10.02.2013 Views

Influence of the natural aluminium oxide layer on ... - ALU-WEB.DE

Influence of the natural aluminium oxide layer on ... - ALU-WEB.DE

Influence of the natural aluminium oxide layer on ... - ALU-WEB.DE

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Ebner<br />

Special Editi<strong>on</strong><br />

European Aluminium C<strong>on</strong>gress 2011<br />

22 to 23 November 2011, Maritim Hotel Düsseldorf<br />

TECHNOLOGIES FOR THE<br />

<strong>ALU</strong>MINIUM INDUSTRY<br />

Adressing market requirements<br />

in alumin-<br />

ium flat rolled products<br />

Heavy duty extrusi<strong>on</strong><br />

presses for large<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile applicati<strong>on</strong>s<br />

Soldering and brazing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> and its alloys


Trust...<br />

�������������������������������������������<br />

��������������������������������������������������������<br />

���������������������������������������������������������<br />

����������������������������������������������������������<br />

�����������������������������������������������������������<br />

�������������������������������������������������������������<br />

�����������������������������������������������������������<br />

SMS SIEMAG AG<br />

���������������������������� ������������������������� �������� �����������������������������<br />

�������������������������� ����� ��������������������� ����������������������������<br />

����������������������������������������������������������<br />

�������������������������������������������������������<br />

���������������������������������������������������������������<br />

�������������������������������������<br />

��������������������������������������������


Christian Wellner<br />

Executive Director <str<strong>on</strong>g>of</str<strong>on</strong>g> GDA<br />

Gesamtverband der Aluminiumindustrie<br />

e.V. (German Aluminium<br />

Associati<strong>on</strong>)<br />

Aluminium industry<br />

c<strong>on</strong>tinuing to grow<br />

in future<br />

Despite <str<strong>on</strong>g>the</str<strong>on</strong>g> current crisis in <str<strong>on</strong>g>the</str<strong>on</strong>g> banking<br />

and finance sector, <str<strong>on</strong>g>the</str<strong>on</strong>g> global <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

industry is c<strong>on</strong>tinuing to look optimistical-<br />

ly to <str<strong>on</strong>g>the</str<strong>on</strong>g> future. The industry is still <strong>on</strong> a<br />

path <str<strong>on</strong>g>of</str<strong>on</strong>g> solid growth despite a weakening<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> growth dynamics and a dampener<br />

being put <strong>on</strong> business expectati<strong>on</strong>s.<br />

Forecasts for <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> c<strong>on</strong>tinue to be<br />

optimistic. The dynamic development is<br />

closely linked to <str<strong>on</strong>g>the</str<strong>on</strong>g> innovative capability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sector and <str<strong>on</strong>g>the</str<strong>on</strong>g> metal’s beneficial<br />

properties. Aluminium has established itself<br />

in numerous user markets. Whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r it<br />

be in <str<strong>on</strong>g>the</str<strong>on</strong>g> most important market, <str<strong>on</strong>g>the</str<strong>on</strong>g> transport<br />

sector, in mechanical engineering,<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>ics sector or in packaging,<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> companies have c<strong>on</strong>tinued to<br />

push technological development forward<br />

and opened up new uses and fields <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong><br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> lightweight metal again<br />

and again. The worldwide c<strong>on</strong>sumpti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> will c<strong>on</strong>tinue to grow in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

next 10 to 15 years, with an annual global<br />

c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some 70 milli<strong>on</strong> t<strong>on</strong>nes<br />

expected by around 2020. Growing demand<br />

from Asia and <str<strong>on</strong>g>the</str<strong>on</strong>g> important user<br />

markets – automotive, mechanical engineering,<br />

building and c<strong>on</strong>structi<strong>on</strong>, packaging<br />

and solar energy – will help <str<strong>on</strong>g>the</str<strong>on</strong>g> lightweight<br />

metal achieve c<strong>on</strong>tinuous growth.<br />

Growing c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> will<br />

result in enormous importance being given<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> innovative process<br />

technologies and plant c<strong>on</strong>cepts for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

producti<strong>on</strong> and processing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g>.<br />

More complex material properties demand<br />

a high degree <str<strong>on</strong>g>of</str<strong>on</strong>g> technological expertise<br />

FOREWORD<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> special soluti<strong>on</strong>s.<br />

Future technological developments will<br />

also focus <strong>on</strong> resource efficiency and potential<br />

savings <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 and energy in all<br />

processes. In future, too, we must repeatedly<br />

develop material properties fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r,<br />

create new products and optimise producti<strong>on</strong><br />

processes via investments in applicati<strong>on</strong>-oriented<br />

research and development.<br />

What innovative technologies can<br />

equipment suppliers <str<strong>on</strong>g>of</str<strong>on</strong>g>fer <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

industry? Will new processes or material<br />

developments open up new markets for<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g>? What new trends are emerging?<br />

Experts from <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> industry<br />

will be discussing <str<strong>on</strong>g>the</str<strong>on</strong>g>se and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r questi<strong>on</strong>s<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g>ir equipment partners and suppliers<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> European Aluminium C<strong>on</strong>gress<br />

‘Technologies for <str<strong>on</strong>g>the</str<strong>on</strong>g> Aluminium Industry’<br />

<strong>on</strong> 22-23 November 2011 in Düsseldorf.<br />

It provides <str<strong>on</strong>g>the</str<strong>on</strong>g> equipment suppliers and<br />

technology partners <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> producing<br />

and processing industry with a comprehensive<br />

platform to present and discuss<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir latest developments.<br />

The c<strong>on</strong>gress programme <str<strong>on</strong>g>of</str<strong>on</strong>g>fers <str<strong>on</strong>g>the</str<strong>on</strong>g> opportunity<br />

to exchange informati<strong>on</strong> and<br />

have detailed discussi<strong>on</strong>s with representatives<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> European <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> industry,<br />

its equipment manufacturers and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

suppliers.<br />

I wish all EAC c<strong>on</strong>gress participants an<br />

informative programme <str<strong>on</strong>g>of</str<strong>on</strong>g> presentati<strong>on</strong>s<br />

and I hope <str<strong>on</strong>g>the</str<strong>on</strong>g>y enjoy interesting discussi<strong>on</strong>s<br />

and make valuable c<strong>on</strong>tacts during<br />

both days <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>gress in Düsseldorf.<br />

<strong>ALU</strong>MINIUM · XX/2011 EAC CONGRESS 2011 3<br />


FOREWORD<br />

Aluminium industry c<strong>on</strong>tinuing to grow in future ............................... 3<br />

SESSION ROLLING INDUSTRY<br />

Foil slitting technology – an integrative approach ............................. 6<br />

Focus <strong>on</strong> rolling mill efficiency: design and c<strong>on</strong>trol...........................10<br />

Batch-type and c<strong>on</strong>tinuous floater furnace facilities for <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

alloy strip ..................................................................................13<br />

Addressing market requirements in <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> flat products ...............16<br />

SESSION MEASURING & CONTROL<br />

L<strong>on</strong>ger campaigns with improved m<strong>on</strong>olithics for lining<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> melt-hold furnaces .......................................................19<br />

Optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> rolling mill with a high speed<br />

X-ray thickness gauge ..................................................................22<br />

State-<str<strong>on</strong>g>of</str<strong>on</strong>g>-<str<strong>on</strong>g>the</str<strong>on</strong>g>-art casthouse producti<strong>on</strong> management ..........................26<br />

M<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> extrusi<strong>on</strong> dies cleaning process<br />

by an optic sensor .......................................................................28<br />

SESSION EXTRUSION<br />

<str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> raw material c<strong>on</strong>stituti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gloss alloy-type extrusi<strong>on</strong> billets – a report from practice ................. 31<br />

Heavy duty extrusi<strong>on</strong> presses for large pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile applicati<strong>on</strong>s .................34<br />

Extrusi<strong>on</strong> line from a single source for intelligent pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles ............. 36/38<br />

Integrated processing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles subsequent to<br />

hot extrusi<strong>on</strong> ..............................................................................40<br />

Flexible automated material flow in extrusi<strong>on</strong> operati<strong>on</strong>s ...................44<br />

SESSION APPLICATION-ORIENTED TECHNOLOGIES<br />

Laser cleaning and surface modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> –<br />

first step to a green plant ............................................................48<br />

Corrosi<strong>on</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> materials in aqueous<br />

cleaning soluti<strong>on</strong>s .......................................................................50<br />

Soldering and brazing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> and its alloys ............................54<br />

<str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>natural</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> <strong>on</strong> brazeability ............57<br />

SESSION MELTING, RECYCLING & HEAT TREATMENT<br />

The new generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> heat treatment<br />

plants – a vanguard c<strong>on</strong>cept ........................................................60<br />

New standards in gas-fired heating <str<strong>on</strong>g>of</str<strong>on</strong>g> moulds, ladles, launders<br />

and melting furnaces through flameless burner technology ................63<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> gaseous pyrolysis products <strong>on</strong> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> recycling yield ......66<br />

SESSION SOFTWARE & SIMULATION<br />

Optimizing <str<strong>on</strong>g>the</str<strong>on</strong>g> energy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coil annealing<br />

furnaces by ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> annealing process ............70<br />

Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> seam welds <str<strong>on</strong>g>of</str<strong>on</strong>g> industrial extrusi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles ...72<br />

Imprint ......................................................................................53<br />

List <str<strong>on</strong>g>of</str<strong>on</strong>g> advertisers<br />

CONTENTS<br />

<strong>ALU</strong>MINIUM · XX/2011 EAC CONGRESS 2011 5<br />

6<br />

38<br />

50<br />

F. W. Brökelmann Aluminiumwerk<br />

GmbH & Co. KG<br />

BWG Bergwerk- und Walzwerk-<br />

61<br />

Maschinenbau GmbH<br />

Danieli Fröhling Josef Fröhling<br />

4<br />

GmbH & Co.KG 15<br />

Drache Umwelttechnik GmbH 71<br />

Ebner Industrie<str<strong>on</strong>g>of</str<strong>on</strong>g>enbau GmbH, Austria 18/19<br />

Eisenmann AG<br />

Kampf Schneid- und<br />

21<br />

Wickeltechnik GmbH & Co. KG<br />

Kind & Co. Edelstahlwerk<br />

25<br />

Kommanditgesellschaft 45<br />

LOI Thermprocess GmbH 9<br />

S+C Extrusi<strong>on</strong> Tooling Soluti<strong>on</strong>s GmbH 35<br />

SMS Meer GmbH 76<br />

SMS Siemag AG 2


ROLLING INDUSTRY<br />

Foil slitting technology – an integrative approach<br />

Walter Brockhorst and Gabriele Barten, Achenbach Buschhütten GmbH<br />

System supplier Achenbach Buschhütten<br />

Achenbach sees itself as system supplier<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> machinery for producing n<strong>on</strong>-ferrous<br />

metal rolling mills and foil slitting machines.<br />

Achenbach’s initial communicati<strong>on</strong><br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g>ir customers is threefold:<br />

‘We are <str<strong>on</strong>g>the</str<strong>on</strong>g> Specialists!’, ‘We are Leaders<br />

in technology and quality!’ and ‘We are<br />

your Partner!’ The brandname Achenbach<br />

provides orientati<strong>on</strong> and security<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> customers. Achenbach is a familyowned<br />

and family-run company having<br />

approx. 310 employees. Achenbach rolling<br />

mills and machinery are operated in<br />

nearly 60 countries all over <str<strong>on</strong>g>the</str<strong>on</strong>g> world.<br />

Company development and missi<strong>on</strong><br />

Our missi<strong>on</strong> is ‘Technology for Future C<strong>on</strong>cepts’,<br />

which c<strong>on</strong>trols and coordinates think-<br />

ing and acting at Achenbach. Achenbach has<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> technological know-how to realize <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

future ideas <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir customers for producing<br />

strips, foils as well as foil products in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

form <str<strong>on</strong>g>of</str<strong>on</strong>g> most modern machinery. The aim is<br />

to provide our customers with first-class and<br />

tailor-made rolling mills and machinery in<br />

order to open up success potentials for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

company’s future. High machine performance<br />

and numerous references have ensured <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

excellent reputati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Achenbach:<br />

• Established as a hammer mill in 1452,<br />

Achenbach has been manufacturing metal<br />

rolling mills since 1888. After <str<strong>on</strong>g>the</str<strong>on</strong>g> Sec<strong>on</strong>d<br />

