im Gotthelf 8<br />

D 65795 Hattersheim<br />

Tel. +49 (0) 6145 3770<br />

Fax +49 (0) 6145 30770<br />

E-Mail: info@oilgear.<strong>de</strong><br />

Internet: www.oilgear.<strong>de</strong><br />

115


Lieferverzeichnis<br />

SMS Eumuco GmbH<br />

Josefstraße 10<br />

D-51377 Leverkusen<br />

Tel. 0214 / 734-01<br />

Fax 0214 / 734-1000<br />

E-Mail: info@sms-eumuco.<strong>de</strong><br />

Internet: www.sms-eumuco.com<br />

� Containers<br />

Rezipienten<br />

KIND & CO., EDELSTAHLWERK, KG<br />

Bielsteiner Straße 128-130<br />

D-51674 Wiehl<br />

Telefon: +49 (0) 2262 / 84 0<br />

Telefax: +49 (0) 2262 / 84 175<br />

E-Mail: info@kind-co.<strong>de</strong><br />

Internet: www.kind-co.<strong>de</strong><br />

S+C MÄRKER GmbH<br />

Steel Technologies<br />

D-51779 Lindlar-Kaiserau<br />

Postfach 11 40<br />

Tel.: +49 (0) 2266 / 92 211<br />

Fax: +49 (0) 2266 / 92 509<br />

E-Mail: extrusion@schmidt-clemens.<strong>de</strong><br />

Internet: www.sc-maerker.<strong>de</strong><br />

SMS Eumuco GmbH<br />

see Extrusion equipment 2.2<br />

� Extrusion<br />

Strangpressen<br />

OTTO JUNKER GmbH<br />

ELHAUS INDUSTRIEANLAGEN GmbH<br />

OTTO JUNKER (UK) LTD.<br />

see Extrusion 2<br />

� Press control systems<br />

Pressensteuersysteme<br />

Oilgear Towler GmbH<br />

see Extrusion Equipment 2.2<br />

SMS Eumuco GmbH<br />

see Extrusion equipment 2.2<br />

� Temperature measurement<br />

Temperaturmessung<br />

SMS Eumuco GmbH<br />

see Extrusion equipment 2.2<br />

� Heating and control<br />

equipment for intelligent<br />

billet containers<br />

Heizungs- und Kontrollausrüstung<br />

für intelligente Blockaufnehmer<br />

MARX GmbH & Co. KG<br />

www.marx-gmbh.<strong>de</strong><br />

see Melt operations 4.13<br />

2.3 Section handling<br />

Profilhandling<br />

SIGNODE® SYSTEM GMBH<br />

Packaging Equipment<br />

Non-Ferrous Specialist Team DSWE<br />

Magnusstr. 18, 46535 Dinslaken/Germany<br />

Telefon: +49 (0) 2064 / 69-210<br />

Telefax: +49 (0) 2064 / 69-489<br />

E-Mail: g.laks@signo<strong>de</strong>-europe.com<br />

Internet: www.signo<strong>de</strong>.com<br />

Contact: Mr. Gerard Laks<br />

� Homogenising furnaces<br />

Homogenisieröfen<br />

OTTO JUNKER GmbH<br />

see Extrusion 2<br />

� Packaging equipment<br />

Verpackungseinrichtungen<br />

H+H HERRMANN + HIEBER GMBH<br />

För<strong>de</strong>rsysteme für Paletten<br />

und schwere Lasten<br />

Rechbergstraße 46<br />

D-73770 Denkendorf/Stuttgart<br />

Tel. +49 (0) 711 /93467-0<br />

Fax +49 (0) 711 /3460911<br />

E-Mail: info@herrmannhieber.<strong>de</strong><br />

Internet: www.herrmannhieber.<strong>de</strong><br />

Vollert GmbH + Co. KG<br />

Anlagenbau<br />

see Transport of finished ano<strong>de</strong> elements<br />

to the pot room 1.4<br />

Hinterbergstrasse 26<br />

CH-6330 Cham, Switzerland<br />

Tel.: +41 41 741 5741<br />

Fax: +41 41 741 5760<br />

E-mail: bold.ch@fromm-pack.com<br />

Internet: www.fromm-pack.com<br />

Sales Contact: Benno Arnet<br />

� Puller equipment<br />

Ausziehvorrichtungen/Puller<br />

OTTO JUNKER GmbH<br />

ELHAUS INDUSTRIEANLAGEN GmbH<br />

THERMCON OVENS BV<br />

see Extrusion 2<br />

SMS Eumuco GmbH<br />

see Extrusion equipment 2.2<br />

� Section cooling<br />

Profilkühlung<br />

OTTO JUNKER GmbH<br />

ELHAUS INDUSTRIEANLAGEN GmbH<br />

see Extrusion 2<br />

SMS Eumuco GmbH<br />

see Extrusion equipment 2.2<br />

116 ALUMINIUM · 1-2/2007


� Section saws<br />

Profilsägen<br />

OTTO JUNKER GmbH<br />

ELHAUS INDUSTRIEANLAGEN GmbH<br />

see Extrusion 2<br />

SMS Eumuco GmbH<br />

see Extrusion equipment 2.2<br />

� Section store equipment<br />

Profil-Lagereinrichtungen<br />

H+H HERRMANN + HIEBER GMBH<br />

För<strong>de</strong>rsysteme für Paletten<br />

und schwere Lasten<br />

Rechbergstraße 46<br />

D-73770 Denkendorf/Stuttgart<br />

Tel. +49 (0) 711 /93467-0<br />

Fax +49 (0) 711 /3460911<br />

E-Mail: info@herrmannhieber.<strong>de</strong><br />

Internet: www.herrmannhieber.<strong>de</strong><br />

KASTO Maschinenbau GmbH & Co. KG<br />

Industriestr. 14, D-77855 Achern<br />

Tel.: +49 (0) 7841 61-0 / Fax: +49 (0) 7841 61 300<br />

kasto@kasto.<strong>de</strong> / www.kasto.<strong>de</strong><br />

Hersteller von Band- und Kreissägemaschinen<br />

sowie Langgut- und Blechlagersystemen<br />

Vollert GmbH + Co. KG<br />

Anlagenbau<br />

see Transport of finished ano<strong>de</strong> elements<br />

to the pot room 1.4<br />

� Section transport equipment<br />

Profiltransporteinrichtungen<br />

OTTO JUNKER GmbH<br />

ELHAUS INDUSTRIEANLAGEN GmbH<br />

see Extrusion 2<br />

SMS Eumuco GmbH<br />

see Extrusion equipment 2.2<br />

ALUMINIUM · 1-2/2007<br />

� Stackers / Destackers<br />

Stapler / Entstapler<br />

OTTO JUNKER GmbH<br />

ELHAUS INDUSTRIEANLAGEN GmbH<br />

see Extrusion 2<br />

SMS Eumuco GmbH<br />

see Extrusion equipment 2.2<br />

� Stretching equipment<br />

Reckeinrichtungen<br />

OTTO JUNKER GmbH<br />

ELHAUS INDUSTRIEANLAGEN GmbH<br />

see Extrusion 2<br />

SMS Eumuco GmbH<br />

see Extrusion equipment 2.2<br />

� Transport equipment for<br />

extru<strong>de</strong>d sections<br />

Transporteinrichtungen<br />

für Profilabschnitte<br />

H+H HERRMANN + HIEBER GMBH<br />

För<strong>de</strong>rsysteme für Paletten<br />

und schwere Lasten<br />

Rechbergstraße 46<br />

D-73770 Denkendorf/Stuttgart<br />

Tel. +49 (0) 711 /93467-0<br />

Fax +49 (0) 711 /3460911<br />

E-Mail: info@herrmannhieber.<strong>de</strong><br />

Internet: www.herrmannhieber.<strong>de</strong><br />

ELHAUS INDUSTRIEANLAGEN GmbH<br />

see Extrusion 2<br />

SMS Eumuco GmbH<br />

see Extrusion equipment 2.2<br />

Lieferverzeichnis<br />

Vollert GmbH + Co. KG<br />

Anlagenbau<br />

see Transport of finished ano<strong>de</strong> elements<br />

to the pot room 1.4<br />

2.4 Heat treatment<br />

Wärmebehandlung<br />

� Extrusion<br />

Strangpressen<br />

OTTO JUNKER GmbH<br />

ELHAUS INDUSTRIEANLAGEN GmbH<br />

OTTO JUNKER (UK) LTD.<br />

see Extrusion 2<br />

� Heat treatment furnaces<br />

Wärmebehandlungsöfen<br />