World War, Achenbach became <str<strong>on</strong>g>the</str<strong>on</strong>g> specialist<br />

for n<strong>on</strong>-ferrous metals, such as <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> or<br />

copper and copper alloys. Achenbach is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

world market leader for <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> thin-strip<br />

and foil rolling mills for more than 20 years<br />

now.<br />

• On this basis, Achenbach extended its product<br />

range in 2006. First came <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> foil<br />

doublers, separators and slitting machines<br />

for <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> foils, <str<strong>on</strong>g>the</str<strong>on</strong>g>n slitting machines<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verting industry (slitting machines<br />

for m<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>oils, laminates, n<strong>on</strong>-woven as well<br />

as all adhesive and n<strong>on</strong>-adhesive materials)<br />

were added. The c<strong>on</strong>vincing market entry was<br />

facilitated by <str<strong>on</strong>g>the</str<strong>on</strong>g> trend-setting new developments<br />

with regard to design and c<strong>on</strong>structi<strong>on</strong>.<br />

Nearly 20 machines <str<strong>on</strong>g>of</str<strong>on</strong>g> this type have already<br />

been successfully commissi<strong>on</strong>ed.<br />

Integrative technology<br />

As a system supplier, Achenbach follows an<br />

integrative approach to <str<strong>on</strong>g>of</str<strong>on</strong>g>fer overall technical<br />

soluti<strong>on</strong>s. ‘Everything from <strong>on</strong>e single source’<br />

gives <str<strong>on</strong>g>the</str<strong>on</strong>g> chance to optimally design <str<strong>on</strong>g>the</str<strong>on</strong>g> pro-<br />

ducti<strong>on</strong> process as a whole, from <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling<br />

process via <str<strong>on</strong>g>the</str<strong>on</strong>g> slitting process up to <str<strong>on</strong>g>the</str<strong>on</strong>g> fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

processing.<br />

Achenbach develops and manufactures<br />

rolling mills, slitting machines as well as important<br />

auxiliary systems <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir single premises<br />

in Buschhütten. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> knowledge regarding<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> rolling mill is decisive for developing<br />

trendsetting slitting machines <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e<br />

hand. Vice versa, experiences in winding and<br />

slitting <str<strong>on</strong>g>of</str<strong>on</strong>g> rolled and even c<strong>on</strong>verting materials<br />

give valuable informati<strong>on</strong> for designing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rolling mills. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> knowledge<br />

from manufacture, assembly and commissi<strong>on</strong>ing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this machinery form <str<strong>on</strong>g>the</str<strong>on</strong>g> basis<br />

for future developments.<br />

By covering all four fields, Achenbach deduces<br />

synergy effects in two directi<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> customers:<br />

1. Synergy effects between <str<strong>on</strong>g>the</str<strong>on</strong>g>oretic design<br />

and practical realizati<strong>on</strong>: support and extensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> technology and quality leadership. It is<br />

a questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> trustworthiness to not <strong>on</strong>ly design<br />

machines, but also to manufacture <str<strong>on</strong>g>the</str<strong>on</strong>g>m.<br />

2. Synergy effects between processing and<br />

c<strong>on</strong>verting industry: c<strong>on</strong>tinuously growing demands<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slitting products<br />

in combinati<strong>on</strong> with highly sensitive materials<br />

underline <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> a mutual knowhow<br />

transfer.<br />

This is exactly what Achenbach means by<br />

an integrative approach in foil slitting technology.<br />

The reproducibility due to <str<strong>on</strong>g>the</str<strong>on</strong>g> overall<br />

data flow and <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material<br />

flow within <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> customers’<br />

benefit.<br />

By meeting <str<strong>on</strong>g>the</str<strong>on</strong>g>se demands, Achenbach is<br />

qualified as a supplier not <strong>on</strong>ly for first-class<br />

stand-al<strong>on</strong>e systems but also for highly-complex<br />

machinery ‘<strong>on</strong> greenfield sites’ or <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

modernizati<strong>on</strong>. With more than 120 years<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> experience in mechanical engineering,<br />

Achenbach is a qualified partner for sophisticated<br />

special requirements and is traditi<strong>on</strong>ally<br />

always ready to face tricky modernizati<strong>on</strong><br />

projects.<br />

Market requirements<br />

With respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> different kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> foil slitting<br />

machines its demand can be qualitatively<br />

characterized as follows: growing technical<br />

requirements toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with more specific<br />

desires and needs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> customers, define a<br />

highly-complex c<strong>on</strong>text. This is reflected in<br />

6 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011<br />

Images: Achenbach


<str<strong>on</strong>g>the</str<strong>on</strong>g> following developments and desires <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

customers:<br />

• c<strong>on</strong>tinuously higher speeds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> single<br />

machines<br />

• fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-productive times<br />

• highly sensitive materials, which require a<br />

more specialized design<br />

• trend to smaller batch sizes<br />

• increasing demand for integrated<br />

additi<strong>on</strong>al functi<strong>on</strong>s such as simultaneous<br />

oiling or perforati<strong>on</strong> for fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r processing<br />

• growing importance <str<strong>on</strong>g>of</str<strong>on</strong>g> resource efficiency,<br />

here reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy c<strong>on</strong>sumpti<strong>on</strong><br />

• high operati<strong>on</strong>al safety as strict side<br />

c<strong>on</strong>diti<strong>on</strong>.<br />

C<strong>on</strong>siderable c<strong>on</strong>flicts <str<strong>on</strong>g>of</str<strong>on</strong>g> objectives result in<br />

optimizati<strong>on</strong> problems which require innovative<br />

soluti<strong>on</strong>s.<br />

Achenbach Optifoil product line<br />

Achenbach’s resp<strong>on</strong>se is a system <str<strong>on</strong>g>of</str<strong>on</strong>g> nine basic<br />

machine types: As ‘Optifoil’ product line,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se machines types are <str<strong>on</strong>g>the</str<strong>on</strong>g> basis to fulfil all<br />

slitting jobs for a wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> materials:<br />

tailored to <str<strong>on</strong>g>the</str<strong>on</strong>g> individual customer’s needs,<br />

highly-productive and in top quality, especially<br />

with regard to <str<strong>on</strong>g>the</str<strong>on</strong>g> straight-edged finished<br />

roll rewinding and absolutely clean cuts:<br />

• Optifoil Varioslit – <str<strong>on</strong>g>the</str<strong>on</strong>g> flexible all-rounder<br />

for all foil slitting jobs<br />

• Optifoil Varioslit Plus – <str<strong>on</strong>g>the</str<strong>on</strong>g> high-produc-<br />

tive all-rounder for all foil slitting jobs<br />

• Optifoil Fibreslit – <str<strong>on</strong>g>the</str<strong>on</strong>g> specialist for slitting<br />

tasks in <str<strong>on</strong>g>the</str<strong>on</strong>g> paper and textile industry<br />

• Optifoil Jumboslit – <str<strong>on</strong>g>the</str<strong>on</strong>g> specialist for all<br />

slitting jobs <str<strong>on</strong>g>of</str<strong>on</strong>g> jumbo rolls<br />

Optifoil Jumboslit<br />

• Optifoil Inspector – <str<strong>on</strong>g>the</str<strong>on</strong>g> specialist for<br />

surface c<strong>on</strong>trol<br />

• Optifoil Lightslit – <str<strong>on</strong>g>the</str<strong>on</strong>g> slitting specialist for<br />

thin metal foils<br />

• Optifoil Heavyslit – <str<strong>on</strong>g>the</str<strong>on</strong>g> slitting specialist<br />

for thick metal foils and large roll diameters<br />

• Optifoil Separator and Doubler for<br />

producing even thinnest metal foils.<br />

The brand name Achenbach generally represents<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following quality features:<br />

• complete reliability resulting from<br />

superior quality <str<strong>on</strong>g>of</str<strong>on</strong>g> all comp<strong>on</strong>ents<br />

• first-class measuring, drive and c<strong>on</strong>trol<br />

comp<strong>on</strong>ents<br />

• energy-saving and emissi<strong>on</strong>-minimized<br />

engineering<br />

• maximum availability by <strong>on</strong>line fault<br />

diagnosis as well as service and support<br />

during <str<strong>on</strong>g>the</str<strong>on</strong>g> whole operati<strong>on</strong>al period<br />

• effective operati<strong>on</strong> and easy maintenance<br />

due to modular design.<br />

Success factors in foil slitting technology<br />

In principal five key factors are setting <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

trends for <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> slitting technology:<br />

(1) Optimum slitting quality at highest speeds<br />

Robust design: It is <strong>on</strong>e prec<strong>on</strong>diti<strong>on</strong> and is<br />

mainly reflected in <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical design <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> single comp<strong>on</strong>ents such as bottom knife<br />

shaft, bottom knife slitting tools and top knife<br />

selecti<strong>on</strong> as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slitting<br />

tool diameter; in both cases, a special design is<br />

inevitable. Regarding <str<strong>on</strong>g>the</str<strong>on</strong>g> design <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slitting<br />

tools, a too high moment <str<strong>on</strong>g>of</str<strong>on</strong>g> inertia is to be<br />

avoided <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e hand. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand,<br />

ROLLING INDUSTRY<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> smooth run <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slitting unit in c<strong>on</strong>tinuous<br />

operati<strong>on</strong> at maximum speeds is to be<br />

secured.<br />

Manifold fine adjustment: The fine adjustment<br />

with a slitting geometry tailored to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

respective material is decisive for <str<strong>on</strong>g>the</str<strong>on</strong>g> excellent<br />

slitting quality; for this purpose Achenbach<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fers opti<strong>on</strong>ally an electr<strong>on</strong>ic setting device<br />

realized by a positi<strong>on</strong>ing device. By means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this or <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 4-axes-setting, <str<strong>on</strong>g>the</str<strong>on</strong>g> slitting tools<br />

can be adapted even to <str<strong>on</strong>g>the</str<strong>on</strong>g> most difficult material<br />

features in <str<strong>on</strong>g>the</str<strong>on</strong>g> setup time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> machine.<br />

This manifold fine adjustments are especially<br />

important for highly-sensitive materials such<br />

as s<str<strong>on</strong>g>of</str<strong>on</strong>g>t <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> or multi-<str<strong>on</strong>g>layer</str<strong>on</strong>g> composite<br />

materials.<br />

Highest precisi<strong>on</strong>: Even if highest precisi<strong>on</strong><br />

with slitting tolerances < 1/100 mm is required,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> slitting cassettes is advantageous to<br />

guarantee <str<strong>on</strong>g>the</str<strong>on</strong>g> perfect cut at high speeds. This<br />

especially goes for slitting tasks with higher<br />

material thickness.<br />

(2) Highest reliability at<br />

maximum machine utilizati<strong>on</strong><br />

This is guaranteed by <str<strong>on</strong>g>the</str<strong>on</strong>g> robust design <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> machine frame as any kind <str<strong>on</strong>g>of</str<strong>on</strong>g> vibrati<strong>on</strong><br />

is safely avoided. The principle <str<strong>on</strong>g>of</str<strong>on</strong>g> stability is<br />

also a must-have for purchase parts, i.e. <strong>on</strong>ly<br />

high-class quality drive comp<strong>on</strong>ents, slitting<br />

and winding tools, etc. are used. The highly<br />

efficient use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> installed energy performance<br />

as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> optimum interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

mechanical, electric and hydraulic modules<br />

is ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r advantage. The integrative quality<br />

c<strong>on</strong>trol according to DIN ISO 9001, which<br />

c<strong>on</strong>tinuously checks <str<strong>on</strong>g>the</str<strong>on</strong>g> in-house manufactured<br />

comp<strong>on</strong>ents as well as purchase parts,<br />

represents <str<strong>on</strong>g>the</str<strong>on</strong>g> first-class mechanical engineering<br />

Achenbach is standing for. The customers’<br />

benefits are extremely high machine speeds<br />

and process stability.<br />

(3) Quick finished roll handling<br />

Highest process speeds are <str<strong>on</strong>g>the</str<strong>on</strong>g> first factor for<br />

high productivity, low n<strong>on</strong>-productive times<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d. With an increasing degree <str<strong>on</strong>g>of</str<strong>on</strong>g> technology<br />

and decreasing batch sizes, <str<strong>on</strong>g>the</str<strong>on</strong>g> aim <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-productive times becomes<br />

more and more important. That means to<br />

facilitate an optimum handling cycle for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

customer. Achenbach <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>of</str<strong>on</strong>g>fers a wide<br />

product range including roll handling, roll turret<br />

and roll stripping devices, which simplify<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> handling by combining automatic material<br />

clamping and integrated cross-cutting units. In<br />

order to quicken <str<strong>on</strong>g>the</str<strong>on</strong>g> finished roll handling<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re are special handling devices for heavy<br />

weights and for small rolls. Perfectly combined,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> result is a fully-automatic handling cycle<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 7


ROLLING INDUSTRY<br />

Optifoil Heavyslit with rotary frame<br />

for unloading and immediately palletizing with<br />

a defined schedule. In any case, <str<strong>on</strong>g>the</str<strong>on</strong>g> reducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> handling times is <str<strong>on</strong>g>the</str<strong>on</strong>g> customer’s benefit.<br />

(4) Shortest times for material changes<br />

The customers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slitting machine operators<br />

increasingly demand ‘Just-in-Time Deliveries’.<br />

Small batch sizes and short reacti<strong>on</strong> times<br />

are becoming a competitive advantage: To be<br />

competitive it is not enough to be good – you<br />

must be flexible. Achenbach has accepted this<br />

challenge. With <str<strong>on</strong>g>the</str<strong>on</strong>g> tailor-made machines <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Optifoil product line, <str<strong>on</strong>g>the</str<strong>on</strong>g> customers can<br />

process smaller batches <str<strong>on</strong>g>of</str<strong>on</strong>g> various slitting<br />

products with highest productivity. While <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

slitter has to quickly adapt to various slitting<br />

widths, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> foil separators focus<br />

<strong>on</strong> different material thicknesses and material<br />

widths.<br />

The automatic material threading device is<br />

<strong>on</strong>e example for modules guaranteeing that,a<br />

splice table with adhesive tape unwinder is<br />

ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r <strong>on</strong>e. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r examples are: recipe<br />

storage for various slitting widths and winding<br />

data or a combined drive technology with<br />

two motors <strong>on</strong> <strong>on</strong>e winding shaft. By means<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> that, foil materials with different strip thicknesses<br />

can be separated with c<strong>on</strong>tinuous winding<br />

tightness; throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> entire diameter<br />

range as well as throughout a large strip width<br />

range. With <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> this combined drive<br />

c<strong>on</strong>cept, different and highly sensitive materials<br />

can be run <strong>on</strong> <strong>on</strong>e single-slitter at c<strong>on</strong>tinuous<br />

winding tightness.<br />

By using slitting cassettes or an automatic<br />

knife shaft c<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g> handling times as well<br />

shortened. Auxiliary devices, which simplify<br />

and automate <str<strong>on</strong>g>the</str<strong>on</strong>g> core positi<strong>on</strong>ing, finally<br />

round <str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> products for shortening<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> set-up times.<br />

(5) Custom-built machinery<br />

In order to optimally support <str<strong>on</strong>g>the</str<strong>on</strong>g> customers in<br />

meeting <str<strong>on</strong>g>the</str<strong>on</strong>g>ir special needs, it is important to<br />

resp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> customers’ desires. By <str<strong>on</strong>g>the</str<strong>on</strong>g> way,<br />

some custom-built comp<strong>on</strong>ents has been later<br />

taken as basic design:<br />

• Energy-recovering unwinder (hybrid winding):<br />

While <str<strong>on</strong>g>the</str<strong>on</strong>g> braking power was, for example,<br />

formerly dissipated via braking resistors,<br />

this power is today directly resupplied into<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> winding drives and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> energy<br />

c<strong>on</strong>sumpti<strong>on</strong> is reduced.<br />

• X-frames for material fine adjustment: Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

custom-built design is <str<strong>on</strong>g>the</str<strong>on</strong>g> fine adjustment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material web by a X-frame additi<strong>on</strong>ally<br />

installed in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slitting unit.<br />

With its quick reacti<strong>on</strong> to material waste,<br />

as <str<strong>on</strong>g>the</str<strong>on</strong>g> set-up time for material change are Optifoil Heavyslit with automatic slitting gap setting<br />

such a X-frame supports <str<strong>on</strong>g>the</str<strong>on</strong>g> normal side edge<br />

c<strong>on</strong>trol by an absolutely precise material web<br />

alignment directly at <str<strong>on</strong>g>the</str<strong>on</strong>g> cutting knife. This<br />

auxiliary device is recommended especially<br />

for sensitive materials.<br />

• Oil applicator: The opti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>ally<br />

installing an oil applicator is just <strong>on</strong>e example<br />

for an ‘added value’ in slitting technology.<br />

During <str<strong>on</strong>g>the</str<strong>on</strong>g> slitting process, <str<strong>on</strong>g>the</str<strong>on</strong>g> material web is<br />

covered with oil, which is required when <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

slitting process is followed by a deep-drawing<br />

process.<br />

• Double-face strip inspecti<strong>on</strong>: The doubleface<br />

strip inspecti<strong>on</strong> is <strong>on</strong>e fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r custombuilt<br />

comp<strong>on</strong>ent. This system scans <str<strong>on</strong>g>the</str<strong>on</strong>g> surface<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coil and analyses its data. Thus, faults<br />

can be specifically and quickly eliminated for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> inspected coil. As a preventative measure,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> process can be optimized <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inspecti<strong>on</strong> data.<br />

(6) L<strong>on</strong>g-term partnership<br />

Traditi<strong>on</strong>ally, Achenbach c<strong>on</strong>siders itself to be<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> partner <str<strong>on</strong>g>of</str<strong>on</strong>g> its customers. Being a partner<br />

means establishing and maintaining l<strong>on</strong>g-term<br />

business relati<strong>on</strong>s. A product understanding<br />

going bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> delivery <str<strong>on</strong>g>of</str<strong>on</strong>g> first-class machinery<br />

is part <str<strong>on</strong>g>of</str<strong>on</strong>g> this philosophy and comprises<br />

also <str<strong>on</strong>g>the</str<strong>on</strong>g> commitment for maximum<br />

availability throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> whole operati<strong>on</strong>al<br />

period. This is guaranteed by <str<strong>on</strong>g>the</str<strong>on</strong>g> Achenbach<br />

Service & Support for maintaining <str<strong>on</strong>g>the</str<strong>on</strong>g> machine<br />

performance: as immediate measures in<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> breakdown, as preventative measures<br />

or as optimizati<strong>on</strong> measures; trusted support<br />

staff is always available.<br />

Rolling mills and foil slitting machines are<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> core parts in our customers’ producti<strong>on</strong>.<br />

Their quality is a decisive factor for our customers’<br />

competitiveness in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own markets.<br />

For many years, <str<strong>on</strong>g>the</str<strong>on</strong>g> Achenbach brand mark<br />

has already been known for its n<strong>on</strong>-ferrous<br />

rolling mills all over <str<strong>on</strong>g>the</str<strong>on</strong>g> world. This is so<strong>on</strong><br />

to follow for <str<strong>on</strong>g>the</str<strong>on</strong>g> Optifoil foil slitting machines<br />

– for <str<strong>on</strong>g>the</str<strong>on</strong>g> customers’ benefit.<br />

�<br />

8 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


��������������������������<br />

�����������������<br />

���������������������������������������������������<br />

� �����������������������������<br />

� �����������<br />

� ������������������������<br />

� ����������������������������<br />

� �������������������������<br />

����������������������������������������������������������������<br />

�������������������������������������������������������������������������������������������������������<br />

�����������������<br />

�������������������<br />

�������������������<br />

���������<br />

� ������������<br />

� �������������������<br />

� �������������������������<br />

� ����������������������<br />

� ������������������


ROLLING INDUSTRY<br />

Focus <strong>on</strong> rolling mill efficiency: design and c<strong>on</strong>trol<br />

Rainer Neukant, Achenbach Buschhütten GmbH<br />

L<strong>on</strong>g time, <str<strong>on</strong>g>the</str<strong>on</strong>g> challenge in rolling mill<br />

building was to c<strong>on</strong>tinuously increase <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

productivity <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e hand and <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> tolerances <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

all kind <str<strong>on</strong>g>of</str<strong>on</strong>g> flat rolled products. Today,<br />

setting <str<strong>on</strong>g>the</str<strong>on</strong>g> course with innovative soluti<strong>on</strong>s<br />

means more and more focusing <strong>on</strong><br />

rolling mill efficiency, with respect to<br />

design and c<strong>on</strong>trol. In this c<strong>on</strong>text it is <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

high importance to particularly aim <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

development work at both, machinery<br />

efficiency and resources efficiency. The<br />

respective fields <str<strong>on</strong>g>of</str<strong>on</strong>g> innovati<strong>on</strong>s are manifold:<br />

simulati<strong>on</strong>, mechatr<strong>on</strong>ics, process<br />

models, use <str<strong>on</strong>g>of</str<strong>on</strong>g> resources and not least<br />

service and support, to menti<strong>on</strong> <strong>on</strong>ly a<br />

few. All <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se innovative search fields<br />

are to be c<strong>on</strong>sidered in an integrative approach,<br />

ensuring at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time high<br />

productivity, best quality and <str<strong>on</strong>g>the</str<strong>on</strong>g> defined<br />

producti<strong>on</strong> flexibility.<br />

1 Machinery efficiency<br />

1.1 Computati<strong>on</strong>al Fluid Dynamics (CDF)<br />

In a rolling mill enormous quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> media<br />

(hydraulic, cooling and lubricati<strong>on</strong> fluids and<br />

exhaust air) must be handled. The fume hood<br />

as an example illustrates that it is possible to<br />

be innovative even with regard to a relatively<br />

simple part <str<strong>on</strong>g>of</str<strong>on</strong>g> machinery. A fume hood is<br />

needed to collect <str<strong>on</strong>g>the</str<strong>on</strong>g> exhaust air loaded with<br />

gaseous rolling oil. There are several reas<strong>on</strong>s<br />

to design this part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling mill exhaust air<br />

purificati<strong>on</strong> system as efficient as possible:<br />

• guaranteeing best c<strong>on</strong>diti<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

operators working closely to <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling<br />

mill and to fulfil envir<strong>on</strong>mental, health<br />

and safety requirements<br />

• maximum recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> rolling oil from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

waste air to comply with ec<strong>on</strong>omic targets.<br />

The classic fume hood design is based <strong>on</strong> both,<br />

experience values and relatively simple geometric<br />

aspects. Today, competitive simulati<strong>on</strong><br />

programs are available allowing more detailed<br />

views into fluid mechanics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se exhaust air<br />

purificati<strong>on</strong> systems. The knowledge gained<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> CFD simulati<strong>on</strong>s results in fluid-optimized<br />

design features to increase <str<strong>on</strong>g>the</str<strong>on</strong>g> exhaust<br />

efficiency and at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy c<strong>on</strong>sumpti<strong>on</strong>.<br />

1.2 Chemical CAD<br />

The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physical / chemical simulati<strong>on</strong><br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware is a fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r example for advanced<br />

engineering methods to improve <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> rolling mills. Particularly for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

field <str<strong>on</strong>g>of</str<strong>on</strong>g> exhaust air purificati<strong>on</strong> systems a<br />

physical and chemical process simulati<strong>on</strong> tool<br />

forms <str<strong>on</strong>g>the</str<strong>on</strong>g> basis for <str<strong>on</strong>g>the</str<strong>on</strong>g> optimized design <str<strong>on</strong>g>of</str<strong>on</strong>g> today’s<br />

‘Airpure’ systems.<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se CAD tools, new<br />

Airpure systems can be perfectly designed<br />

while existing systems can be modified for<br />

better performance <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> shortest term. By<br />

means <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware, <str<strong>on</strong>g>the</str<strong>on</strong>g> effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rolling oil comp<strong>on</strong>ents and additives <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exhaust air can be previously tested and recommendati<strong>on</strong>s<br />

to improve a time-c<strong>on</strong>suming<br />

and expensive exhaust air purificati<strong>on</strong> can be<br />

made at <str<strong>on</strong>g>the</str<strong>on</strong>g> earliest stage.<br />

1.3 Mechatr<strong>on</strong>ics<br />

Setting <str<strong>on</strong>g>the</str<strong>on</strong>g> course for fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r developments<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> customers’ benefit, an integrative approach<br />

is required c<strong>on</strong>sidering at <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

time mechanical as well as electr<strong>on</strong>ic aspects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> engineering. The ‘Win-SprayS’ rolling oil<br />

distributi<strong>on</strong> system is just <strong>on</strong>e example for it<br />

reflected by <str<strong>on</strong>g>the</str<strong>on</strong>g> following soluti<strong>on</strong>s:<br />

• Patented valve design: best reliability is<br />

achieved by eliminating pneumatic comp<strong>on</strong>ents,<br />

i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> valve is just electrically actuated.<br />

All moving parts that are subject to wear and<br />

tear are integrated in a cartridge that can be<br />

simply replaced from <str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>t. Before introducti<strong>on</strong><br />

into <str<strong>on</strong>g>the</str<strong>on</strong>g> market, <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this valve series was comprehensively verified<br />

in test runs <str<strong>on</strong>g>of</str<strong>on</strong>g> 10,000,000 switching cycles.<br />

• Different valve sizes: two sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> spraying<br />

valves are available to cover <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> rolling<br />

oil spraying systems from cold strip to foil<br />

rolling mills. The smaller valve is optimized<br />

for narrow 26 mm spacing in <str<strong>on</strong>g>the</str<strong>on</strong>g> spraying bar<br />

and applies 44 l/min, while <str<strong>on</strong>g>the</str<strong>on</strong>g> big valve is suitable<br />

for 52 mm spacing applying 150 l/min<br />

• Valves meeting <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol system requirements:<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> aid <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘Matlab’ models <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

spraying geometry is designed for a uniform<br />

cooling effect. The correctness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se design<br />

models is verified measuring <str<strong>on</strong>g>the</str<strong>on</strong>g> oil distributi<strong>on</strong><br />

for individual nozzles as well as measuring<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> heat transfer. These measurements<br />

are d<strong>on</strong>e <strong>on</strong> a test stand with rolling oil. Both<br />

10 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011<br />

Images: Achenbach


Pulse and Volume (Level) C<strong>on</strong>trol methods<br />

are supported.<br />

• Advanced design tools: toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with careful<br />

tests in <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory, today a verificati<strong>on</strong><br />

and optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> existing installati<strong>on</strong>s in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> rolling mill is possible. As an example, a<br />

pressure-sensitive film is used to visualize <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

footprint <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> spraying system. This is mainly<br />

d<strong>on</strong>e to identify worn nozzles and to ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

c<strong>on</strong>firm or optimize spraying angles for best<br />

overlapping.<br />

1.4 Process automati<strong>on</strong><br />

In cold rolling mills, particularly in foil rolling<br />

mills, best results have been achieved<br />

with powerful closed-loop c<strong>on</strong>trol systems for<br />

many years. Such systems have been steadily<br />

improved with respect to better measuring<br />

systems (e.g. <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘Optiroll’ flatness measuring<br />

roll), better actuators (e.g. <str<strong>on</strong>g>the</str<strong>on</strong>g> Win-SprayS<br />

rolling oil distributi<strong>on</strong>) and faster c<strong>on</strong>trol systems.<br />