INOTHERM INDUSTRIEOFEN-<br />

UND WÄRMETECHNIK GMBH<br />

see Casthouse (foundry) 1.5<br />

Sistem Teknik Ltd. Sti.<br />

see Billet Heating Furnaces 2.1<br />

IUT Industriell Ugnsteknik AB<br />

Industrivägen 2, 43892 Härryda, Swe<strong>de</strong>n<br />

Tel. +46 (0) 301 31510<br />

Fax +46 (0) 301 30479<br />

E-Mail: office@iut.se<br />

Internet: www.iut.se<br />

� Custom <strong>de</strong>signed heat<br />

processing equipment<br />

Kun<strong>de</strong>nspezifische<br />

Wärmebehandlungsanlagen<br />

Sistem Teknik Ltd. Sti.<br />

see Billet Heating Furnaces 2.1<br />

Do you need<br />

more<br />

information?<br />

E-Mail:<br />

Schwichtenberg@giesel.<strong>de</strong><br />

117


Lieferverzeichnis<br />

� Homogenising furnaces<br />

Homogenisieröfen<br />

HERTWICH ENGINEERING GmbH<br />

Maschinen und Industrieanlagen<br />

Weinbergerstraße 6, A-5280 Braunau am Inn<br />

Phone +437722/806-0<br />

Fax +437722/806-122<br />

E-Mail: info@hertwich.com<br />

Internet: www.hertwich.com<br />

IUT Industriell Ugnsteknik AB<br />

see Heat treatment 2.4<br />

Sistem Teknik Ltd. Sti.<br />

see Billet Heating Furnaces 2.1<br />

2.5 Measurement and<br />

control equipment<br />

Mess- und Regeleinrichtungen<br />

� Extrusion plant control systems<br />

Presswerkssteuerungen<br />

SMS Eumuco GmbH<br />

see Extrusion equipment 2.2<br />

� Hardness measuring<br />

instuments, portable<br />

Härtemessgerät, tragbar<br />

Form+Test Seidner & Co. GmbH<br />

D-88491 Riedlingen<br />

Telefax 07371/9302-98<br />

E-Mail: linke@formtest.<strong>de</strong><br />

� Temperatur measurement<br />

Temperaturmessung<br />

ELHAUS INDUSTRIEANLAGEN GmbH<br />

THERMCON OVENS BV<br />

see Extrusion 2<br />

2.6 Die preparation and care<br />

Werkzeugbereitstellung<br />

und -pflege<br />

Castool Tooling Solutions<br />

(North America)<br />

21 State Crown Bvld<br />

Scarborough Ontario Canada MIV 4B1<br />

Tel.: +1 416 297 1521<br />

Fax: +1 416 297 1915<br />

E-Mail: sales@castool.com<br />

Internet: www.castool.com<br />

Sales Contact: Danny Dann<br />

SMS Eumuco GmbH<br />

see Extrusion equipment 2.2<br />

� Die heating furnaces<br />

Werkzeuganwärmöfen<br />

IUT Industriell Ugnsteknik AB<br />

see Heat treatment 2.4<br />

MARX GmbH & Co. KG<br />

www.marx-gmbh.<strong>de</strong><br />

see Melt operations 4.13<br />

Sistem Teknik Ltd. Sti.<br />

see Billet Heating Furnaces 2.1<br />

� Extrusion dies<br />

Strangpresswerkzeuge<br />

Haarmann Holding GmbH<br />

Ludwigsallee 57<br />

D-52052 Aachen<br />

Telefon: 02 41 /918-500<br />

Telefax: 02 41 /918-5010<br />

E-Mail: info.holding@haarmann-gruppe.<strong>de</strong><br />

Internet: www.haarmann-gruppe.<strong>de</strong><br />

� Har<strong>de</strong>ning technology<br />

Härtetechnik<br />

Haarmann Holding GmbH<br />

see Die preparation and care 2.6<br />

2.7 Second-hand<br />

extrusion plant<br />

Gebr. Strangpressanlagen<br />

Qualiteam International/ExtruPreX<br />

Champs Elyséesweg 17, NL-6213 AA Maastricht<br />

Tel. +31-43-3 25 67 77<br />

Internet: www.extruprex.com<br />

2.10 Machining of sections<br />

Profilbearbeitung<br />

� Processing of Profiles<br />

Profilbearbeitung<br />

Tensai (International) AG<br />

Extal Division<br />

Steinengraben 40<br />

CH-4051 Basel<br />

Telefon +41 (0) 61 284 98 10<br />

Telefax +41 (0) 61 284 98 20<br />

E-Mail: tensai@tensai.com<br />

2.11 Equipment and<br />

accessories<br />

Ausrüstungen und<br />

Hilfsmittel<br />

� Inductiv heating equipment<br />

Induktiv beheizte<br />

Erwärmungseinrichtungen<br />

Am großen Teich 16+27<br />

D-58640 Iserlohn<br />

Tel. +49 (0) 2371 / 4346-0<br />

Fax +49 (0) 2371 / 4346-43<br />

E-Mail: verkauf@ias-gmbh.<strong>de</strong><br />

Internet: www.ias-gmbh.<strong>de</strong><br />

� Ageing furnace for extrusions<br />

Auslagerungsöfen für<br />

Strangpressprofile<br />

LOI Thermprocess GmbH<br />

Am Lichtbogen 29<br />

D-45141 Essen<br />

Germany<br />

Telefon +49 (0) 201 / 18 91-3 10<br />

Telefax +49 (0) 201 / 18 91-53 10<br />

E-Mail: info@loi.<strong>de</strong><br />

Internet: www.loi.<strong>de</strong><br />

Sistem Teknik Ltd. Sti.<br />

see Billet Heating Furnaces 2.1<br />

2.12 Services<br />

Dienstleistungen<br />

Haarmann Holding GmbH<br />

see Die preparation and care 2.6<br />

118 ALUMINIUM · 1-2/2007


3<br />

Rolling mill technology<br />

Walzwerktechnik<br />

3.1 Casting equipment<br />

3.2 Rolling bar machining<br />

3.3 Rolling bar furnaces<br />

3.4 Hot rolling equipment<br />

3.5 Strip casting units and accessories<br />

3.6 Cold rolling equipment<br />

3.7 Thin strip / foil rolling plant<br />

3.8 Auxiliary equipment<br />

3.9 Adjustment <strong>de</strong>vices<br />

3.10 Process technology / Automation technology<br />

3.11 Coolant / lubricant preparation<br />

3.12 Air extraction systems<br />

3.13 Fire extinguishing units<br />

3.14 Storage and dispatch<br />

3.15 Second-hand rolling equipment<br />

3.16 Coil storage systems<br />

3.17 Strip Processing Lines<br />

3.1 Casting equipment<br />

Gießanlagen<br />

OTTO JUNKER GmbH<br />

THERMCON OVENS BV<br />

� Melting and holding furnaces<br />

Schmelz- und Warmhalteöfen<br />

HERTWICH ENGINEERING GmbH<br />

Maschinen und Industrieanlagen<br />

Weinbergerstraße 6, A-5280 Braunau am Inn<br />

Phone +437722/806-0<br />

Fax +437722/806-122<br />

E-Mail: info@hertwich.com<br />

Internet: www.hertwich.com<br />

see Equipment and accessories 2.11<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

Geschäftsbereich <strong>Alu</strong>minium<br />

Konstanzer Straße 37<br />

Postfach 170<br />

CH 8274 Tägerwilen<br />

Telefon +41/71/6666666<br />

Telefax +41/71/6666688<br />

E-Mail: aluminium@maerz-gautschi.ch<br />

Kontakt: Stefan Blum, Tel. +41/71/6666621<br />

� Metal filters<br />

Metallfilter<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

ALUMINIUM · 1-2/2007<br />

see Extrusion 2<br />

� Filling level indicators<br />

and controls<br />

Füllstandsanzeiger und -regler<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