In that way product quality (e.g. thickness<br />

and flatness) as well as productivity (by<br />

higher rolling speeds) could be maximized.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r optimizati<strong>on</strong> is now focused <strong>on</strong><br />

meeting <str<strong>on</strong>g>the</str<strong>on</strong>g> high quality requirements already<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> strip head. This requires a precise presetting<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mill including for example an<br />

optimum bending force to meet <str<strong>on</strong>g>the</str<strong>on</strong>g> flatness<br />

tolerances even before <str<strong>on</strong>g>the</str<strong>on</strong>g> feedback c<strong>on</strong>troller<br />

is able to compensate for a wr<strong>on</strong>g flatness.<br />

This requires c<strong>on</strong>trol methods, which are not<br />

based <strong>on</strong> measuring <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters to be<br />

c<strong>on</strong>trolled. Here process models are necessary,<br />

which are able to approximate <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling<br />

result. For a l<strong>on</strong>g time, such future-orientated<br />

physical models were available as <str<strong>on</strong>g>of</str<strong>on</strong>g>f-<br />

line models for rolling mill design and layout.<br />

In recent years, <strong>on</strong>line-model applicati<strong>on</strong>s<br />

have been developed.<br />

The integrative Optiroll automati<strong>on</strong> system<br />

comprises both, <strong>on</strong>line process models and<br />

model-based functi<strong>on</strong>s available throughout<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> automati<strong>on</strong> hierarchy.<br />

The Roll Speed Compensati<strong>on</strong> (RSC) is<br />

<strong>on</strong>e example for a model-based functi<strong>on</strong> that<br />

is integrated in <str<strong>on</strong>g>the</str<strong>on</strong>g> Level 1 c<strong>on</strong>trol system for<br />

highest dynamic behaviour, as it compensates<br />

for speed-related tribologic effects in cold<br />

rolling. With RSC, much closer thickness tolerances<br />

are achieved compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> classic<br />

closed loop c<strong>on</strong>trol which is depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

slow feedback <str<strong>on</strong>g>of</str<strong>on</strong>g> measured thickness. Without<br />

RSC, <str<strong>on</strong>g>the</str<strong>on</strong>g> changing tribologic c<strong>on</strong>diti<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

roll gap would result in significant thickness<br />

deviati<strong>on</strong>s during accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling<br />

mill.<br />

Bey<strong>on</strong>d integrated model-based functi<strong>on</strong>s<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Optiroll automati<strong>on</strong> system provides<br />

trendsetting soluti<strong>on</strong>s for dedicated Level 2<br />

process models to comprehensively optimize<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> rolling process. This is particularly required<br />

for both, presetting <str<strong>on</strong>g>the</str<strong>on</strong>g> closed loop c<strong>on</strong>troller<br />

(Level 1) and those c<strong>on</strong>trolling parameters,<br />

which cannot be measured during <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling<br />

process. With regard to Level 2 process models,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re are two different approaches:<br />

• Before rolling, roll force and roll stack<br />

deflecti<strong>on</strong> are calculated in order to achieve<br />

minimum thickness deviati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> strip head<br />

and to reach target pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile /flatness as quick as<br />

possible in order to avoid scrap material. For<br />

this, <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> roll force <strong>on</strong> Level<br />

2 provides two opti<strong>on</strong>s: Tribologic models for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> roll gap fricti<strong>on</strong> with l<strong>on</strong>g-term and shortterm<br />

adapti<strong>on</strong>, as far as cold rolling is c<strong>on</strong>cerned.<br />

When it comes to hot rolling, adapti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> flow stress strain curves is applied.<br />

ROLLING INDUSTRY<br />

• During rolling, two different types <str<strong>on</strong>g>of</str<strong>on</strong>g> modeling<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> rolling process are designed:<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> work roll to correct <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling<br />

force and <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical bending in order<br />

to avoid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile and / or flatness errors and <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> strip temperatures<br />

in order to keep <str<strong>on</strong>g>the</str<strong>on</strong>g> material properties<br />

in a certain range.<br />

While all o<str<strong>on</strong>g>the</str<strong>on</strong>g>r functi<strong>on</strong>s are focusing <strong>on</strong><br />

precise pre-setting, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal models as well<br />

are periodically triggered during rolling, so that<br />

<strong>on</strong>line correcti<strong>on</strong>s with respect to pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile and<br />

flatness or with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> strip temperature<br />

are possible. Meeting <str<strong>on</strong>g>the</str<strong>on</strong>g> strip temperature<br />

during all passes is not <strong>on</strong>ly required for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> metallurgical quality <str<strong>on</strong>g>of</str<strong>on</strong>g> hot-rolled aircraft<br />

alloys, but also for <str<strong>on</strong>g>the</str<strong>on</strong>g> exact finishing temperature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cold-rolled can- stock qualities.<br />

For best performance, <str<strong>on</strong>g>the</str<strong>on</strong>g> integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Level 1 and Level 2 functi<strong>on</strong>s is fundamentally<br />

important. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> modular design, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Optiroll automati<strong>on</strong> system is predestined for<br />

modernizing existing rolling mills. Above that,<br />

especially <str<strong>on</strong>g>the</str<strong>on</strong>g> Level 2 opti<strong>on</strong>s can be customized<br />

to fulfil <str<strong>on</strong>g>the</str<strong>on</strong>g> individual requirements for<br />

improving <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling mill performance.<br />

2 Resources efficiency<br />

2.1 Electrical power<br />

Electrical power and gas are <str<strong>on</strong>g>the</str<strong>on</strong>g> major forms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> energy that are to be c<strong>on</strong>sidered for <str<strong>on</strong>g>the</str<strong>on</strong>g> efficiency<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a rolled-products producti<strong>on</strong> plant.<br />

Gas is required for heating processes. For <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rolling mill, however, electrical energy is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

most important factor.<br />

The first approach to achieve an energy-efficient<br />

rolling mill is <str<strong>on</strong>g>the</str<strong>on</strong>g> identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

major energy c<strong>on</strong>sumers. Electrical drives are<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 11


ROLLING INDUSTRY<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> essential c<strong>on</strong>sumers <str<strong>on</strong>g>of</str<strong>on</strong>g> electrical power in<br />

a rolling mill. 60 to 80% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electrical power<br />

installed in a foil rolling mill are required<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> main drives, i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> mill motor and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> coiler drives. Accordingly, top priority to<br />

achieve best energy efficiency is given to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

design <str<strong>on</strong>g>of</str<strong>on</strong>g> drives, motors and c<strong>on</strong>trol systems<br />

main drives <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling mill:<br />

• In cold rolling mills, decoiler and recoiler<br />

drives are c<strong>on</strong>nected to a comm<strong>on</strong> DC link,<br />

which is fed by <str<strong>on</strong>g>the</str<strong>on</strong>g> rectifier unit. So <str<strong>on</strong>g>the</str<strong>on</strong>g> generated<br />

power <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> de-coiler, which is applying<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> tensi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> mill, is kept in <str<strong>on</strong>g>the</str<strong>on</strong>g> system<br />

feeding <str<strong>on</strong>g>the</str<strong>on</strong>g> mill motor and re-coiler motor,<br />

which are operated in motoric mode.<br />

• Modern drive systems are additi<strong>on</strong>ally<br />

equipped with an active feeder, which (c<strong>on</strong>trary<br />

to a simple rectifier) is able to feed back<br />

electrical energy into <str<strong>on</strong>g>the</str<strong>on</strong>g> mains supply. Usually,<br />

this is possible whenever <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling mill<br />

is stopped and <str<strong>on</strong>g>the</str<strong>on</strong>g> rotati<strong>on</strong>al energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coils and rolls can be recovered by inverters<br />

that are working in generator mode.<br />

• Saving electrical energy is moreover possible<br />

with efficient motors that c<strong>on</strong>sume fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

1 to 2% less electrical energy compared to<br />

c<strong>on</strong>venti<strong>on</strong>al motors. C<strong>on</strong>sidering that 99% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> motor cost during its lifetime arises from<br />

energy cost, also such small effects are a valuable<br />

c<strong>on</strong>tributi<strong>on</strong> to an efficient rolling mill.<br />

• Besides <str<strong>on</strong>g>the</str<strong>on</strong>g> installati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> efficient comp<strong>on</strong>ents<br />

also an intelligent automati<strong>on</strong> and c<strong>on</strong>trol<br />

system is a decisive factor for an efficient<br />

rolling mill. Frequency-c<strong>on</strong>trolled pumps and<br />

fans are good examples for such intelligent<br />

and energy-saving c<strong>on</strong>trol systems. Frequency<br />

c<strong>on</strong>trol allows always and c<strong>on</strong>tinuously adjusting<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> power as per <str<strong>on</strong>g>the</str<strong>on</strong>g> actual process<br />

requirements. An ‘Airpure’ fan for example<br />

can be reduced in its rotati<strong>on</strong>s per minute<br />

(and accordingly power c<strong>on</strong>sumpti<strong>on</strong>) when<br />

less air must be moved in case not all rolling<br />

mills <str<strong>on</strong>g>of</str<strong>on</strong>g> a rolling mill line are in operati<strong>on</strong>.<br />

The same applies for pumps <str<strong>on</strong>g>of</str<strong>on</strong>g> a rolling oil<br />

circulati<strong>on</strong> system. Compared to a bypass-c<strong>on</strong>trolled<br />

volume flow, <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency-c<strong>on</strong>trolled<br />

pump is able to save up to 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> electrical<br />

energy with a ‘Superstack’ rolling oil filtrati<strong>on</strong><br />

system.<br />

Intelligent flow-rate c<strong>on</strong>trol and efficient<br />

drives for pumps and fans are good examples<br />

for saving electrical energy with shortest return<br />

<strong>on</strong> investment.<br />

2.2 Rolling oil filtrati<strong>on</strong><br />

Saving electrical energy for fluid circulati<strong>on</strong> is<br />

not <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly criteri<strong>on</strong> for efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling<br />

oil purificati<strong>on</strong> system. The sec<strong>on</strong>d aspect<br />

is maintaining <str<strong>on</strong>g>the</str<strong>on</strong>g> good quality <str<strong>on</strong>g>of</str<strong>on</strong>g> rolling oil<br />

by perfect filtrati<strong>on</strong>. In that way, <str<strong>on</strong>g>the</str<strong>on</strong>g> lifetime<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rolling oil is maximized and fresh rolling oil<br />

must be added to <str<strong>on</strong>g>the</str<strong>on</strong>g> system less frequently.<br />

In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words: <str<strong>on</strong>g>the</str<strong>on</strong>g> SuperstackII micr<str<strong>on</strong>g>of</str<strong>on</strong>g>iltrati<strong>on</strong><br />

system preserves a valuable resource –<br />

mineral-oil based rolling oil.<br />

A third aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> efficiency is <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuously<br />

c<strong>on</strong>trolled dosage <str<strong>on</strong>g>of</str<strong>on</strong>g> filter aid. Depending<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> differential pressure filter aid is<br />

added, preventing <str<strong>on</strong>g>the</str<strong>on</strong>g> filter cake from getting<br />

clogged. By means <str<strong>on</strong>g>of</str<strong>on</strong>g> this, <str<strong>on</strong>g>the</str<strong>on</strong>g> filtrati<strong>on</strong> cycle is<br />

extended compared to an unc<strong>on</strong>trolled forming<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> filter cake.<br />

Final aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> maintaining <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling oil<br />

quality are in-house developed Achenbach<br />

recipes for filtrati<strong>on</strong> aids and additives. These<br />

recipes are designed specifically to <str<strong>on</strong>g>the</str<strong>on</strong>g> customer’s<br />

rolling processes.<br />

The result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se features is perfectly<br />

clean rolling oil with extended filtrati<strong>on</strong> cycles,<br />

preserving valuable resources.<br />

2.3 Savings and recovery<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> cold rolling process a huge<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> rolling oil is circulated for cooling<br />

and lubricating. As this oil is applied to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

hot work rolls through sprays, a significant<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> rolling oil is taken by <str<strong>on</strong>g>the</str<strong>on</strong>g> exhaust<br />

air <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling mill in form <str<strong>on</strong>g>of</str<strong>on</strong>g> fume and mist.<br />

Recovering that oil from <str<strong>on</strong>g>the</str<strong>on</strong>g> exhaust air is not<br />

<strong>on</strong>ly recovering a valuable resource, but also<br />

recovering energy in form <str<strong>on</strong>g>of</str<strong>on</strong>g> mineral oil. That<br />

oil is fed back into <str<strong>on</strong>g>the</str<strong>on</strong>g> process without any<br />

restricti<strong>on</strong>s.<br />

Today’s high degree <str<strong>on</strong>g>of</str<strong>on</strong>g> rolling oil recovery<br />

is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> advanced design feasible by<br />

physical/chemical engineering. Important features<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this optimizati<strong>on</strong> are:<br />

• recuperators for higher heat recovery<br />

• improved c<strong>on</strong>densers for low-temperature<br />

distillati<strong>on</strong><br />

• reduced pressure losses in air ducts.<br />

Optimized fume hoods and speed-c<strong>on</strong>trolled<br />

fans are fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r criteria <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> highly efficient<br />

Airpure system. The maximized recovery <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rolling oil and <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum energy c<strong>on</strong>sumpti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Airpure exhaust air purificati<strong>on</strong> is<br />

not <strong>on</strong>ly remarkable with respect to energy<br />

and resources efficiency, but also for reas<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental protecti<strong>on</strong>: A rolling mill<br />

with an Airpure system is surpassing <str<strong>on</strong>g>the</str<strong>on</strong>g> strict<br />

European restricti<strong>on</strong>s for VOC emissi<strong>on</strong>s.<br />

The efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Airpure system in recovering<br />

resources becomes visible comparing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> rolling oil which is recovered<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> exhaust air with <str<strong>on</strong>g>the</str<strong>on</strong>g> electrical energy<br />

that is generated by a wind turbine: <str<strong>on</strong>g>the</str<strong>on</strong>g> typical<br />

electrical energy generated by <strong>on</strong>e state<str<strong>on</strong>g>of</str<strong>on</strong>g>-<str<strong>on</strong>g>the</str<strong>on</strong>g>-art<br />

wind turbine for <strong>on</strong>-shore installati<strong>on</strong><br />

is comparable to <str<strong>on</strong>g>the</str<strong>on</strong>g> energy (mineral oil)<br />

recovered from <strong>on</strong>e foil rolling mill.<br />

Saving energy and resources and saving costs<br />

here are in accordance with sustainability and<br />

ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> a modern <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> cold rolling<br />

mill. These benefits are multiplied in rolling<br />

mill lines with three or even more rolling<br />

mills.<br />

3 Service and support<br />

A crucial aspect for any pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al service<br />

and support package for rolling mill machinery<br />

is an integrative modular c<strong>on</strong>cept that<br />

aims at maintaining and even increasing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

machinery performance by taking <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

measures:<br />

• Restoring by immediate measures in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> breakdown<br />

• Preserving by remote and <strong>on</strong>-site<br />

maintenance<br />

• Improving by optimizati<strong>on</strong> measures.<br />

Optimizati<strong>on</strong> measures in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> Achenbach<br />

Service and Support comprise:<br />

• inspecti<strong>on</strong> with ‘Quick Wins’<br />

• analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> process data<br />

• opti<strong>on</strong>s for system modernizati<strong>on</strong><br />

• sustainability measures including tele-<br />

service.<br />

Offering three support packages – Optiroll<br />

check, resources and efficiency check, and<br />

productivity check – Achenbach act as a pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al<br />

partner to guarantee high efficiency<br />

and availability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir rolling mills all over<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> world. In order to support <str<strong>on</strong>g>the</str<strong>on</strong>g>ir customers<br />

in maintaining competitive advantages in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir markets, Achenbach developed a c<strong>on</strong>cept<br />

to ascertain fields with potential for systems’<br />

optimizati<strong>on</strong> and / or c<strong>on</strong>versi<strong>on</strong> respectively<br />

modernizati<strong>on</strong> by installing particular new<br />

individual comp<strong>on</strong>ents. In any case, this c<strong>on</strong>cept<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> supporting <str<strong>on</strong>g>the</str<strong>on</strong>g>ir customers include special<br />

training units.<br />

In c<strong>on</strong>crete terms and in view <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> important<br />

issue <str<strong>on</strong>g>of</str<strong>on</strong>g> resources efficiency, this can<br />

mean:<br />

• new vacuum pumps for better perform-<br />

ance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Airpure system<br />

• new drives for higher speed and thus<br />

improved productivity<br />

• new automati<strong>on</strong> systems for better<br />

product quality<br />

• new comp<strong>on</strong>ents for c<strong>on</strong>tinuous availabil-<br />

ity and maintainability.<br />

All <str<strong>on</strong>g>the</str<strong>on</strong>g> aforementi<strong>on</strong>ed facts classify Achenbach<br />

as leaders in technology and quality<br />

delivering everything from a single source<br />

– mechanical engineering, machinery, and<br />

service and support – always keeping <strong>on</strong>e eye<br />

<strong>on</strong> rolling mill efficiency in both, installati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> new machinery, modernizati<strong>on</strong> and supporting<br />

high performance in <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g run. �<br />

12 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


Batch-type and c<strong>on</strong>tinuous floater<br />

furnace facilities for <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> alloy strip<br />

Carl-August Preimesberger, Ebner Industrie<str<strong>on</strong>g>of</str<strong>on</strong>g>enbau GmbH<br />

The producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> and <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

alloy strips – starting at <str<strong>on</strong>g>the</str<strong>on</strong>g> hot<br />

rolling mill or a c<strong>on</strong>tinuous casting plant<br />

through to sellable strips for <str<strong>on</strong>g>the</str<strong>on</strong>g> widest<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s – involves <str<strong>on</strong>g>the</str<strong>on</strong>g> material<br />

passing through several stages <str<strong>on</strong>g>of</str<strong>on</strong>g> heat<br />

treatment. Depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> starting<br />

material and <str<strong>on</strong>g>the</str<strong>on</strong>g> technological specificati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> final product, <str<strong>on</strong>g>the</str<strong>on</strong>g> heat treatment<br />

processes may involve annealing,<br />

homogenizing, soluti<strong>on</strong> heat treatment,<br />

recrystallizing, aging or temper annealing.<br />

Basically, all <str<strong>on</strong>g>the</str<strong>on</strong>g> heat treatment processes<br />

can be performed during c<strong>on</strong>tinuous annealing<br />

with a floater furnace. However,<br />

cost effective operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such a facility<br />

is <strong>on</strong>ly possible if it used predominately<br />

to soluti<strong>on</strong> heat-treat strips. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

hand, it is not technically possible to<br />

soluti<strong>on</strong> heat-treat strips in a batch-type<br />

furnace. From an ec<strong>on</strong>omical point <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

view, this kind <str<strong>on</strong>g>of</str<strong>on</strong>g> furnace is ideal for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

remaining heat treatment processes.<br />

The Ebner product range includes proven<br />

designs for both types <str<strong>on</strong>g>of</str<strong>on</strong>g> furnace<br />

The Hic<strong>on</strong> floater furnace manufactured by<br />

Ebner Industrie<str<strong>on</strong>g>of</str<strong>on</strong>g>enbau in Le<strong>on</strong>ding, Austria,<br />

features <str<strong>on</strong>g>the</str<strong>on</strong>g>ir proven design c<strong>on</strong>cept for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>tinuous heat treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> cold-rolled <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

strip, dramatically improving <str<strong>on</strong>g>the</str<strong>on</strong>g> performance<br />

and quality achieved in c<strong>on</strong>venti<strong>on</strong>al<br />

c<strong>on</strong>tinuous furnaces. Floater furnace facilities<br />

have been built to process strip with a thickness<br />

between 0.3 and 6.35 mm and a width up<br />

to 2,400 mm. Heating up times <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 min/mm<br />

have been achieved at setpoint temperatures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 560°C and a Δt <str<strong>on</strong>g>of</str<strong>on</strong>g> +0/-3°C.<br />

The combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most precise temperature<br />

uniformity and a perfect strip surface<br />

finish specified by end users in <str<strong>on</strong>g>the</str<strong>on</strong>g> automotive<br />

and aerospace industries prompted Ebner to<br />

develop <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> a floater furnace in<br />

cooperati<strong>on</strong> with renowned manufacturers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> products. It is possible to achieve<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> required surface properties because <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> strip is transported totally c<strong>on</strong>tactfree<br />

through <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace facility during <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

entire heating up and cooling process. The<br />

properties apply to <str<strong>on</strong>g>the</str<strong>on</strong>g> deep drawing characteristics<br />

and corrosi<strong>on</strong> resistance.<br />

The Ebner research and development department<br />

advanced nozzle systems which<br />

Photos: Ebner<br />

were <str<strong>on</strong>g>the</str<strong>on</strong>g>n c<strong>on</strong>tinually improved in a test facility.<br />

Powerful Hic<strong>on</strong> high c<strong>on</strong>vecti<strong>on</strong> recirculati<strong>on</strong><br />

technology provides <str<strong>on</strong>g>the</str<strong>on</strong>g> support and<br />

stability required for both thick and thin <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

strip, while achieving <str<strong>on</strong>g>the</str<strong>on</strong>g> best possible<br />

heat transfer rates. Each furnace z<strong>on</strong>e has two<br />

opposing fan units c<strong>on</strong>trolled by frequency<br />

c<strong>on</strong>verters. These atmosphere recirculati<strong>on</strong><br />

fans were also developed by Ebner. The highperformance<br />

impellers, mounted directly <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> fan motor shaft, have underg<strong>on</strong>e extensive<br />

l<strong>on</strong>g-term testing in order to optimize <str<strong>on</strong>g>the</str<strong>on</strong>g>m<br />

for l<strong>on</strong>g service life. Modern automated welding<br />

technology is used to produce impellers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

optimal and reproducible quality to operate<br />

under extreme <str<strong>on</strong>g>the</str<strong>on</strong>g>rmo-mechanical stress.<br />

The specially developed nozzle system<br />

delivers a uniform transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal energy<br />

across <str<strong>on</strong>g>the</str<strong>on</strong>g> entire width <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> strip during <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

heating up phase. This helps to even improve<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> temperature uniformity throughout <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

soaking phase, in order to meet <str<strong>on</strong>g>the</str<strong>on</strong>g> required<br />

technological specificati<strong>on</strong>s. This furnace secti<strong>on</strong><br />

fulfils <str<strong>on</strong>g>the</str<strong>on</strong>g> strict AMS 2750 D aerospace<br />

standard, applicable worldwide, specifying<br />

that a furnace used for supplying plate to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

aircraft industry (Furnace Class 1) must maintain<br />

a maximum deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ±3K from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

temperature setpoint in <str<strong>on</strong>g>the</str<strong>on</strong>g> entire workload<br />

space during <str<strong>on</strong>g>the</str<strong>on</strong>g> soaking time. In most cases<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> final deviati<strong>on</strong> form <str<strong>on</strong>g>the</str<strong>on</strong>g> setpoint is down<br />

to around 1.5°C.<br />

Although <str<strong>on</strong>g>the</str<strong>on</strong>g> Hic<strong>on</strong> floater furnaces are<br />

made up <str<strong>on</strong>g>of</str<strong>on</strong>g> individual furnace z<strong>on</strong>es, a distincti<strong>on</strong><br />

is made between heating-up and soaking<br />

z<strong>on</strong>es. The direct gas-fired heating-up z<strong>on</strong>es<br />

C<strong>on</strong>tinuous floater furnace facility<br />

ROLLING INDUSTRY<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace are each equipped with four<br />

low-Nox, tow-stage, all-metall burners. The<br />

combusti<strong>on</strong> air is preheated in a recuperator<br />

to approx. 400°C. The soaking z<strong>on</strong>es are fitted<br />

with two burners which are turndown c<strong>on</strong>trolled<br />

c<strong>on</strong>tinuously. This system, which has been<br />

tried and proven in many facilities, makes<br />

it possible to keep well below <str<strong>on</strong>g>the</str<strong>on</strong>g> threshold<br />

specified in <str<strong>on</strong>g>the</str<strong>on</strong>g> stringent TA-Luft standard.<br />

Once <str<strong>on</strong>g>the</str<strong>on</strong>g> strip leaves <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace secti<strong>on</strong>, it<br />

passes through a combined air/water quench.<br />

This quench, developed by Ebner, makes<br />

possible to implement a special quenching<br />

program designed for each individual alloy,<br />

in order to achieve optimal material properties<br />

at minimal distorti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> strip. Typical<br />

cooling gradients specified for aerospace al-<br />

loy strip exceed 300°C/s. The automati<strong>on</strong><br />

systems s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware developed by Ebner, automatically<br />

selects from a database <str<strong>on</strong>g>the</str<strong>on</strong>g> correct<br />

quenching program suitable for <str<strong>on</strong>g>the</str<strong>on</strong>g> alloy and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> strip furnace facility.<br />

If quenching need not be that rapid, cooling<br />

can also be effected by air cooling <strong>on</strong>ly. The<br />

water cooling system is <str<strong>on</strong>g>the</str<strong>on</strong>g>n switched <str<strong>on</strong>g>of</str<strong>on</strong>g>f and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> charge is merely cooled by air in <str<strong>on</strong>g>the</str<strong>on</strong>g> highperformance<br />

air cooling secti<strong>on</strong>. By virtue <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this high degree <str<strong>on</strong>g>of</str<strong>on</strong>g> flexibility, Hic<strong>on</strong> floater<br />

furnace facilities fulfil all requirements placed<br />

<strong>on</strong> heat treatment and quenching <str<strong>on</strong>g>of</str<strong>on</strong>g> a wide<br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> alloys.<br />

The Ebner automati<strong>on</strong> system is based <strong>on</strong><br />

a Simatic Step7 system with object-oriented<br />

programming incorporating WINCC and HMI<br />

Faceplates. These faceplates combine operati<strong>on</strong><br />

and supervisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> facility with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

visualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

device incorporated in<br />

that facility, while at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same time, keeping<br />

an <strong>on</strong>line maintenance<br />

log book.<br />

Apart form this, an<br />

operating hours counter<br />

is provided for each<br />

peripheral device. The<br />

integrated diagnostics<br />

system simplifies maintenance<br />

and servicing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> facility, keeping<br />

downtimes to a minimum.<br />

Hardware and<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware documentati<strong>on</strong><br />

with comprehen-<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 13


ROLLING INDUSTRY<br />

Gas-fired radiant tube heated batch-type furnace facility<br />

sive annotati<strong>on</strong>s provides <str<strong>on</strong>g>the</str<strong>on</strong>g> user with excellent<br />

support for carrying out maintenance.<br />

By means <str<strong>on</strong>g>of</str<strong>on</strong>g> remote maintenance via modem<br />