� Melt purification units<br />

Schmelzereinigungsanlagen<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

HERTWICH ENGINEERING GmbH<br />

Maschinen und Industrieanlagen<br />

Weinbergerstraße 6, A-5280 Braunau am Inn<br />

Phone +437722/806-0<br />

Fax +437722/806-122<br />

E-Mail: info@hertwich.com<br />

Internet: www.hertwich.com<br />

3.2 Rolling bar machining<br />

Walzbarrenbearbeitung<br />

� Band saws / Bandsägen<br />

SMS Meer GmbH<br />

Ohlerkirchweg 66<br />

D-41069 Mönchengladbach<br />

Tel. +49 (0) 2161 / 35 00<br />

Fax +49 (0) 2161 / 35 06 67<br />

E-Mail: info@sms-meer.com<br />

Internet: www.sms-meer.com<br />

Lieferverzeichnis<br />

3.1 Gießanlagen<br />

3.2 Walzbarrenbearbeitung<br />

3.3 Walzbarrenvorbereitung<br />

3.4 Warmwalzanlagen<br />

3.5 Bandgießanlagen und Zubehör<br />

3.6 Kaltwalzanlagen<br />

3.7 Feinband-/Folienwalzwerke<br />

3.8 Nebeneinrichtungen<br />

3.9 Adjustageeinrichtungen<br />

3.10 Prozesstechnik / Automatisierungstechnik<br />

3.11 Kühl-/Schmiermittel-Aufbereitung<br />

3.12 Abluftsysteme<br />

3.13 Feuerlöschanlagen<br />

3.14 Lagerung und Versand<br />

3.15 Gebrauchtanlagen<br />

3.16 Coil storage systems<br />

3.17 Bandprozesslinien<br />

SMS Demag Aktiengesellschaft<br />

Eduard-Schloemann-Straße 4<br />

D-40237 Düsseldorf<br />

Telefon: (0211) 8 81-0<br />

Telefax: (0211) 8 81-49 02<br />

Internet: www.sms-<strong>de</strong>mag.com<br />

E-Mail: communications@sms-<strong>de</strong>mag.com<br />

Geschäftsbereiche:<br />

Warmflach- und Kaltwalzwerke<br />

Wiesenstraße 30<br />

D-57271 Hilchenbach-Dahlbruch<br />

Telefon: (02733) 29-0<br />

Telefax: (02733) 29-28 52<br />

Bandanlagen<br />

Wal<strong>de</strong>rstraße 51/53<br />

D-40724 Hil<strong>de</strong>n<br />

Telefon: (0211) 8 81-5100<br />

Telefax: (0211) 8 81-5200<br />

� Bar scalping<br />

Barrenfräsen<br />

SMS Demag Aktiengesellschaft<br />

see Rolling bar machining 3.2<br />

� Slab milling machines<br />

Barrenfräsmaschinen<br />

SMS Meer GmbH<br />

see Rolling bar machining 3.2<br />

119


Lieferverzeichnis<br />

3.3 Rolling bar furnaces<br />

Walzbarrenvorbereitung<br />

� Homogenising furnaces<br />

Homogenisieröfen<br />

IUT Industriell Ugnsteknik AB<br />

see Heat treatment 2.4<br />

HERTWICH ENGINEERING GmbH<br />

Maschinen und Industrieanlagen<br />

Weinbergerstraße 6, A-5280 Braunau am Inn<br />

Phone +437722/806-0<br />

Fax +437722/806-122<br />

E-Mail: info@hertwich.com<br />

Internet: www.hertwich.com<br />

OTTO JUNKER GmbH<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

� Annealing furnaces<br />

Glühöfen<br />

EBNER Industrieofenbau Ges.m.b.H.<br />

Ruflinger Str. 111, A-4060 Leonding<br />

Tel. +43 / 732 / 68 68<br />

Fax +43 / 732 / 68 68-1000<br />

Internet: www.ebner.cc<br />

E-Mail: sales@ebner.cc<br />

IUT Industriell Ugnsteknik AB<br />

see Heat treatment 2.4<br />

OTTO JUNKER GmbH<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

schwartz GmbH<br />

see Extrusion 2<br />

see Extrusion 2<br />

see Heat treatment 2.4<br />

� Bar heating furnaces<br />

Barrenanwärmanlagen<br />

EBNER Industrieofenbau Ges.m.b.H.<br />

see Annealing furnaces 3.3<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

OTTO JUNKER GmbH<br />

THERMCON OVENS BV<br />

� Roller tracks<br />

Rollengänge<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

3.4 Hot rolling equipment<br />

Warmwalzanlagen<br />

Achenbach Buschhütten GmbH<br />

Siegener Str. 152, D-57223 Kreuztal<br />

Tel. +49 (0) 2732/7990, info@achenbach.<strong>de</strong><br />

Internet: www.achenbach.<strong>de</strong><br />

SIEMAG GmbH<br />

Obere Industriestraße 8<br />

D-57250 Netphen<br />

Tel.: +49 (0) 2738 / 21-0<br />

Fax: +49 (0) 2738 / 21-503<br />

E-Mail: metals@siemag.com<br />

Internet: www.siemag.com<br />

� Coil transport systems<br />

Bundtransportsysteme<br />

Vollert GmbH + Co. KG<br />

Anlagenbau<br />

see Transport of finished ano<strong>de</strong> elements<br />

to the pot room 1.4<br />

Windhoff Bahn- und<br />

Anlagentechnik GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

� Drive systems / Antriebe<br />

see Extrusion 2<br />

SMS Demag Aktiengesellschaft<br />

see Hot rolling equipment 3.4<br />

� Hot rolling units /<br />

complete plants<br />

Warmwalzanlagen/Komplettanlagen<br />

SMS Demag Aktiengesellschaft<br />

Eduard-Schloemann-Straße 4<br />

D-40237 Düsseldorf<br />

Telefon: (0211) 8 81-0<br />

Telefax: (0211) 8 81-49 02<br />

Internet: http://www.sms-<strong>de</strong>mag.com<br />

E-Mail: communications@sms-<strong>de</strong>mag.com<br />

Geschäftsbereiche:<br />

Warmflach- und Kaltwalzwerke<br />

Wiesenstraße 30<br />

D-57271 Hilchenbach-Dahlbruch<br />

Telefon: (02733) 29-0<br />

Telefax: (02733) 29-28 52<br />

Bandanlagen<br />

Wal<strong>de</strong>rstraße 51/53<br />

D-40724 Hil<strong>de</strong>n<br />

Telefon: (0211) 8 81-5100<br />

Telefax: (0211) 8 81-5200<br />

� Rolling mill mo<strong>de</strong>rnisation<br />

Walzwerksmo<strong>de</strong>rnisierung<br />

SMS Demag Aktiengesellschaft<br />

see Hot rolling equipment 3.4<br />

� Spools / Haspel<br />

SMS Demag Aktiengesellschaft<br />

see Hot rolling equipment 3.4<br />

� Toolings / Werkzeuge<br />

see Extrusion equipment 2.2<br />

Do you need<br />

more<br />

information?<br />

E-Mail:<br />

Schwichtenberg@giesel.<strong>de</strong><br />

120 ALUMINIUM · 1-2/2007


3.5 Strip casting units<br />

and accessories<br />

Bandgießanlagen und<br />

Zubehör<br />

� Cores & shells for continuous<br />

casting lines<br />

Cores & shells for continuous<br />

casting lines<br />

Bruno Presezzi, Officine Meccaniche<br />

Via per Ornago 8<br />

I-20040 Burago Molgora (Mi) – Italy<br />

Tel. +39 039 63502 229<br />

Fax +39 039 6081373<br />

E-Mail: aluminium.<strong>de</strong>pt@brunopresezzi.com<br />

Internet: www.presezzicaster.com<br />

Contact: Franco Gramaglia<br />

� Revamps, equipments & spare parts<br />

for continuous casting lines<br />

Revamps, equipments & spare parts<br />

for continuous casting lines<br />

Bruno Presezzi, Officine Meccaniche<br />

Via per Ornago 8<br />

I-20040 Burago Molgora (Mi) – Italy<br />

Tel. +39 039 63502 229<br />

Fax +39 039 6081373<br />

E-Mail: aluminium.<strong>de</strong>pt@brunopresezzi.com<br />

Internet: www.presezzicaster.com<br />

Contact: Franco Gramaglia<br />

� Twin-roll continuous casting<br />

lines (complete lines)<br />

Twin-roll continuous casting lines<br />

(complete lines)<br />

Bruno Presezzi, Officine Meccaniche<br />

Via per Ornago 8<br />

I-20040 Burago Molgora (Mi) – Italy<br />

Tel. +39 039 63502 229<br />

Fax +39 039 6081373<br />

E-Mail: aluminium.<strong>de</strong>pt@brunopresezzi.com<br />

Internet: www.presezzicaster.com<br />

Contact: Franco Gramaglia<br />

3.6 Cold rolling equipment<br />

Kaltwalzanlagen<br />

Achenbach Buschhütten GmbH<br />

Siegener Str. 152, D-57223 Kreuztal<br />

Tel. +49 (0) 2732/7990, info@achenbach.<strong>de</strong><br />

Internet: www.achenbach.<strong>de</strong><br />

SIEMAG GmbH<br />

Obere Industriestraße 8<br />

D-57250 Netphen<br />

Tel.: +49 (0) 2738 / 21-0<br />

Fax: +49 (0) 2738 / 21-503<br />

E-Mail: metals@siemag.com<br />

Internet: www.siemag.com<br />

ALUMINIUM · 1-2/2007<br />

SIGNODE® SYSTEM GMBH<br />

Packaging Equipment<br />

Non-Ferrous Specialist Team DSWE<br />

Magnusstr. 18, 46535 Dinslaken/Germany<br />

Telefon: +49 (0) 2064 / 69-210<br />

Telefax: +49 (0) 2064 / 69-489<br />

E-Mail: g.laks@signo<strong>de</strong>-europe.com<br />

Internet: www.signo<strong>de</strong>.com<br />

Contact: Mr. Gerard Laks<br />

� Coil transport systems<br />

Bundtransportsysteme<br />

Vollert GmbH + Co. KG<br />

Anlagenbau<br />

see Transport of finished ano<strong>de</strong> elements<br />

to the pot room 1.4<br />

Windhoff Bahn- und<br />

Anlagentechnik GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

� Coil annealing furnaces<br />

Bundglühöfen<br />

IUT Industriell Ugnsteknik AB<br />

see Heat treatment 2.4<br />

OTTO JUNKER GmbH<br />

see Extrusion 2<br />

see Equipment and accessories 2.11<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