Ebner specialists can provide support whenever<br />

needed. Apart from <str<strong>on</strong>g>the</str<strong>on</strong>g> process c<strong>on</strong>trol<br />

system terminal, touch pads c<strong>on</strong>nected via<br />

WLAN are provided, for facilitating remote<br />

adjustments and service work for <str<strong>on</strong>g>the</str<strong>on</strong>g> entire<br />

facility.<br />

In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> technical and technological<br />

advantages, <str<strong>on</strong>g>the</str<strong>on</strong>g> durable design <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> key<br />

comp<strong>on</strong>ents and service-friendly implementati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> facility has led to well-known<br />

companies investing in Hic<strong>on</strong> floater furnaces.<br />

Apart from floater furnace facilities that have<br />

already been handed over to AMAG in Austria,<br />

Aleris Aluminium in Duffel, Belgium,<br />

and Southwest Aluminium in China, <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

recently-placed orders have also been received<br />

by Ebner.<br />

For more than 40 years Ebner has been<br />

building batch-type furnaces for a wide range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> annealing processes in air or protective atmosphere.<br />

This kind <str<strong>on</strong>g>of</str<strong>on</strong>g> batch-type furnace can<br />

process coils with an outer diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> up to<br />

2,650 mm, coil width <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 2,800 mm and<br />

a net coil weight <str<strong>on</strong>g>of</str<strong>on</strong>g> 25 t<strong>on</strong>nes, accommodating<br />

up to 12 coils in each furnace with <str<strong>on</strong>g>the</str<strong>on</strong>g> charge<br />

c<strong>on</strong>figured in two lanes.<br />

The key requirements for a modern batchtype<br />

furnace are:<br />

• high rate <str<strong>on</strong>g>of</str<strong>on</strong>g> heat transfer<br />

• uniform temperature distributi<strong>on</strong><br />

• low specific energy c<strong>on</strong>sumpti<strong>on</strong><br />

• low maintenance costs<br />

• high degree <str<strong>on</strong>g>of</str<strong>on</strong>g> operati<strong>on</strong>al safety<br />

• low envir<strong>on</strong>mental impact.<br />

The furnace atmosphere is recirculated using<br />

speed-c<strong>on</strong>trolled direct drive fan units.<br />

The process atmosphere is drawn in by fans<br />

mounted in <str<strong>on</strong>g>the</str<strong>on</strong>g> ro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace and <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

passed through a baffle system over radiant<br />

tubes suspended in left and right-hand side<br />

walls <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace. The temperature inside<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> furnace is c<strong>on</strong>trolled by <str<strong>on</strong>g>the</str<strong>on</strong>g>rmocouples located<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> baffle system in <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace ro<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

as well as <str<strong>on</strong>g>the</str<strong>on</strong>g>rmocouples mounted in <str<strong>on</strong>g>the</str<strong>on</strong>g> side<br />

walls ahead <str<strong>on</strong>g>of</str<strong>on</strong>g> and bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> charge.<br />

The latest design <str<strong>on</strong>g>of</str<strong>on</strong>g> single-lane batch-type<br />

furnaces feature a jet-flow system for directing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> furnace wind at <str<strong>on</strong>g>the</str<strong>on</strong>g> coils. Ebner batch-type<br />

furnaces with dual-lane charge c<strong>on</strong>figurati<strong>on</strong>s<br />

use a combined jet/mass flow system. The<br />

advantage is that <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature difference<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> gas flowing out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nozzles<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> gas flowing past <str<strong>on</strong>g>the</str<strong>on</strong>g> centerline <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

furnace is negligible so that all <str<strong>on</strong>g>the</str<strong>on</strong>g> coils in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

furnace are heated through more evenly. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

advantage is that <str<strong>on</strong>g>the</str<strong>on</strong>g> coils in <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace<br />

can always be charged in <str<strong>on</strong>g>the</str<strong>on</strong>g> same place. This<br />

means that an applicati<strong>on</strong>-specific jet nozzle<br />

system can be used to target each coil. If each<br />

coil can be assigned to a separate furnace z<strong>on</strong>e,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n it is also possible to trim back <str<strong>on</strong>g>the</str<strong>on</strong>g> overshoot<br />

temperature for each coil individually.<br />

Hic<strong>on</strong> singlecoil<br />

overhead<br />

furnaces are a<br />

special type <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

batch furnace.<br />

The special<br />

feature <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

kind <str<strong>on</strong>g>of</str<strong>on</strong>g> singlecoil<br />

overhead<br />

furnace facility<br />

is that each<br />

individual furnace<br />

chamber<br />

is supported <strong>on</strong><br />

a steel structure<br />

and each<br />

furnace cham-<br />

Gas-fired radiant tube single-coil overhead furnace facility<br />

ber holds just <strong>on</strong>e coil. The coil is placed <strong>on</strong><br />

a charging frame integrated into <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace<br />

plug, which is <str<strong>on</strong>g>the</str<strong>on</strong>g>n raised into <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace<br />

chamber.<br />

The individual chambers are served by <strong>on</strong>e<br />

charger that transports <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace plugs plus<br />

coils between <str<strong>on</strong>g>the</str<strong>on</strong>g> charging area and <str<strong>on</strong>g>the</str<strong>on</strong>g> overhead<br />

furnace units.<br />

The charging area al<strong>on</strong>gside <str<strong>on</strong>g>the</str<strong>on</strong>g> facility is<br />

used to charge and remove <str<strong>on</strong>g>the</str<strong>on</strong>g> coils. By defining<br />

a precise positi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> charging area, it<br />

can be entered into a coordinates system to be<br />

served automatically by <str<strong>on</strong>g>the</str<strong>on</strong>g> overhead crane.<br />

Because even charging and discharging can be<br />

performed automatically with <str<strong>on</strong>g>the</str<strong>on</strong>g> charger, it<br />

is possible to implement <str<strong>on</strong>g>the</str<strong>on</strong>g>se furnaces as<br />

fully-automated systems.<br />

A Hic<strong>on</strong> single-coil overhead furnace facility<br />

delivers <str<strong>on</strong>g>the</str<strong>on</strong>g> shortest possible heating up<br />

time with a temperature difference as low as<br />

5°C throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> whole coil at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heating.<br />

In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> high flexibility and<br />

throughput <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se facilities, <str<strong>on</strong>g>the</str<strong>on</strong>g> main advantages<br />

include <str<strong>on</strong>g>the</str<strong>on</strong>g> high as-annealed quality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> material since <str<strong>on</strong>g>the</str<strong>on</strong>g> anneal process can be<br />

matched to a specific coil. These facilities are<br />

also equipped with an annealing time calculati<strong>on</strong><br />

program featuring an <str<strong>on</strong>g>of</str<strong>on</strong>g>fline model that<br />

pre-calculates processing times in advance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> anneal and an <strong>on</strong>line model that supervises<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> anneal process in real time and optimizes<br />

it if necessary. This calculati<strong>on</strong> model is also<br />

available for standard multi-coil batch-type<br />

furnace facilities.<br />

Ebner has supplied more than 120 batchtype<br />

furnaces to numerous customers worldwide,<br />

each designed specifically for <strong>on</strong>e or<br />

more <str<strong>on</strong>g>of</str<strong>on</strong>g> a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s. Am<strong>on</strong>g<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se customers are <str<strong>on</strong>g>the</str<strong>on</strong>g> world‘s largest and<br />

most well-known producers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> and<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> alloy strip.<br />

�<br />

14 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


ROLLING INDUSTRY<br />

Addressing market requirements in <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> flat products<br />

Sean Carter and Detlef Neumann, Danieli Fröhling<br />

In order to succeed in today’s very competitive<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> plate, strip / sheet and<br />

foil markets, it is not sufficient to <strong>on</strong>ly<br />

fulfil <str<strong>on</strong>g>the</str<strong>on</strong>g> standard basic requirements<br />

when developing plant c<strong>on</strong>cepts for both<br />

rolling mills and downstream cutting lines<br />

but to define and deliver enhanced soluti<strong>on</strong>s<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> future. Particularly, when<br />

c<strong>on</strong>sidering developments in <str<strong>on</strong>g>the</str<strong>on</strong>g> processing<br />

industry with demands for increased<br />

producti<strong>on</strong> levels, larger coil densities,<br />

thinner finished products and increased<br />

material quality <str<strong>on</strong>g>the</str<strong>on</strong>g>se factors have to<br />

be taken into c<strong>on</strong>siderati<strong>on</strong>. Danieli is a<br />

100% metals focused company with over<br />

8,700 employees, with in-house manufacturing<br />

in Italy, Germany, Thailand<br />

and China; al<strong>on</strong>g with its process partner<br />

Innoval Technology, Danieli supplies <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

rolling and processing soluti<strong>on</strong>s<br />

as well as plate stretchers and turnkey<br />

(including FSTK) projects.<br />

General market c<strong>on</strong>siderati<strong>on</strong><br />

Generally, <str<strong>on</strong>g>the</str<strong>on</strong>g> world-wide market for technology<br />

to produce downstream <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> products,<br />

for example rolled products, is quite different<br />

when looking for <str<strong>on</strong>g>the</str<strong>on</strong>g> expected investments<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> near to mid future. Europe’s and<br />

North America’s strategy will be to maintain<br />

and build up<strong>on</strong> its leading positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> efficien-<br />

cy, quality and service but without significant<br />

expansi<strong>on</strong> into new capacities while realising<br />

maximum pay-back <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> existing assets.<br />

The well-established producti<strong>on</strong> companies<br />

will c<strong>on</strong>centrate <strong>on</strong>:<br />

• Process and yield increase<br />

• Relocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> facilities and /or c<strong>on</strong>solidate<br />

producti<strong>on</strong> capacities at cen tral points<br />

• Investing in modernisati<strong>on</strong>s and revamps<br />

to maximise current potential as well as<br />

increasing coil density, processing speeds<br />

and product quality<br />

• Improving finished strip quality<br />

• C<strong>on</strong>centrating <strong>on</strong> high-end products such<br />

as foil, lithography, etc.<br />

• Customer service (reduced lead times,<br />

just-in-time producti<strong>on</strong>)<br />

Danieli Wean United Hot Finishing Mill Photos: Danieli Fröhling<br />

• Development <str<strong>on</strong>g>of</str<strong>on</strong>g> new niche high value<br />

products such as clad material, sub 6 μm<br />

foil, bright finished stock, etc.<br />

• Development into new uses for <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

rolled products.<br />

These measures will be increasingly important<br />

when c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> competiti<strong>on</strong> that comes<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> large new investments and producti<strong>on</strong><br />

capacity currently being implemented in<br />

Asia and also partly in South America and<br />

Russia. In <str<strong>on</strong>g>the</str<strong>on</strong>g> near future Asia will emerge as<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> dominant market for <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> flat rolled<br />

products in <str<strong>on</strong>g>the</str<strong>on</strong>g> world and Asian producers<br />

will try to supply into traditi<strong>on</strong>al markets that<br />

are still occupied by European and American<br />

suppliers. Here, both quality and quantity as<br />

well as supply lead time will be <str<strong>on</strong>g>the</str<strong>on</strong>g> key issues<br />

that purchasers <str<strong>on</strong>g>of</str<strong>on</strong>g> rolled materials will<br />

look for.<br />

An example <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

products is in aerospace industry that<br />

is c<strong>on</strong>stantly pushing <str<strong>on</strong>g>the</str<strong>on</strong>g> design barriers with<br />

increasingly complex metallic or hybrid aircraft<br />

fuselage skin and structures. This includes<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> new alloys, for example<br />

damage tolerant Al-Cu-Li fuselage sheet and<br />

high strength alloys c<strong>on</strong>taining Scandium (Sc),<br />

Aluminium-Glare composite material and<br />

ever larger very heavy gauge plates for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> aircraft spars and ribs.<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing word-wide demand for<br />

automotive, aerospace, and canstock products<br />

this paper focuses <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> latest developments<br />

in cold rolling technology and strip processing.<br />

Modern <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> rolling<br />

technology and market trends<br />

In general, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> rolling market can<br />

be c<strong>on</strong>sidered in three broad sectors relating<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> flat finished products and <str<strong>on</strong>g>the</str<strong>on</strong>g> associated<br />

equipment to produce <str<strong>on</strong>g>the</str<strong>on</strong>g> rolled material:<br />

• Hot rolling – plates, shate and coiled<br />

feedstock for cold and foil rolling<br />

• Cold rolling – sheet for automotive, aero-<br />

space, canstock, lithographic, foil feed-<br />

stock and general applicati<strong>on</strong>s<br />

• Foil rolling – foil for food, cosmetics,<br />

tobacco and pharmaceutical packaging;<br />

technical applicati<strong>on</strong>s such as heat<br />

exchangers and cable wrap; household<br />

applicati<strong>on</strong>s.<br />

Danieli has expertise in all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above-menti<strong>on</strong>ed<br />

technologies.<br />

The majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> cold mills rolling<br />

sheet products today are a 4-high singlestand<br />

type, which in many cases produces a<br />

quality product meeting end-user requirements.<br />

However, such c<strong>on</strong>venti<strong>on</strong>al mills are<br />

now approaching or have reached <str<strong>on</strong>g>the</str<strong>on</strong>g> technical<br />

limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> latest market requirements<br />

that can include:<br />

1. Increasing coil dimensi<strong>on</strong>s including wide<br />

strip width ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> less than 1 metre to 2.7<br />

metre or greater<br />

2. Achievement <str<strong>on</strong>g>of</str<strong>on</strong>g> excellent levels <str<strong>on</strong>g>of</str<strong>on</strong>g> strip<br />

quality including flatness, thickness, surface<br />

finish, dryness, coil build-up, etc across an<br />

ever increasing wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> products with<br />