schwartz GmbH<br />

see Cold colling equipment 3.6<br />

www.vits.com<br />

see Cold rolling equipment 3.6<br />

� Cold rolling units /<br />

complete plants<br />

Kaltwalzanlagen/Komplettanlagen<br />

Danieli Fröhling<br />

Finkenstrasse 19<br />

D-57462 Olpe<br />

Germany<br />

Tel.: +49 (0) 27 61 / 894-0<br />

Fax: +49 (0) 27 61 / 894-200<br />

E-Mail: d.neumann@danieli-froehling.<strong>de</strong><br />

Internet: www.danieli-froehling.<strong>de</strong><br />

Sales Contact: Detlef Neumann<br />

Lieferverzeichnis<br />

SMS Demag Aktiengesellschaft<br />

Eduard-Schloemann-Straße 4<br />

D-40237 Düsseldorf<br />

Telefon: (0211) 8 81-0<br />

Telefax: (0211) 8 81-49 02<br />

Internet: http://www.sms-<strong>de</strong>mag.com<br />

E-Mail: communications@sms-<strong>de</strong>mag.com<br />

Geschäftsbereiche:<br />

Warmflach- und Kaltwalzwerke<br />

Wiesenstraße 30<br />

D-57271 Hilchenbach-Dahlbruch<br />

Telefon: (02733) 29-0<br />

Telefax: (02733) 29-28 52<br />

Bandanlagen<br />

Wal<strong>de</strong>rstraße 51/53<br />

D-40724 Hil<strong>de</strong>n<br />

Telefon: (0211) 8 81-5100<br />

Telefax: (0211) 8 81-5200<br />

� Drive systems<br />

Antriebe<br />

SMS Demag Aktiengesellschaft<br />

see Hot rolling equipment 3.4<br />

� Heating furnaces<br />

Anwärmöfen<br />

OTTO JUNKER GmbH<br />

see Extrusion 2<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

Vits Systems GmbH<br />

Winkelsweg 172<br />

D-40764 Langenfeld<br />

Tel.: +49 (0) 2173 / 798-0<br />

Fax: +49 (0) 2173 / 798-244<br />

E-Mail: mt@vits.<strong>de</strong>, Internet: www.vits.com<br />

� Process optimisation systems<br />

Prozessoptimierungssysteme<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

121


Lieferverzeichnis<br />

� Process simulation<br />

Prozesssimulation<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

SMS Demag Aktiengesellschaft<br />

see Cold colling equipment 3.6<br />

� Revamps, equipments & spare parts<br />

Revamps, equipments & spare parts<br />

Bruno Presezzi, Officine Meccaniche<br />

Via per Ornago 8<br />

I-20040 Burago Molgora (Mi) – Italy<br />

Tel. +39 039 63502 229<br />

Fax +39 039 6081373<br />

E-Mail: aluminium.<strong>de</strong>pt@brunopresezzi.com<br />

Internet: www.presezzicaster.com<br />

Contact: Franco Gramaglia<br />

� Roll exchange equipment<br />

Walzenwechseleinrichtungen<br />

SMS Demag Aktiengesellschaft<br />

see Hot rolling equipment 3.4<br />

Vollert GmbH + Co. KG<br />

Anlagenbau<br />

see Transport of finished ano<strong>de</strong> elements<br />

to the pot room 1.4<br />

Windhoff Bahn- und<br />

Anlagentechnik GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

� Rolling mill mo<strong>de</strong>rnization<br />

Walzwerkmo<strong>de</strong>rnisierung<br />

Achenbach Buschhütten GmbH<br />

Siegener Str. 152, D-57223 Kreuztal<br />

Tel. +49 (0) 2732/7990, info@achenbach.<strong>de</strong><br />

Internet: www.achenbach.<strong>de</strong><br />

� Strip rolling mills<br />

Bandwalzwerke<br />

Danieli Fröhling<br />

Finkenstrasse 19<br />

D-57462 Olpe<br />

Germany<br />

Tel.: +49 (0) 27 61 / 894-0<br />

Fax: +49 (0) 27 61 / 894-200<br />

E-Mail: d.neumann@danieli-froehling.<strong>de</strong><br />

Internet: www.danieli-froehling.<strong>de</strong><br />

Sales Contact: Detlef Neumann<br />

� Strip shears<br />

Bandscheren<br />

Danieli Fröhling<br />

Finkenstrasse 19<br />

D-57462 Olpe<br />

Germany<br />

Tel.: +49 (0) 27 61 / 894-0<br />

Fax: +49 (0) 27 61 / 894-200<br />

E-Mail: d.neumann@danieli-froehling.<strong>de</strong><br />

Internet: www.danieli-froehling.<strong>de</strong><br />

Sales Contact: Detlef Neumann<br />

SMS Demag Aktiengesellschaft<br />

see Hot rolling equipment 3.4<br />

� Trimming equipment<br />

Besäumeinrichtungen<br />

Danieli Fröhling<br />

Finkenstrasse 19<br />

D-57462 Olpe<br />

Germany<br />

Tel.: +49 (0) 27 61 / 894-0<br />

Fax: +49 (0) 27 61 / 894-200<br />

E-Mail: d.neumann@danieli-froehling.<strong>de</strong><br />

Internet: www.danieli-froehling.<strong>de</strong><br />

Sales Contact: Detlef Neumann<br />

SMS Demag Aktiengesellschaft<br />

see Hot rolling equipment 3.4<br />

3.7 Thin strip /<br />

foil rolling plant<br />

Feinband-/Folienwalzwerke<br />

Achenbach Buschhütten GmbH<br />

Siegener Str. 152, D-57223 Kreuztal<br />

Tel. +49 (0) 2732/7990, info@achenbach.<strong>de</strong><br />

Internet: www.achenbach.<strong>de</strong><br />

SIGNODE® SYSTEM GMBH<br />

Packaging Equipment<br />

Non-Ferrous Specialist Team DSWE<br />

Magnusstr. 18, 46535 Dinslaken/Germany<br />

Telefon: +49 (0) 2064 / 69-210<br />

Telefax: +49 (0) 2064 / 69-489<br />

E-Mail: g.laks@signo<strong>de</strong>-europe.com<br />

Internet: www.signo<strong>de</strong>.com<br />

Contact: Mr. Gerard Laks<br />

� Coil annealing furnaces<br />

Bundglühöfen<br />

OTTO JUNKER GmbH<br />

see Equipment and accessories 2.11<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