16 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


Danieli Fröhling 6-high Diam<strong>on</strong>d Mill<br />

rolling speeds up to 1,800 m/min<br />

4. Wide entry to exit thickness range, typical-<br />

ly from 10 mm to less than 1 mm<br />

3. Ability to handle and roll coil weights up to<br />

or greater than 35 t<strong>on</strong>nes without a compromise<br />

in rolling dimensi<strong>on</strong>ally smaller coils<br />

4. Large rolling load range to cater for hard<br />

alloys to Electrical Discharge Texturing (EDT)<br />

and skin-passes <strong>on</strong> a single stand<br />

5. Operati<strong>on</strong>al efficiency by reducti<strong>on</strong> in coilto-coil<br />

times and mill stop-time<br />

6. Greater producti<strong>on</strong> flexibility by a wide<br />

mill c<strong>on</strong>trol range thus having <str<strong>on</strong>g>the</str<strong>on</strong>g> ability to<br />

react to future market demands for new strip<br />

products or requirements, i.e. a ‘future pro<str<strong>on</strong>g>of</str<strong>on</strong>g>’<br />

mill<br />

7. Envir<strong>on</strong>mental c<strong>on</strong>siderati<strong>on</strong>s such as electrical<br />

power efficiency and fume recovery with<br />

coolant re-generati<strong>on</strong><br />

8. Improved working envir<strong>on</strong>ment and practices<br />

for mill operators.<br />

Some existing cold mills can be modernised<br />

to include some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above latest requirements<br />

and that a new 4-high single stand cold<br />

mill <str<strong>on</strong>g>of</str<strong>on</strong>g> an advanced design may exactly meet<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> specific market and commercial requirements<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a client, for example in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Danieli Fröhling a ‘4-high Diam<strong>on</strong>d Mill’<br />

being supplied to Nikkei Siam Aluminium<br />

(NSA), Thailand, to roll primarily fin-stock<br />

material. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> latest<br />

market requirements require an advanced<br />

6-high mill stand soluti<strong>on</strong> ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r as a single<br />

stand or tandem mill c<strong>on</strong>figurati<strong>on</strong>.<br />

The Danieli Fröhling ‘6-High Diam<strong>on</strong>d<br />

Mill’ in a single stand c<strong>on</strong>figurati<strong>on</strong> being<br />

supplied to Aleris Europe is <str<strong>on</strong>g>the</str<strong>on</strong>g> latest generati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-<str<strong>on</strong>g>the</str<strong>on</strong>g>-art cold rolling mills and is<br />

designed from incepti<strong>on</strong> to meet <str<strong>on</strong>g>the</str<strong>on</strong>g> current<br />

and future market requirements. The superior<br />

technology selected by Aleris and provided<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> Diam<strong>on</strong>d Mill includes <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

• 6-high roll stack c<strong>on</strong>figurati<strong>on</strong> to ensure<br />

mill stack stability with optimum sized<br />

workrolls for <str<strong>on</strong>g>the</str<strong>on</strong>g> specified thickness range<br />

whilst providing <str<strong>on</strong>g>the</str<strong>on</strong>g> highest level <str<strong>on</strong>g>of</str<strong>on</strong>g> strip flatness<br />

performance across a wide strip range<br />

that has a max / min width ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> greater than<br />

two. This c<strong>on</strong>figurati<strong>on</strong> ensures flexibility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

scheduling current rolling products as well as<br />

future products. The parallel roll design delivers<br />

a practical operati<strong>on</strong>al soluti<strong>on</strong> with a<br />

simple roll grind regime and has an effective<br />

actuator c<strong>on</strong>trol range to guarantee high qual-<br />

Danieli Fröhling Advanced Slitter<br />

ROLLING INDUSTRY<br />

ity strip flatness.<br />

• Hydraulic roll-gap adjustment, utilising<br />

bottom mounted double-acting roll load cylinders<br />

designed for a roll separati<strong>on</strong> force with<br />

an operati<strong>on</strong>al range that covers low load EDT<br />

passes as well as high rolling load capability<br />

for AA5xxx series hard alloys<br />

• The Danieli Fröhling ‘Hi-Res’ coolant spray<br />

c<strong>on</strong>cept with Hot Edge Sprays (HES) providing<br />

precise <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> workrolls that<br />

coupled with <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamic work-roll and intermediate<br />

roll bending and intermediate roll<br />

side-shifting in order to meet Aleris’s stringent<br />

product performance criteria<br />

• Close attenti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> design <str<strong>on</strong>g>of</str<strong>on</strong>g> all rolls in<br />

c<strong>on</strong>tact with <str<strong>on</strong>g>the</str<strong>on</strong>g> strip and <str<strong>on</strong>g>the</str<strong>on</strong>g> coil handling to<br />

maintain a defect free material surface finish<br />

• DAN-ECO 2 fume cleaning and rolling oil<br />

recovery system to meet <str<strong>on</strong>g>the</str<strong>on</strong>g> highest European<br />

emissi<strong>on</strong> standards for <str<strong>on</strong>g>the</str<strong>on</strong>g> separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Volatile Organic Compounds (VOC) as well as<br />

recovering <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling oil to be fully re-used for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> rolling process<br />

• DANPurity rolling oil filtrati<strong>on</strong> system to<br />

maintain <str<strong>on</strong>g>the</str<strong>on</strong>g> original design specificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> rolling oil by <str<strong>on</strong>g>the</str<strong>on</strong>g> filtrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tainments<br />

thus ensuring high strip surface quality.<br />

When <str<strong>on</strong>g>the</str<strong>on</strong>g> Aleris Diam<strong>on</strong>d Mill starts producing<br />

quality material at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2012, it<br />

will be <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most advanced cold mills in<br />

operati<strong>on</strong> around <str<strong>on</strong>g>the</str<strong>on</strong>g> world.<br />

Modern slitting and trimming technology<br />

As <str<strong>on</strong>g>the</str<strong>on</strong>g> requirements for ‘totally’ flat material<br />

with tight tolerances exists not <strong>on</strong>ly for fin-<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 17


ROLLING INDUSTRY<br />

ished rolled material but also for <str<strong>on</strong>g>the</str<strong>on</strong>g> slit strip,<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> even more precise and rigid<br />

slitting machines is <str<strong>on</strong>g>of</str<strong>on</strong>g> highest importance.<br />

Shearing stresses have a big influence<br />

<strong>on</strong> subsequent workability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> strip. Single<br />

strips may curl or even jump out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stamping die if stresses induced during slit-<br />

ting are too high. Width deviati<strong>on</strong>s could result<br />

in imperfect shapes due to <str<strong>on</strong>g>the</str<strong>on</strong>g> very narrow<br />

trim web at <str<strong>on</strong>g>the</str<strong>on</strong>g> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> strip before<br />

pressing.<br />

With highly accurate adjustment devices,<br />

modern slitting shears provide <str<strong>on</strong>g>the</str<strong>on</strong>g> best chance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> an exact and repeatable knife shaft adjustment.<br />

It can be seen that <str<strong>on</strong>g>the</str<strong>on</strong>g> slitting shear must<br />

be able to be adjusted as closely as possible<br />

to certain parameters (immersi<strong>on</strong> and cutting<br />

gap) according to <str<strong>on</strong>g>the</str<strong>on</strong>g> material c<strong>on</strong>diti<strong>on</strong>s, this<br />

being essential for thinner strip gauges in particular<br />

Danieli Fröhling accommodates all <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se through a high standard <str<strong>on</strong>g>of</str<strong>on</strong>g> design and<br />

manufacturing:<br />

• Pre-tensi<strong>on</strong>ed elements giving backlash-<br />

free movement <str<strong>on</strong>g>of</str<strong>on</strong>g> machine parts.<br />

• High accuracy measuring systems to<br />

provide <str<strong>on</strong>g>the</str<strong>on</strong>g> adjustment system with<br />

necessary data. Rigid and solid design to<br />

prevent vibrati<strong>on</strong>.<br />

• Data bases store recipes for different<br />

slitting programmes<br />

• Tool clamping systems to ensure reliable<br />

clamping automatically actuated.<br />

Following <str<strong>on</strong>g>the</str<strong>on</strong>g>se demands, Danieli Fröhling<br />

developed a new generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> slitting heads.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main parameters for <str<strong>on</strong>g>the</str<strong>on</strong>g> strip edge<br />

quality is <str<strong>on</strong>g>the</str<strong>on</strong>g> knives’ immersi<strong>on</strong> into <str<strong>on</strong>g>the</str<strong>on</strong>g> material<br />

to be cut. The optimal immersi<strong>on</strong> depends<br />

<strong>on</strong> material grade, c<strong>on</strong>diti<strong>on</strong> and strip<br />

thickness. The real immersi<strong>on</strong> is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cutting force and machine rigidity. Part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

machine rigidity is <str<strong>on</strong>g>the</str<strong>on</strong>g> deflecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> knife<br />

shaft.<br />

By reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> bearing distance and<br />

optimisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> whole bearing system,<br />

a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> deflecti<strong>on</strong> by 44 percent is<br />

achieved.<br />

For subscribers<br />

www.alu-epaper.de<br />

Even faster – your<br />

added PLUS to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> print medium<br />

The stiffness <str<strong>on</strong>g>of</str<strong>on</strong>g> a knife shaft could be increased<br />

by more than 130 percent.<br />

All <str<strong>on</strong>g>of</str<strong>on</strong>g> this results in even better, reproducible<br />

cutting edge quality and a lower transfer<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cutting stress to <str<strong>on</strong>g>the</str<strong>on</strong>g> strip.<br />

In l<strong>on</strong>gitudinal slitting lines, a looping pit<br />

is applied for compensati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different<br />

recoiler diameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> single strips – caused<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> differences <str<strong>on</strong>g>of</str<strong>on</strong>g> single strip cross secti<strong>on</strong><br />

due to <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling process. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> downgauging<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> finished products nowadays and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> request <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> finishing industry for larger<br />

recoiler diameters, tensi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> strip with<br />

advanced braking units becomes ever more<br />

important.<br />

Danieli Fröhling has developed <str<strong>on</strong>g>the</str<strong>on</strong>g> vacuum<br />

braking roll in order to avoid or minimise <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

aforementi<strong>on</strong>ed disadvantages. Around 27<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se units have been supplied to industry<br />

to date, and experiences have been ga<str<strong>on</strong>g>the</str<strong>on</strong>g>red<br />

over <str<strong>on</strong>g>the</str<strong>on</strong>g> past about 17 years.<br />

Advantage compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> strip surface:<br />

• Very low surface pressure during braking<br />

• No damage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> strip surface<br />

• No fricti<strong>on</strong> between upper surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

strip and braking means<br />

• Lowest possible fricti<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> lower side<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> strip<br />

• Same specific strip tensi<strong>on</strong> at all strips,<br />

independent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile over<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> strip width.<br />

The internati<strong>on</strong>al top level <str<strong>on</strong>g>of</str<strong>on</strong>g> trimming lines<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> industry process coils with<br />

weight <str<strong>on</strong>g>of</str<strong>on</strong>g> around 30 t<strong>on</strong>nes at speeds <str<strong>on</strong>g>of</str<strong>on</strong>g> more<br />

that 1,200 m/min. Danieli Fröhling trimming<br />

lines, having proven <str<strong>on</strong>g>the</str<strong>on</strong>g>ir reliability at stable<br />

operati<strong>on</strong> speeds <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 1,500 m/min since<br />

years, are equipped with special features to<br />

provide precise products at maximum pro-<br />

ducti<strong>on</strong>, such as:<br />

• High-speed cropping<br />

• High precisi<strong>on</strong> electrostatic oiler<br />

• Edge trimming shear with automatic<br />

adjustment<br />

• Scrap sucti<strong>on</strong> devices for high-speed<br />

applicati<strong>on</strong>s<br />

• Dedicated design <str<strong>on</strong>g>of</str<strong>on</strong>g> exit guide unit.<br />

Product services and support<br />

Vital to any organisati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> services pro-<br />

vided with both a new project and future support.<br />

This can range from training, process<br />

studies right through to major FSTK projects.<br />

Danieli with its partner Innoval has <str<strong>on</strong>g>the</str<strong>on</strong>g> organisati<strong>on</strong>al<br />

structure to provide <str<strong>on</strong>g>the</str<strong>on</strong>g>se services to<br />

our clients.<br />

Summary<br />

It is evident that <str<strong>on</strong>g>the</str<strong>on</strong>g> end-users <str<strong>on</strong>g>of</str<strong>on</strong>g> high-end<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> products in particular in <str<strong>on</strong>g>the</str<strong>on</strong>g> automotive,<br />

beverage and aerospace markets<br />

are c<strong>on</strong>tinuously innovating to maintain <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

competitiveness, develop new products and<br />

increase <str<strong>on</strong>g>the</str<strong>on</strong>g>ir efficiency and added-value.<br />