schwartz GmbH<br />

see Cold colling equipment 3.6<br />

www.vits.com<br />

see Thin strip / foil rolling plant 3.7<br />

� Heating furnaces<br />

Anwärmöfen<br />

INOTHERM INDUSTRIEOFEN-<br />

UND WÄRMETECHNIK GMBH<br />

see Casthouse (foundry) 1.5<br />

OTTO JUNKER GmbH<br />

see Extrusion 2<br />

see Extrusion 2<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

Vits Systems GmbH<br />

Winkelsweg 172<br />

D-40764 Langenfeld<br />

Tel.: +49 (0) 2173 / 798-0<br />

Fax: +49 (0) 2173 / 798-244<br />

E-Mail: mt@vits.<strong>de</strong>, Internet: www.vits.com<br />

� Revamps, equipments & spare parts<br />

Revamps, equipments & spare parts<br />

Bruno Presezzi, Officine Meccaniche<br />

Via per Ornago 8<br />

I-20040 Burago Molgora (Mi) – Italy<br />

Tel. +39 039 63502 229<br />

Fax +39 039 6081373<br />

E-Mail: aluminium.<strong>de</strong>pt@brunopresezzi.com<br />

Internet: www.presezzicaster.com<br />

Contact: Franco Gramaglia<br />

122 ALUMINIUM · 1-2/2007


� Rolling mill mo<strong>de</strong>rnization<br />

Walzwerkmo<strong>de</strong>rnisierung<br />

Achenbach Buschhütten GmbH<br />

Siegener Str. 152, D-57223 Kreuztal<br />

Tel. +49 (0) 2732/7990, info@achenbach.<strong>de</strong><br />

Internet: www.achenbach.<strong>de</strong><br />

� Thin strip / foil rolling mills /<br />

complete plant<br />

Feinband- / Folienwalzwerke /<br />

Komplettanlagen<br />

SMS Demag Aktiengesellschaft<br />

Eduard-Schloemann-Straße 4<br />

D-40237 Düsseldorf<br />

Telefon: (0211) 8 81-0<br />

Telefax: (0211) 8 81-49 02<br />

Internet: http://www.sms-<strong>de</strong>mag.com<br />

E-Mail: communications@sms-<strong>de</strong>mag.com<br />

Geschäftsbereiche:<br />

Warmflach- und Kaltwalzwerke<br />

Wiesenstraße 30<br />

D-57271 Hilchenbach-Dahlbruch<br />

Telefon: (02733) 29-0<br />

Telefax: (02733) 29-28 52<br />

Bandanlagen<br />

Wal<strong>de</strong>rstraße 51/53<br />

D-40724 Hil<strong>de</strong>n<br />

Telefon: (0211) 8 81-5100<br />

Telefax: (0211) 8 81-5200<br />

3.9 Adjustment <strong>de</strong>vices /<br />

Adjustageeinrichtungen<br />

� Transverse cutting units<br />

Querteilanlagen<br />

Danieli Fröhling<br />

Finkenstrasse 19<br />

D-57462 Olpe<br />

Germany<br />

Tel.: +49 (0) 27 61 / 894-0<br />

Fax: +49 (0) 27 61 / 894-200<br />

E-Mail: d.neumann@danieli-froehling.<strong>de</strong><br />

Internet: www.danieli-froehling.<strong>de</strong><br />

Sales Contact: Detlef Neumann<br />

� Longitudinal splitting units<br />

Längsteilanlagen<br />

Danieli Fröhling<br />

Finkenstrasse 19<br />

D-57462 Olpe<br />

Germany<br />

Tel.: +49 (0) 27 61 / 894-0<br />

Fax: +49 (0) 27 61 / 894-200<br />

E-Mail: d.neumann@danieli-froehling.<strong>de</strong><br />

Internet: www.danieli-froehling.<strong>de</strong><br />

Sales Contact: Detlef Neumann<br />

ALUMINIUM · 1-2/2007<br />

� Sheet and plate stretchers<br />

Blech- und Plattenstrecker<br />

SMS Meer GmbH<br />

see Rolling bar machining 3.2<br />

� Cable sheathing presses<br />

Kabelummantelungspressen<br />

SMS Meer GmbH<br />

see Rolling bar machining 3.2<br />

� Cable undulating machines<br />

Kabelwellmaschinen<br />

SMS Meer GmbH<br />

see Rolling bar machining 3.2<br />

3.10 Process technology /<br />

Automation technology<br />

Prozesstechnik /<br />

Automatisierungstechnik<br />

4Production AG<br />

Produktionsoptimieren<strong>de</strong> Lösungen<br />

A<strong>de</strong>nauerstraße 20, D-52146 Würselen<br />

Tel.: +49 (0) 2405 / 4135-0<br />

info@4production.<strong>de</strong>, www.4production.<strong>de</strong><br />

SIEMAG GmbH<br />

Obere Industriestraße 8<br />

D-57250 Netphen<br />

Tel.: +49 (0) 2738 / 21-0<br />

Fax: +49 (0) 2738 / 21-503<br />

E-Mail: metals@siemag.com<br />

Internet: www.siemag.com<br />

� Process control technology<br />

Prozessleittechnik<br />

SMS Demag Aktiengesellschaft<br />

see Process technology/<br />

Automation technology 3.10<br />

Unitechnik Cieplik & Poppek AG<br />

D-51674 Wiehl, www.unitechnik.com<br />

Lieferverzeichnis<br />

� Strip thickness measurement<br />

and control equipment<br />

Banddickenmess- und<br />

-regeleinrichtungen<br />

Achenbach Buschhütten GmbH<br />

Siegener Str. 152, D-57223 Kreuztal<br />

Tel. +49 (0) 2732/7990, info@achenbach.<strong>de</strong><br />

Internet: www.achenbach.<strong>de</strong><br />

ABB Automation Technologies AB<br />

Force Measurement<br />

S-72159 Västeras, Swe<strong>de</strong>n<br />

Phone: +46 21 342000<br />

Fax: +46 21 340005<br />

E-Mail: pressductor@se.abb.com<br />

Internet: www.abb.com/pressductor<br />

SMS Demag Aktiengesellschaft<br />

see Process technology/<br />

Automation technology 3.10<br />

� Strip flatness measurement<br />

and control equipment<br />

Bandplanheitsmess- und<br />

-regeleinrichtungen<br />

Achenbach Buschhütten GmbH<br />

Siegener Str. 152, D-57223 Kreuztal<br />

Tel. +49 (0) 2732/7990, info@achenbach.<strong>de</strong><br />

Internet: www.achenbach.<strong>de</strong><br />

SMS Demag Aktiengesellschaft<br />

Eduard-Schloemann-Straße 4<br />

D-40237 Düsseldorf<br />

Telefon: (0211) 8 81-0<br />

Telefax: (0211) 8 81-49 02<br />

Internet: http://www.sms-<strong>de</strong>mag.com<br />

E-Mail: communications@sms-<strong>de</strong>mag.com<br />

Geschäftsbereiche:<br />

Warmflach- und Kaltwalzwerke<br />

Wiesenstraße 30<br />

D-57271 Hilchenbach-Dahlbruch<br />

Telefon: (02733) 29-0<br />

Telefax: (02733) 29-28 52<br />

Bandanlagen<br />

Wal<strong>de</strong>rstraße 51/53<br />

D-40724 Hil<strong>de</strong>n<br />

Telefon: (0211) 8 81-5100<br />

Telefax: (0211) 8 81-5200<br />

123


Lieferverzeichnis<br />

ABB Automation Technologies AB<br />

Force Measurement<br />

S-72159 Västeras, Swe<strong>de</strong>n<br />

Phone: +46 21 342000<br />

Fax: +46 21 340005<br />

E-Mail: pressductor@se.abb.com<br />

Internet: www.abb.com/pressductor<br />

3.11 Coolant / lubricant<br />

preparation<br />

Kühl-/Schmiermittel-<br />

Aufbereitung<br />

� Rolling oil recovery and<br />

treatment units<br />

Walzöl-Wie<strong>de</strong>raufbereitungsanlagen<br />

SMS Demag Aktiengesellschaft<br />

Eduard-Schloemann-Straße 4<br />

D-40237 Düsseldorf<br />

Telefon: (0211) 8 81-0<br />

Telefax: (0211) 8 81-49 02<br />

Internet: http://www.sms-<strong>de</strong>mag.com<br />

E-Mail: communications@sms-<strong>de</strong>mag.com<br />

Geschäftsbereiche:<br />

Warmflach- und Kaltwalzwerke<br />

Wiesenstraße 30<br />

D-57271 Hilchenbach-Dahlbruch<br />

Telefon: (02733) 29-0<br />

Telefax: (02733) 29-28 52<br />

Bandanlagen<br />

Wal<strong>de</strong>rstraße 51/53<br />

D-40724 Hil<strong>de</strong>n<br />

Telefon: (0211) 8 81-5100<br />

Telefax: (0211) 8 81-5200<br />

� Filter for rolling oils and<br />

emulsions<br />

Filter für Walzöle und Emulsionen<br />

Achenbach Buschhütten GmbH<br />

Siegener Str. 152, D-57223 Kreuztal<br />

Tel. +49 (0) 2732/7990, info@achenbach.<strong>de</strong><br />

Internet: www.achenbach.<strong>de</strong><br />

� Rolling oil rectification units<br />

Walzölrektifikationsanlagen<br />

Achenbach Buschhütten GmbH<br />

Siegener Str. 152, D-57223 Kreuztal<br />

Tel. +49 (0) 2732/7990, info@achenbach.<strong>de</strong><br />

Internet: www.achenbach.<strong>de</strong><br />

SMS Demag Aktiengesellschaft<br />

see Coolant / lubricant preparation 3.11<br />

3.12 Air extraction systems<br />

Abluft-Systeme<br />

� Exhaust air purification<br />

systems (active)<br />

Abluft-Reinigungssysteme (aktiv)<br />

Achenbach Buschhütten GmbH<br />

Siegener Str. 152, D-57223 Kreuztal<br />

Tel. +49 (0) 2732/7990, info@achenbach.<strong>de</strong><br />

Internet: www.achenbach.<strong>de</strong><br />

SMS Demag Aktiengesellschaft<br />

Eduard-Schloemann-Straße 4<br />

D-40237 Düsseldorf<br />

Telefon: (0211) 8 81-0<br />

Telefax: (0211) 8 81-49 02<br />

Internet: http://www.sms-<strong>de</strong>mag.com<br />

E-Mail: communications@sms-<strong>de</strong>mag.com<br />

Geschäftsbereiche:<br />

Warmflach- und Kaltwalzwerke<br />

Wiesenstraße 30<br />

D-57271 Hilchenbach-Dahlbruch<br />

Telefon: (02733) 29-0<br />

Telefax: (02733) 29-28 52<br />

Bandanlagen<br />

Wal<strong>de</strong>rstraße 51/53<br />

D-40724 Hil<strong>de</strong>n<br />

Telefon: (0211) 8 81-5100<br />

Telefax: (0211) 8 81-5200<br />

� Filtering plants and systems<br />

Filteranlagen und Systeme<br />

Dantherm Filtration GmbH<br />

Industriestr. 9, D-77948 Friesenheim<br />

Tel.: +49 (0) 7821 / 966-0, Fax: - 966-245<br />

E-Mail: info.<strong>de</strong>@danthermfiltration.com<br />

Internet: www.danthermfiltration.com<br />

3.14 Storage and dispatch<br />

Lagerung und Versand<br />

SIEMAG GmbH<br />

Obere Industriestraße 8<br />

D-57250 Netphen<br />

Tel.: +49 (0) 2738 / 21-0<br />

Fax: +49 (0) 2738 / 21-503<br />

E-Mail: metals@siemag.com<br />

Internet: www.siemag.com<br />

3.16 Coil storage systems<br />

Bundlagersysteme<br />

SIEMAG GmbH<br />

Obere Industriestraße 8<br />

D-57250 Netphen<br />

Tel.: +49 (0) 2738 / 21-0<br />

Fax: +49 (0) 2738 / 21-503<br />

E-Mail: metals@siemag.com<br />

Internet: www.siemag.com<br />

Vollert GmbH + Co. KG<br />

Anlagenbau<br />

see Transport of finished ano<strong>de</strong> elements<br />

to the pot room 1.4<br />

3.17 Strip Processing Lines<br />

Bandprozesslinien<br />

� Strip Processing Lines<br />

Bandprozesslinen<br />

Bergwerk- und Walzwerk-<br />

Maschinenbau GmbH<br />

Mercatorstraße 74 – 78<br />

D-47051 Duisburg<br />

Tel.: +49 (0) 203-9929-0<br />

Fax: +49 (0) 203-9929-400<br />

E-Mail: bwg@bwg-online.<strong>de</strong><br />

Internet: www.bwg-online.com<br />

� Colour Coating Lines<br />

Bandlackierlinien<br />

www.bwg-online.com<br />

see Strip Processing Lines 3.17<br />

� Strip Annealing Lines<br />

Bandglühlinien<br />

www.bwg-online.com<br />

see Strip Processing Lines 3.17<br />

� Stretch Levelling Lines<br />

Streckrichtanlagen<br />

www.bwg-online.com<br />

see Strip Processing Lines 3.17<br />

� Lithographic Sheet Lines<br />

Lithografielinien<br />

www.bwg-online.com<br />

see Strip Processing Lines 3.17<br />

124 ALUMINIUM · 1-2/2007


4 Foundry<br />

Gießerei<br />

4.1 Work protection and ergonomics<br />

4.2 Heat-resistant technology<br />

4.3 Conveyor and storage technology<br />

4.4 Mould and core production<br />

4.5 Mould accessories and accessory materials<br />

4.6 Foundry equipment<br />

4.7 Casting machines and equipment<br />

4.8 Handling technology<br />

4.9 Construction and <strong>de</strong>sign<br />

4.10 Measurement technology and materials testing<br />

4.11 Metallic charge materials<br />

4.12 Finshing of raw castings<br />

4.13 Melt operations<br />

4.14 Melt preparation<br />

4.15 Melt treatment <strong>de</strong>vices<br />

4.16 Control and regulation technology<br />

4.17 Environment protection and disposal<br />

4.18 Dross recovery<br />

4.2 Heat-resistent technology<br />

Feuerfesttechnik<br />

� Refractories<br />

Feuerfeststoffe<br />

Silca Service- und Vertriebsgesellschaft<br />

für Dämmstoffe mbH<br />

Auf <strong>de</strong>m Hüls 6, D-40822 Mettmann<br />

Tel. 02104/97270, Fax 02104/76902<br />

E-Mail: info@silca-online.<strong>de</strong><br />

Internet: www.silca-online.<strong>de</strong><br />

Promat GmbH – Techn. Wärmedämmung<br />

Scheifenkamp 16, D-40878 Ratingen<br />

Tel. +49 (0) 2102 / 493-0, Fax -493 115<br />

verkauf3@promat.<strong>de</strong>, www.promat.<strong>de</strong><br />

� Casting laun<strong>de</strong>r linings<br />

Gießrinnenauskleidungen<br />

Silca Service- und Vertriebsgesellschaft<br />

für Dämmstoffe mbH<br />

Auf <strong>de</strong>m Hüls 6, D-40822 Mettmann<br />

Tel. 02104/97270, Fax 02104/76902<br />

E-Mail: info@silca-online.<strong>de</strong><br />

Internet: www.silca-online.<strong>de</strong><br />

4.3 Conveyor and storage<br />

technology<br />

För<strong>de</strong>r- und Lagertechnik<br />

Vollert GmbH + Co. KG<br />

Anlagenbau<br />

see Transport of finished ano<strong>de</strong> elements<br />

to the pot room 1.4<br />

4.5 Mold accessories and<br />

accessory materials<br />

Formzubehör, Hilfmittel<br />

� Fluxes<br />

Flussmittel<br />

Solvay Fluor GmbH<br />

Hans-Böckler-Allee 20<br />

D-30173 Hannover<br />

Telefon +49 (0) 511 / 857-0<br />

Telefax +49 (0) 511 / 857-2146<br />

Internet: www.solvay-fluor.<strong>de</strong><br />

ALUMINIUM · 1-2/2007<br />

4.6 Foundry equipment<br />

Gießereianlagen<br />

Cast-Tec GmbH & Co. KG<br />

Fertigungstechnik & Service<br />

D-44536 Lünen, Brunnenstraße 138<br />

Telefon: 02306/20310-0<br />

Telefax: 02306/20310-11<br />

E-Mail: Info@cast-tec.<strong>de</strong><br />

Internet: www.cast-tec.<strong>de</strong><br />

THERMCON OVENS BV<br />

� Planning<br />

Projektierung<br />

HERTWICH ENGINEERING GmbH<br />

Maschinen und Industrieanlagen<br />

Weinbergerstraße 6, A-5280 Braunau am Inn<br />

Phone +437722/806-0<br />

Fax +437722/806-122<br />

E-Mail: info@hertwich.com<br />

Internet: www.hertwich.com<br />

� Construction<br />

Bau<br />

HERTWICH ENGINEERING GmbH<br />

Maschinen und Industrieanlagen<br />

Weinbergerstraße 6, A-5280 Braunau am Inn<br />

Phone +437722/806-0<br />

Fax +437722/806-122<br />

E-Mail: info@hertwich.com<br />

Internet: www.hertwich.com<br />

Lieferverzeichnis<br />

4.1 Arbeitsschutz und Ergonomie<br />

4.2 Feuerfesttechnik<br />

4.3 För<strong>de</strong>r- und Lagertechnik<br />

4.4 Form- und Kernherstellung<br />

4.5 Formzubehör, Hilfsmittel<br />

4.6 Gießereianlagen<br />

4.7 Gießmaschinen und Gießeinrichtungen<br />

4.8 Handhabungstechnik<br />

4.9 Konstruktion und Design<br />

4.10 Messtechnik und Materialprüfung<br />

4.11 Metallische Einsatzstoffe<br />

4.12 Rohgussnachbehandlung<br />

4.13 Schmelzbetrieb<br />

4.14 Schmelzvorbereitung<br />

4.15 Schmelzebehandlungseinrichtungen<br />

4.16 Steuerungs- und Regelungstechnik<br />

4.17 Umweltschutz und Entsorgung<br />

4.18 Schlackenrückgewinnung<br />

see Extrusion 2<br />

� Tolls for the foundry<br />

Gießerei-Werkzeuge<br />

Albert Turk GmbH & Co. KG<br />

D-58540 Meinerzhagen,<br />

Tel. 02358/2727-0, Fax 02358/2727-27<br />

� Casting machines<br />

Gießmaschinen<br />

HERTWICH ENGINEERING GmbH<br />

Maschinen und Industrieanlagen<br />

Weinbergerstraße 6, A-5280 Braunau am Inn<br />

Phone +437722/806-0<br />

Fax +437722/806-122<br />

E-Mail: info@hertwich.com<br />

Internet: www.hertwich.com<br />

see Equipment and accessories 2.11<br />

� Solution annealing furnaces/plant<br />

Lösungsglühöfen/anlagen<br />

ERNST REINHARDT GMBH<br />

Postfach 1880, D-78008 VS-Villingen<br />

Tel. 07721/8441-0, Fax 8441-44<br />

E-Mail: info@ernstreinhardt.<strong>de</strong><br />

Internet: www.Ernst-Reinhardt.com<br />

� Heat treatment furnaces<br />

Wärmebehandlungsöfen<br />

see Foundry equipment 4.6<br />

125


Lieferverzeichnis<br />

4.7 Casting machines<br />

and equipment<br />

Gießereimaschinen<br />

und Gießeinrichtungen<br />

OTTO JUNKER GmbH<br />

THERMCON OVENS BV<br />

Molten Metall Level Control<br />

Ostra Hamnen 7<br />

SE-430 91 Hono / Schwe<strong>de</strong>n<br />

Tel.: +46 31 764 5520<br />

Fax: +46 31 764 5529<br />

E-mail: sales@precimeter.se<br />

Internet: www.precimeter.se<br />

Sales Contact: Rolf Backberg<br />

� Mould parting agents<br />

Kokillentrennmittel<br />

Schrö<strong>de</strong>r KG<br />

Schmierstofftechnik<br />

Postfach 1170<br />

D-57251<br />

Freu<strong>de</strong>nberg<br />

Tel. 02734/7071<br />

Fax 02734/20784<br />

www.schroe<strong>de</strong>r-schmierstoffe.<strong>de</strong><br />

4.8 Handling technology<br />

Handhabungstechnik<br />

THERMCON OVENS BV<br />

Vollert GmbH + Co. KG<br />

Anlagenbau<br />

see Transport of finished ano<strong>de</strong> elements<br />

to the pot room 1.4<br />

4.9 Construction and<br />

Design<br />

Konstruktion und Design<br />

THERMCON OVENS BV<br />

4.10 Measurement<br />

technology and<br />

materials testing<br />

Messtechnik und<br />

Materialprüfung<br />

see Extrusion 2<br />

see Extrusion 2<br />

see Extrusion 2<br />

SRS Amsterdam BV<br />

www.srsamsterdam.com<br />

see Casthouse (foundry) 1.5<br />

4.11 Metallic charge<br />

materials<br />

Metallische Einsatzstoffe<br />

Scholz AG<br />

Am Bahnhof<br />

D-73457 Essingen<br />

Tel. +49 (0) 7365-84-0<br />

Fax +49 (0) 7365-1481<br />

E-Mail: infoscholz@scholz-ag.<strong>de</strong><br />

Internet: www.scholz-ag.<strong>de</strong><br />

� <strong>Alu</strong>minium alloys<br />

<strong>Alu</strong>miniumlegierungen<br />

METALLHÜTTENWERKE BRUCH GMBH<br />

Postfach 10 06 29<br />

D-44006 Dortmund<br />

Telefon +49 (0) 231 /85981-121<br />

Telefax +49 (0) 231 /85981-124<br />

E-Mail: al-vertrieb@bruch.<strong>de</strong><br />

Internet: www.bruch.<strong>de</strong><br />

METALLHANDELSGESELLSCHAFT<br />

SCHOOF & HASLACHER MBH & CO. KG<br />

Postfach 600714, D 81207 München<br />

Telefon 089/829133-0<br />

Telefax 089/8201154<br />

E-Mail: info@metallhan<strong>de</strong>lsgesellschaft.<strong>de</strong><br />

Internet: www.metallhan<strong>de</strong>lsgesellschaft.<strong>de</strong><br />

ALERIS Recycling (German Works) GmbH<br />

<strong>Alu</strong>miniumstraße 3<br />

D-41515 Grevenbroich<br />

Telefon +49 (0) 2181/16 45 0<br />

Telefax +49 (0) 2181/16 45 100<br />

E-Mail: recycling@aleris.com<br />

Internet: www.aleris-recycling.com<br />

� Pre alloys<br />

Vorlegierungen<br />

METALLHANDELSGESELLSCHAFT<br />

SCHOOF & HASLACHER MBH & CO. KG<br />

Postfach 600714, D 81207 München<br />

Telefon 089/829133-0<br />

Telefax 089/8201154<br />

E-Mail: info@metallhan<strong>de</strong>lsgesellschaft.<strong>de</strong><br />

Internet: www.metallhan<strong>de</strong>lsgesellschaft.<strong>de</strong><br />

4.13 Melt operations<br />

Schmelzbetrieb<br />

OTTO JUNKER GmbH<br />

THERMCON OVENS BV<br />

� Melting furnaces<br />

Schmelzöfen<br />

Büttgenbachstraße 14<br />

D-40549 Düsseldorf/Germany<br />

Tel.: +49 (0) 211 /50091-43<br />

Fax: +49 (0) 211 / 50 13 97<br />

E-Mail: info@bloomeng.<strong>de</strong><br />

Internet: www.bloomeng.com<br />

Sales Contact: Klaus Rixen<br />

HERTWICH ENGINEERING GmbH<br />

Maschinen und Industrieanlagen<br />

Weinbergerstraße 6, A-5280 Braunau am Inn<br />

Phone +437722/806-0<br />

Fax +437722/806-122<br />

E-Mail: info@hertwich.com<br />

Internet: www.hertwich.com<br />

see Equipment and accessories 2.11<br />

MARX GmbH & Co. KG<br />

Lilienthalstr. 6-18<br />

D-58638 Iserhohn<br />

Tel.: +49 (0) 2371 / 2105-0, Fax: -11<br />

E-Mail: info@marx-gmbh.<strong>de</strong><br />

Internet: www.marx-gmbh.<strong>de</strong><br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

� Holding furnaces<br />

Warmhalteöfen<br />

Büttgenbachstraße 14<br />

D-40549 Düsseldorf/Germany<br />

Tel.: +49 (0) 211 /50091-43<br />

Fax: +49 (0) 211 / 50 13 97<br />

E-Mail: info@bloomeng.<strong>de</strong><br />

Internet: www.bloomeng.com<br />

Sales Contact: Klaus Rixen<br />

see Extrusion 2<br />

126 ALUMINIUM · 1-2/2007


see Equipment and accessories 2.11<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

� Heat treatment furnaces<br />

Wärmebehandlungsanlagen<br />

HERTWICH ENGINEERING GmbH<br />

Maschinen und Industrieanlagen<br />

Weinbergerstraße 6, A-5280 Braunau am Inn<br />

Phone +437722/806-0<br />

Fax +437722/806-122<br />

E-Mail: info@hertwich.com<br />

Internet: www.hertwich.com<br />

IUT Industriell Ugnsteknik AB<br />

Industrivägen 2, 43892 Härryda, Swe<strong>de</strong>n<br />

Tel. +46 (0) 301 31510<br />

Fax +46 (0) 301 30479<br />

E-Mail: office@iut.se<br />

Internet: www.iut.se<br />

see Equipment and accessories 2.11<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

� Heat treatment technologies<br />

Wärmebehandlungsverfahren<br />

Wärmebehandlungstechnologien<br />

ALUTEC-BELTE AG, ALUMINIUMTECHNOLOGIE<br />

Lin<strong>de</strong>nweg 5<br />

D-33129 Delbrück<br />

Tel.: +49 (0 ) 52 50 / 98 79-0<br />

Fax: +49 (0 ) 52 50 / 98 79-149<br />

E-Mail: info@alutec-belte.com<br />

Web: www.alutec-belte.com<br />

ALUMINIUM · 1-2/2007<br />

4.14 Melt preparation<br />

Schmelzvorbereitung<br />

OTTO JUNKER GmbH<br />

THERMCON OVENS BV<br />

� Degassing, filtration<br />

Entgasung, Filtration<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

Drache Umwelttechnik<br />

GmbH<br />

Werner-v.-Siemens-Straße 9/24-26<br />

D 65582 Diez/Lahn<br />

Telefon 06432/607-0<br />

Telefax 06432/607-52<br />

Internet: http://www.drache-gmbh.<strong>de</strong><br />

HERTWICH ENGINEERING GmbH<br />

Maschinen und Industrieanlagen<br />

Weinbergerstraße 6, A-5280 Braunau am Inn<br />

Phone +437722/806-0<br />

Fax +437722/806-122<br />

E-Mail: info@hertwich.com<br />

Internet: www.hertwich.com<br />

� Melt treatment agents<br />

Schmelzebehandlungsmittel<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

4.15 Melt treatment <strong>de</strong>vices<br />

Schmelzbehandlungseinrichtungen<br />

OTTO JUNKER GmbH<br />

THERMCON OVENS BV<br />

Metaullics Systems Europe B.V.<br />

P.O.Box 748<br />

NL-2920 CA Krimpen a/d Yssel<br />

Tel. +31-180/590890<br />

Fax +31-180/551040<br />

E-Mail: info@metaullics.nl<br />

Internet: www.metaullics.com<br />

see Extrusion 2<br />

see Extrusion 2<br />

Lieferverzeichnis<br />

4.16 Control and<br />

regulation technology<br />

Steuerungs- und<br />

Regelungstechnik<br />

� HCL measurements<br />

HCL Messungen<br />

OPSIS AB<br />

Box 244, S-24402 Furulund, Schwe<strong>de</strong>n<br />

Tel. +46 (0) 46-72 25 00, Fax -72 25 01<br />

E-Mail: info@opsis.se<br />

Internet: www.opsis.se<br />

4.17 Environment protec<br />

tion and disposal<br />

Umweltschutz und<br />

Entsorgung<br />

� Dust removal / Entstaubung<br />

NEOTECHNIK GmbH<br />

Entstaubungsanlagen<br />

Postfach 110261, D-33662 Bielefeld<br />

Tel. 05205/7503-0, Fax 05205/7503-77<br />

info@neotechnik.com, www.neotechnik.com<br />

� Flue gas cleaning<br />

Rauchgasreinigung<br />

Dantherm Filtration GmbH<br />

Industriestr. 9, D-77948 Friesenheim<br />

Tel.: +49 (0) 7821 / 966-0, Fax: - 966-245<br />

E-Mail: info.<strong>de</strong>@danthermfiltration.com<br />

Internet: www.danthermfiltration.com<br />

4.18 Dross recovery<br />

Schlackenrückgewinnung<br />

OTTO JUNKER GmbH<br />

THERMCON OVENS BV<br />

see Extrusion 2<br />

Do you need<br />

more information?<br />

E-Mail:<br />

Schwichtenberg@giesel.<strong>de</strong><br />

127


Lieferverzeichnis<br />

5<br />

6<br />

Materials and Recycling<br />

Werkstoffe und Recycling<br />

� <strong>Alu</strong>minium foam<br />

<strong>Alu</strong>miniumschaum<br />

<strong>Alu</strong>light International GmbH<br />

Lach 22<br />

A-5282 Ranshofen<br />

Telefon ++43 / 7722 / 62216-26<br />

Telefax ++43 / 7722 / 62216-11<br />

E-Mail: office@alulight.com<br />

Internet: www.alulight.com<br />

Machining and Application<br />

Bearbeitung und Anwendung<br />

� Machining of aluminium<br />

<strong>Alu</strong>miniumbearbeitung<br />

Haarmann Holding GmbH<br />

see Die preparation and care 2.6<br />

6.1 Surface treatment<br />

processes<br />

Prozesse für die<br />

Oberflächenbehandlung<br />

Henkel KGaA<br />

D-40191 Düsseldorf<br />

Tel. +49 (0) 211 / 797-30 00<br />

Fax +49 (0) 211 / 798-36 36<br />

Internet: www.henkel-technologies.com<br />

� Adhesive bonding / Verkleben<br />

Henkel KGaA<br />

see Prozesse für die Oberflächentechnik 6.1<br />

� Anodising / Anodisation<br />

Henkel KGaA<br />

see Prozesse für die Oberflächentechnik 6.1<br />

� Cleaning / Reinigung<br />

Henkel KGaA<br />

see Prozesse für die Oberflächentechnik 6.1<br />

� Joining / Fügen<br />

Henkel KGaA<br />

see Prozesse für die Oberflächentechnik 6.1<br />

� Granulated aluminium<br />

<strong>Alu</strong>miniumgranulate<br />

ECKA Granulate Austria GmbH<br />

Bürmooser Lan<strong>de</strong>sstraße 19<br />

A-5113 St. Georgen/Salzburg<br />

Telefon +43 7722 62216-41<br />

Telefax +43 7722 62216-44<br />

Kontakt: Walter Rajner<br />

E-Mail: w.rajner@ecka-granules.com<br />

� Paint stripping / Entlackung<br />

Henkel KGaA<br />

see Prozesse für die Oberflächentechnik 6.1<br />

� Pretreatment before coating<br />

Vorbehandlung vor <strong>de</strong>r Beschichtung<br />

Henkel KGaA<br />

see Prozesse für die Oberflächentechnik 6.1<br />

� Joining of light metals<br />

Fügen von Leichtmetallen<br />

Henkel KGaA<br />

Standort Hei<strong>de</strong>lberg<br />

Hans-Bunte-Straße 4<br />

D-69123 Hei<strong>de</strong>lberg<br />

Tel. +49 (0) 6221 / 704-204<br />

Fax +49 (0) 6221 / 704-515<br />

� Pretreatment before<br />

adhesive bonding<br />

Vorbehandlung vor <strong>de</strong>m Verkleben<br />

Henkel KGaA<br />

see Prozesse für die Oberflächentechnik 6.1<br />

� Spectrocolor Interferencecolouring<br />

Spectrocolor Interferenzfärben<br />

Henkel KGaA<br />

see Prozesse für die Oberflächentechnik 6.1<br />

� Waste water treatment<br />

Abwasseraufbereitung<br />

Henkel KGaA<br />

see Prozesse für die Oberflächentechnik 6.1<br />

� Thermal coating<br />

Thermische Beschichtung<br />

Berolina Metallspritztechnik<br />

Wesnigk GmbH<br />

Pappelhain 30<br />

D-15378 Hennickendorf<br />

Tel.: +49 (0) 33434 / 46060<br />

Fax: +49 (0) 33434 / 46701<br />

E-Mail: info@metallspritztechnik.<strong>de</strong><br />

Internet: www.metallspritztechnik.<strong>de</strong><br />

6.2 Semi products<br />

Halbzeuge<br />

� Wires / Drähte<br />

DRAHTWERK ELISENTAL<br />

W. Erdmann GmbH & Co.<br />

Werdohler Str. 40, D-58809 Neuenra<strong>de</strong><br />

Postfach 12 60, D-58804 Neuenra<strong>de</strong><br />

Tel. +49(0)2392/697-0, Fax 49(0)2392/62044<br />

E-Mail: info@elisental.<strong>de</strong><br />

Internet: www.elisental.<strong>de</strong><br />

6.3 Equipment for forging<br />

and impact extrusion<br />

Ausrüstung für Schmie<strong>de</strong>und<br />

Fließpresstechnik<br />

� Hydraulic Presses<br />

Hydraulische Pressen<br />

LASCO Umformtechnik GmbH<br />

Hahnweg 139, D-96450 Coburg<br />

Tel. +49 (0) 9561 642-0<br />

Fax +49 (0) 9561 642-333<br />

E-Mail: lasco@lasco.<strong>de</strong><br />

Internet: www.lasco.com<br />

8 Literature<br />

Literatur<br />

� Technikcal literature<br />

Fachliteratur<br />

Taschenbuch <strong>de</strong>s Metallhan<strong>de</strong>ls<br />

Fundamentals of Extrusion Technology<br />

Giesel Verlag GmbH<br />

Verlag für Fachmedien<br />

Ein Unternehmen <strong>de</strong>r Klett-Gruppe<br />

Rehkamp 3 · 30916 Isernhagen<br />

Tel. 0511 / 73 04-122 · Fax 0511 / 73 04-157<br />

� Technical journals<br />

Fachzeitschriften<br />

International Journal for Industry, Research and Application<br />

Giesel Verlag GmbH<br />

Ein Unternehmen <strong>de</strong>r Klett-Gruppe<br />

Rehkamp 3 · 30916 Isernhagen<br />

Tel. 0511 / 73 04-122 · Fax 0511 / 73 04-157<br />

128 ALUMINIUM · 1-2/2007


International<br />

ALUMINIUM<br />

Journal<br />

83. Jahrgang 1.1.2007<br />

Herausgeber / Publisher<br />

Dr.-Ing. Peter Johne<br />

Redaktion / Editorial office<br />

Dipl.-Vw. Volker Karow<br />

Chefredakteur, Editor in Chief<br />

Franz-Meyers-Str. 16, 53340 Meckenheim<br />

Tel: 02225/83 59 643, Fax: 02225/18 4 58<br />

E-Mail: vkarow@online.<strong>de</strong><br />

Dipl.-Ing. Rudolf P. Pawlek<br />

Fax: ++41-274 555 926<br />

Hüttenindustrie und Recycling<br />

Dipl.-Ing. Bernhard Rieth<br />

Walzwerkstechnik und Bandverarbeitung<br />

Verlag / Publishing house<br />

Giesel Verlag GmbH, Verlag für Fachmedien,<br />

Unternehmen <strong>de</strong>r Klett-Gruppe, Postfach<br />

120158, 30907 Isernhagen; Rehkamp<br />

3, 30916 Isernhagen, Tel: 0511/7304-0, Fax:<br />

0511/7304-157. E-mail: Giesel@giesel.<strong>de</strong><br />

Internet: www.alu-<strong>web</strong>.<strong>de</strong>.<br />

Postbank/postal cheque account Hannover,<br />

BLZ/routing co<strong>de</strong>: 25010030; Kto.-<br />

Nr./ account no. 90898-306, Bankkonto/<br />

bank account Commerzbank AG, BLZ/<br />

routing co<strong>de</strong>: 25040066, Kto.-Nr./account<br />

no. 1500222<br />

Geschäftsleitung / General Manager<br />

Dietrich Taubert,<br />

Tel: 05 11/73 04-147,<br />

Taubert@giesel.<strong>de</strong><br />

Objektleitung / Publication Manager<br />

Stefan Schwichtenberg<br />

Tel: 05 11/ 73 04-142,<br />

Schwichtenberg@giesel.<strong>de</strong><br />

Anzeigendisposition / Advertising<br />

layout<br />

Beate Schaefer<br />

Tel: 05 11/ 73 04-148,<br />

BSchaefer@giesel.<strong>de</strong><br />

Vertriebsleitung / Distribution Manager<br />

Jutta Illhardt<br />

Tel: 05 11/ 73 04-126,<br />

Illhardt@giesel.<strong>de</strong><br />

Abonnenten-Service / Rea<strong>de</strong>r service<br />

Kirsten Voß<br />

Tel: 05 11/ 73 04-122,<br />

Vertrieb@giesel.<strong>de</strong><br />

Herstellung & Druck / Printing house<br />

BWH GmbH, Beckstr. 10, D-30457 Hannover<br />

Jahresbezugspreis<br />

EUR 285,– (Inland inkl. 7% Mehrwertsteuer<br />

und Versandkosten). Europa EUR<br />

289,- inkl. Versandkosten. Übersee US$<br />

375,– inkl. Normalpost; Luftpost zuzügl.<br />

US$ 82,–.<br />

Preise für Stu<strong>de</strong>nten auf Anfrage. ALUMI-<br />

NIUM erscheint zehnmal pro Jahr. Kündigungen<br />

jeweils sechs Wochen zum En<strong>de</strong><br />

<strong>de</strong>r Bezugszeit.<br />

Subscription rates<br />

EUR 285,— p.a. (domestic incl. V.A.T.) plus<br />

postage. Europe EUR 289,- incl. surface<br />

mail. Outsi<strong>de</strong> Europe US$ 375,– incl. sur-<br />

ALUMINIUM · 1-2/2007<br />

face mail, air mail plus US$ 82,–.<br />

<strong>Alu</strong>minium is published monthly (10 issues<br />

a year). Cancellations six weeks prior<br />

to the end of a year.<br />

Anzeigenpreise<br />

Preisliste Nr. 47 vom 1.1.2007.<br />

Advertisement rates<br />

price list No. 47 from 1.1.2007.<br />

Die Zeitschrift und alle in ihr enthaltenen<br />

Beiträge und Abbildungen sind urheberrechtlich<br />

geschützt. Je<strong>de</strong> Verwertung außerhalb<br />

<strong>de</strong>r engen Grenzen <strong>de</strong>s Urheberrechtsgesetzes<br />

ist ohne Zustimmung <strong>de</strong>s<br />

Verlages unzulässig und strafbar. Das gilt<br />

insbeson<strong>de</strong>re für Vervielfältigungen, Übersetzungen,<br />

Mikroverfilmungen und die Einspeicherung<br />

und Bearbeitung in elektronischen<br />

Systemen. Der Verlag übernimmt<br />

keine Gewähr für die Richtigkeit <strong>de</strong>r in<br />

diesem Heft mitgeteilten Informationen<br />

und haftet nicht für abgeleitete Folgen.<br />

Haftung bei Leistungsmin<strong>de</strong>rung durch<br />

höhere Gewalt o<strong>de</strong>r an<strong>de</strong>re vom Verlag<br />

nicht verschul<strong>de</strong>te Umstän<strong>de</strong> (z. B. Streik)<br />

ist ausgeschlossen.<br />

This journal and all contributions contained<br />

therein are protected by copyright.<br />

Any utilization outsi<strong>de</strong> the strict limits of<br />

copyright legislation without the express<br />

consent of the publisher ist prohibited<br />

and actionable at law. This applies in<br />

particular to reproduction, translations,<br />

microfilming and storage or processing in<br />

electronic systems. The publisher offers<br />

no guarantee that the information in this<br />

volume is accurate and accepts no liability<br />

for consequences <strong>de</strong>riving therefrom. No<br />

liability whatsoever is accepted for perfomance<br />

lag caused by vorce majeure or by<br />

circumstances beyond thepublisher’s control<br />

(e.g. industrial action).<br />

ISSN: 0002-6689<br />

© Giesel Verlag GmbH<br />

Verlagsrepräsentanz / Representatives<br />

Nielsen-Gebiet 1 (Schleswig-Holstein,<br />

Hamburg, Bremen, Nie<strong>de</strong>rsachsen ohne<br />

Osnabrück):<br />

Giesel Verlag GmbH<br />

Tel: 05 11/73 04-145,<br />

Fax: 05 11/73 04-157<br />

E-mail: giesel@giesel.<strong>de</strong><br />

www.giesel-verlag.<strong>de</strong><br />

Nielsen-Gebiet 2 (Nordrhein-Westfalen,<br />

Raum Osnabrück):<br />

Medienbüro Jürgen Wickenhöfer<br />

Minkelsches Feld 39, 46499 Hamminkeln<br />

Tel: 0 28 52/94180, Fax: 0 28 52/94181<br />

E-mail: info@jwmedien.<strong>de</strong><br />

www.jwmedien.<strong>de</strong><br />

Nielsen-Gebiet 3a (Hessen, Saarland,<br />

Rheinland-Pfalz):<br />

multilexa GmbH, publisher services<br />

Unterm Hungerrain 23, 63853 Mömlingen<br />

Tel: 0 60 22/35 14, Fax: 0 60 22/3 80 80<br />

E-mail: thomas.werner@multilexa.<strong>de</strong><br />

www.multilexa.<strong>de</strong><br />

Nielsen-Gebiet 3 b (Ba<strong>de</strong>n-Württemberg):<br />

G. Fahr, Verlags- und Pressebüro<br />

Marktplatz 10, 72654 Neckartenzlingen<br />

Tel: 0 71 72/30 84, Fax: 07172/2 14 78<br />

E-mail: info@verlagsbuero-fahr.<strong>de</strong><br />

Nielsen-Gebiet 4 (Bayern):<br />

G. Fahr, Verlags- und Pressebüro<br />

Marktplatz 10, 72654 Neckartenzlingen<br />

IMPRESSUM / IMPRINT<br />

Tel: 0 71 72/30 84, Fax: 07172/2 14 78<br />

E-mail: info@verlagsbuero-fahr.<strong>de</strong><br />

Nielsen-Gebiet 5, 6 + 7 (Berlin, Mecklenburg-Vorpommern,<br />

Bran<strong>de</strong>nburg,<br />

Sachsen-Anhalt Sachsen, Thüringen):<br />

multilexa GmbH, publisher services<br />

Unterm Hungerrain 23, 63853 Mömlingen<br />

Tel: 0 60 22/35 14, Fax: 0 60 22/3 80 80<br />

E-mail: thomas.werner@multilexa.<strong>de</strong><br />

www.multilexa.<strong>de</strong><br />

Netherlands, Belgium, Luxembourg<br />

BSW International Marketing<br />

Bent S. Wissing<br />

Oestbanega<strong>de</strong> 11 – DK-2100 Kopenhagen<br />

Tel: +4535/385255<br />

Fax: +45 35/385220<br />

bsw@worldonline.dk<br />

Switzerland<br />

JORDI PUBLIPRESS<br />

Postfach 154 · CH-3427 Utzenstorf<br />

Tel. +41 (0)32 / 666 30 90,<br />

Fax +41 (0)32 / 666 30 99<br />

E-Mail: info@jordipublipress.ch<br />

www.jordipublipress.ch<br />

Austria<br />

Verlagsbüro Forstner<br />

Buchbergstraße 15/1, A-1140 Wien<br />

Tel: +43(0)1 / 9 79 71 89<br />

Fax: +43(0)1 / 9 79 1329<br />

E-Mail: forstner.wolfgang@aon.at<br />

Italy<br />

MEDIAPOINT & COMMUNICATIONS<br />

SRL<br />

Corte Lambruschini – Corso Buenos<br />

Aires, 8<br />

Vo piano – Interno 7, I-16129 Genova<br />

Tel: +39(0)10 / 5 70 49 48,<br />

Fax: +39(0)10 / 5 53 00 88<br />

E-mail: info@mediapointsrl.it<br />

www.mediapointsrl.it<br />

USA, Canada, Africa, U.A.E. etc.<br />

John Travis<br />

Rayleigh House<br />

2, Richmond Hill<br />

Richmond, Surrey TW10 6QX<br />

Großbritannien<br />

Tel: +44 (0)7799001442<br />

Fax:+44 (0)1344291072<br />

E-Mail: apt@aluminiumindustry.com<br />

United Kingdom<br />

John Travis<br />

Rayleigh House<br />

2, Richmond Hill<br />

Richmond, Surrey TW10 6QX<br />

Großbritannien<br />

Tel: +44 (0)7799001442<br />

Fax:+44 (0)1344291072<br />

E-Mail: apt@aluminiumindustry.com<br />

Scandinavia and Denmark<br />

BSW International Marketing<br />

Bent S. Wissing<br />

Oestbanega<strong>de</strong> 11 – DK-2100 Kopenhagen<br />

Tel: 0045/35/385255<br />

Fax: 0045 /35/385220<br />

bsw@worldonline.dk<br />

France<br />

DEF & Communication<br />

Axelle Chrismann<br />

48 boulevard Jean Jaurès, F-92110 Clichy<br />

Tel: +33 (0)1 47 30 71 80,<br />

Fax: +33 (0)1 47 30 01 89<br />

E-Mail: achrismann@wanadoo.fr<br />

129


VORSCHAU / PREVIEW<br />

130<br />

Im nächsten Heft<br />

Special: <strong>Alu</strong>minium-Recycling<br />

Überblick über die Sekundäraluminiumindustrie<br />

weltweit<br />

Schmelz- und Gießtechnik: Innovative Anlagen<br />

von Ausrüstern, konstruktive Anfor<strong>de</strong>rungen an<br />

die Anlagenmo<strong>de</strong>rnisierung, Schmelzebehandlung<br />

Unterschiedliche Recyclingansätze in Umweltanalysen<br />

und ihre Konsequenzen<br />

<strong>Alu</strong>minium im Automobil<br />

Gießtechnik im Motorenbau<br />

Marktentwicklung <strong>de</strong>r Automobilindustrie und <strong>de</strong>s<br />

Leichtmetalls <strong>Alu</strong>minium<br />

Economics<br />

Wertanalyse im Downstreamgeschäft <strong>de</strong>r <strong>Alu</strong>miniumindustrie<br />

In the next issue<br />

Special: <strong>Alu</strong>minium recycling<br />

Overview of the global secondary aluminium<br />

industry<br />

Melting and casting technology: innovative plants<br />

from suppliers, <strong>de</strong>sign requirements for plant mo<strong>de</strong>rnisation,<br />

melt treatment<br />

Different recycling approaches in environment<br />

analyses and their consequences<br />

Automotive<br />

Casting technology for engines<br />

Market <strong>de</strong>velopment in the car industry and of the<br />

lightweight metal<br />

Economics<br />

The value engineering in downstream sectors of<br />

mo<strong>de</strong>rn aluminium industry<br />

Forschung:<br />

Entwicklung neuer Duktilitätskriterien von Leichtbauwerkstoffen<br />

in <strong>de</strong>r Fahrzeugentwicklung<br />

Weitere Themen<br />

Aktuelles aus <strong>de</strong>r Branche - Hüttentechnik - Anwendungen<br />

Research<br />

Potentials of new ductility criterions in car <strong>de</strong>velopment<br />

with lightweight materials<br />

Other topics<br />

Latest news from the industry<br />

Smelting technology<br />

Applications<br />

Erscheinungstermin: 5. März 2007<br />

Anzeigenschluss: 16. Februar 2007<br />

Redaktionsschluss: 2. Februar 2007<br />

Day of publication: 5 March 2007<br />

Advertisement <strong>de</strong>adline: 16 February 2007<br />

Editorial <strong>de</strong>adline: 12 February 2007<br />

ALUMINIUM · 1-2/2007


Simply closer to<br />

your products.<br />

Your technology partner in the aluminum industry.<br />

How do we meet the growing <strong>de</strong>mands of our customers<br />

in the aluminum industry worldwi<strong>de</strong>? By supplying<br />

all-inclusive mechatronic solutions. Whatever<br />

you want to manufacture from this material, or what<br />

product quality you aim to achieve – at SMS Demag<br />

we know what it takes. That’s because we listen!<br />

And because we draw on our holistic process know-<br />

SMS DEMAG AG<br />

how and experience. Our plants – whether new facilities,<br />

conversions or revamps – always ensure that our<br />

solutions encompass the latest <strong>de</strong>velopments in aluminum<br />

production and processing.<br />

Always closer to you – SMS Demag.<br />

Eduard-Schloemann-Strasse 4 Phone: +49 (0) 211 881-0 E-mail: communications@sms-<strong>de</strong>mag.com<br />

40237 Düsseldorf, Germany Fax: +49 (0) 211 881-4902 Internet: www.sms-<strong>de</strong>mag.com<br />

Visit us at<br />

METEC 2007<br />

Hall 6, Booth E20<br />

June 12 to 16 in Düsseldorf,<br />

Germany<br />

MEETING your EXPECTATIONS


a<br />

�������������������������������������<br />

���������� �� ����������������������������������<br />

����������������������������������������������<br />

�������������������������<br />

� Consulting and project realization<br />

� Analyzing smelter full potential<br />

� Performing measurement campaigns<br />

� Mo<strong>de</strong>ling Thermal - MagnetoHydroDynamic<br />

� Analyzing Process Control and Signals<br />

� Improving Cell Design<br />

� Measurement <strong>de</strong>vices MHD, Thermal<br />

�������������������������<br />

��������������������������<br />

��������������<br />

�����������<br />

����������������<br />

���������������<br />

���������������������<br />

��������������<br />

�����������<br />

����������������<br />

��������������<br />

Improve your smelter performance ...<br />

�<br />

�����<br />

������������<br />

��������������������������<br />

��������������<br />

�����������<br />

����������������<br />

�������������

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!