C<strong>on</strong>sequently, rolling and processing companies<br />

must resp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g>se developments and<br />

also implement similar philosophies encompassing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> efficient producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high quality<br />

end-products.<br />

The result <str<strong>on</strong>g>of</str<strong>on</strong>g> this market and product<br />

advancement requires companies such as<br />

Danieli to react and supply advanced high<br />

quality equipment and process soluti<strong>on</strong>s to<br />

meet <str<strong>on</strong>g>the</str<strong>on</strong>g>se evolving challenges by reacting to<br />

market requirements and providing a spectrum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> enhanced soluti<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> future.<br />

Danieli can do this!<br />

�<br />

18 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


L<strong>on</strong>ger campaigns with improved m<strong>on</strong>olithics<br />

for lining <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> melt-hold furnaces<br />

Andy Wynn, John Coppack and Tom Steele, Thermal Ceramics UK Ltd.<br />

To remain competitive, <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> producers<br />

c<strong>on</strong>tinue to increase productivity<br />

through <str<strong>on</strong>g>the</str<strong>on</strong>g>ir melt-hold furnaces. Increasing<br />

heat input to <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace using more<br />

powerful burners is comm<strong>on</strong> practice.<br />

But faster melting leads to increased<br />

metal losses from surface oxidati<strong>on</strong> and<br />

to segregati<strong>on</strong> from large heat gradients.<br />

These effects are countered by increased<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> fluxes and increased stirring. Given<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> increasingly challenging envir<strong>on</strong>ment<br />

within which <str<strong>on</strong>g>the</str<strong>on</strong>g> refractory lining has to<br />

work, traditi<strong>on</strong>al lining soluti<strong>on</strong>s can no<br />

l<strong>on</strong>ger be relied up<strong>on</strong> to provide <str<strong>on</strong>g>the</str<strong>on</strong>g> service<br />

lives that were previously achieved.<br />

Therefore, a new generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> furnace<br />

lining materials is required to cope with<br />

today’s <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> furnace. This work<br />

reports <strong>on</strong> a new m<strong>on</strong>olithic material<br />

with improved performance, compared to<br />

existing materials, designed for use in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ramp/hearth area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> furnaces.<br />

Improved behaviour against <str<strong>on</strong>g>the</str<strong>on</strong>g> critical<br />

performance criteria in this furnace regi<strong>on</strong><br />

are dem<strong>on</strong>strated in <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory<br />

using industry standard test methods.<br />

The refractory lining <str<strong>on</strong>g>of</str<strong>on</strong>g> a typical furnace<br />

used for holding and melting <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> has<br />

to withstand a wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> physical and<br />

chemical envir<strong>on</strong>ments. Each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different<br />

areas within <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace (Fig. 1) presents a different<br />

set <str<strong>on</strong>g>of</str<strong>on</strong>g> operating c<strong>on</strong>diti<strong>on</strong>s, in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

peak temperature, metal c<strong>on</strong>tact, salt c<strong>on</strong>tact,<br />

etc. Therefore, in order for a m<strong>on</strong>olithic material<br />

to perform in a particular area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

furnace, it needs to cope with <str<strong>on</strong>g>the</str<strong>on</strong>g> specific<br />

envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s in that regi<strong>on</strong>. This<br />

is why furnace linings are complex arrangements,<br />

with different materials installed in different<br />

locati<strong>on</strong>s [1].<br />

Background: In <str<strong>on</strong>g>the</str<strong>on</strong>g> last 30 years, a group <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

m<strong>on</strong>olithic technologies has emerged, specifically<br />

designed to perform within <str<strong>on</strong>g>the</str<strong>on</strong>g> unique<br />

envir<strong>on</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> melt-hold fur-<br />

naces. These Al-resistant grades <str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>tain<br />

‘n<strong>on</strong>-wetting’ additives, particularly in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

metal c<strong>on</strong>tact areas, to minimize interacti<strong>on</strong><br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> refractory and <str<strong>on</strong>g>the</str<strong>on</strong>g> melt to suppress<br />

damage from ‘corundum growth’ [2].<br />

As <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> producers strive to increase<br />

productivity, <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment within <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace<br />

is becoming more arduous. Chamber<br />

temperatures are increasing and more aggressive<br />

fluxes are being used, necessitating more<br />

frequent and severe cleaning operati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> furnace walls. To maintain high productivity,<br />

it is necessary to minimize <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> furnace downtime. The more aggressive<br />

c<strong>on</strong>diti<strong>on</strong>s today mean that lining materials<br />

developed in <str<strong>on</strong>g>the</str<strong>on</strong>g> past are now being used be-<br />

y<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g>ir original intended design boundaries<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir service performance is under threat,<br />

leading to more frequent lining repairs.<br />

Aluminium producers take a furnace <str<strong>on</strong>g>of</str<strong>on</strong>g>fline<br />

for repair <strong>on</strong>ce a critical lining area has degraded<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> point <str<strong>on</strong>g>of</str<strong>on</strong>g> affecting <str<strong>on</strong>g>the</str<strong>on</strong>g> efficiency<br />

and/or safety <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> operati<strong>on</strong>. At this stage,<br />

not all <str<strong>on</strong>g>the</str<strong>on</strong>g> lining will have degraded to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

point that it is in need <str<strong>on</strong>g>of</str<strong>on</strong>g> replacement or repair.<br />

Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> furnace down-<br />

time is determined by <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace<br />

most quickly and frequently degraded during<br />

operati<strong>on</strong>. In order to increase campaign<br />

times and decrease frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> stoppages,<br />

we need to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> service life <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

weak link in <str<strong>on</strong>g>the</str<strong>on</strong>g> lining. To identify <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong><br />

most frequently and quickly degraded, we<br />

worked with several <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> producers.<br />

Their feedback suggested that <str<strong>on</strong>g>the</str<strong>on</strong>g> most comm<strong>on</strong><br />

area that was <str<strong>on</strong>g>the</str<strong>on</strong>g> cause <str<strong>on</strong>g>of</str<strong>on</strong>g> repair downtime<br />

was <str<strong>on</strong>g>the</str<strong>on</strong>g> ramp / hearth area.<br />

The failure mechanisms within <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace<br />

envir<strong>on</strong>ment, that limit refractory service life,<br />

are listed in [1]. Since our target is to improve<br />

refractory performance in <str<strong>on</strong>g>the</str<strong>on</strong>g> ramp / hearth<br />

regi<strong>on</strong>, we need to understand which <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

failure modes are most critical to lining performance<br />

in this regi<strong>on</strong>.<br />

Performance targets: A study <str<strong>on</strong>g>of</str<strong>on</strong>g> working<br />

practices and furnace operating c<strong>on</strong>diti<strong>on</strong>s at<br />

MEASURING & CONTROL<br />

a number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> producers revealed<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> ramp / hearth regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

melt-hold furnace is subjected to severe mechanical<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal stress during <str<strong>on</strong>g>the</str<strong>on</strong>g> loading<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> large ingot down <str<strong>on</strong>g>the</str<strong>on</strong>g> ramp. Frequent loading<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> heavy ingot to feed <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

by fork lift truck, subjects <str<strong>on</strong>g>the</str<strong>on</strong>g> ramp to severe<br />

abrasive forces. As <str<strong>on</strong>g>the</str<strong>on</strong>g> ingot is usually at room<br />

temperature, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is also c<strong>on</strong>siderable <str<strong>on</strong>g>the</str<strong>on</strong>g>r-<br />

mal shock <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ramp / hearth refractory,<br />

which is at furnace operating temperature.<br />

As <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ramp and <str<strong>on</strong>g>the</str<strong>on</strong>g> complete<br />

hearth are in c<strong>on</strong>tact with molten metal, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

refractory is also subject to chemical attack<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> alloy, alloying elements and flux additi<strong>on</strong>s.<br />

A study <str<strong>on</strong>g>of</str<strong>on</strong>g> ramp / hearth degradati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Al-resistant materials c<strong>on</strong>taining ‘n<strong>on</strong>-wetting’<br />

additives suggested that damage leading<br />

to furnace downtime is mostly due to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

mechanical acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> erosi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

shock from ingot loading. We <str<strong>on</strong>g>the</str<strong>on</strong>g>refore focused<br />

our work <strong>on</strong> developing a new Al-resistant<br />

material with improved abrasi<strong>on</strong> and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal shock resistance. To achieve significant<br />

improvements in performance we set out<br />

to increase abrasi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal shock resistance<br />

by 20% compared to existing materials.<br />

As metal and alkali resistance are sec<strong>on</strong>dary<br />

performance parameters in this furnace regi<strong>on</strong>,<br />

we also had to ensure that any changes<br />

we made to <str<strong>on</strong>g>the</str<strong>on</strong>g> materials did not degrade<br />

chemical resistance.<br />

EXPERIMENTAL<br />

Fig. 1: Furnace<br />

lining z<strong>on</strong>es in a<br />

typical <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

melt-hold furnace<br />

Two existing, industry leading Al-resistant<br />

m<strong>on</strong>olithic materials used by many <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

producers in <str<strong>on</strong>g>the</str<strong>on</strong>g> ramp / hearth area <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 19<br />

Images: Thermal Ceramics


MEASURING & CONTROL<br />

Standard<br />

1<br />

Standard<br />

2<br />

melt-hold furnaces were selected as baseline<br />

materials for <str<strong>on</strong>g>the</str<strong>on</strong>g> study. Detailed analysis was<br />

undertaken in order to identify those aspects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> materials technology that were c<strong>on</strong>sidered<br />

to be c<strong>on</strong>straining performance, leading<br />

to mechanical failure. The b<strong>on</strong>d chemistry<br />

and aggregate granulometry were <str<strong>on</strong>g>the</str<strong>on</strong>g>n re-engineered<br />

to find <str<strong>on</strong>g>the</str<strong>on</strong>g> optimum balance <str<strong>on</strong>g>of</str<strong>on</strong>g> material<br />

types and grain size, shape and distribu-<br />

ti<strong>on</strong> that produced <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum improvement<br />

in abrasi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal shock performance<br />

without negatively affecting o<str<strong>on</strong>g>the</str<strong>on</strong>g>r important<br />

properties. This paper presents <str<strong>on</strong>g>the</str<strong>on</strong>g> results<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> performance and property measurements<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> final, optimized development compositi<strong>on</strong><br />

compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> baseline standards. All<br />

materials in <str<strong>on</strong>g>the</str<strong>on</strong>g> study were tested against <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

four key performance parameters.<br />

Primary performance parameters<br />

New<br />

material<br />

Water (%) 5.5-6.5 5.7 5.3<br />

Bulk<br />

density<br />

(kg/m 3 )<br />

PLC<br />

(%)<br />

CCS<br />

(MPa)<br />

110°C 2840 2630 2640<br />

815°C 2800 2590<br />

1000°C 2790 2580<br />

1300°C 2570 2510<br />

815°C -0.29 -0.43<br />

1000°C -0.32 -0.26<br />

1300°C -0.35 0.38 0.95<br />

110°C 128 122 147<br />

815°C 163 99<br />

1000°C 129 95<br />

1300°C 138 119 144<br />

Table 1: Physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> materials studied<br />

Standard<br />

1<br />

Standard<br />

2<br />

New<br />

material<br />

% Al 2 O 3 80.6 65.8 66.6<br />

% SiO 2 11.2 26.7 25.6<br />

% CaO 1.8 3.6 3.2<br />

% TiO 2 2.0 2.1 2.2<br />

% Fe 2 O 3 1.2 1.0 1.0<br />

% MgO 0.2 0.1 0.2<br />

% Alkalis 0.2 0.2 0.2<br />

Table 2: Chemical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> materials studied<br />

1. Abrasi<strong>on</strong> Resistance Test (ASTM C704);<br />

pre-fired samples are blasted with a stream <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

SiC grit <str<strong>on</strong>g>of</str<strong>on</strong>g> specified grain size for a set time.<br />

Samples are cross-secti<strong>on</strong>ed and <str<strong>on</strong>g>the</str<strong>on</strong>g> amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> material abraded across <str<strong>on</strong>g>the</str<strong>on</strong>g> secti<strong>on</strong> is<br />

measured in cm 3 .<br />

2. Thermal Shock Resistance Test (ASTM<br />

C1100 – Ribb<strong>on</strong> Test); pre-fired samples are<br />

subjected to alternating heating and cooling<br />

cycles <strong>on</strong> <strong>on</strong>e face using a ribb<strong>on</strong> burner. The<br />

modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> elasticity (E-modulus) <str<strong>on</strong>g>of</str<strong>on</strong>g> samples<br />

is measured n<strong>on</strong>-destructively by ultras<strong>on</strong>ics<br />

before and after testing. The percentage<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> retained E-modulus is used as a measure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> retained strength.<br />

Sec<strong>on</strong>dary performance parameters<br />

1. Aluminium Resistance ‘Cup’ Test;<br />

Cup samples are prepared and filled<br />

with 7075 alloy. Samples are ramped up<br />

to 1,000°C and held for 100 hours. After<br />

cooling, <str<strong>on</strong>g>the</str<strong>on</strong>g> samples are secti<strong>on</strong>ed vertically<br />

and visually assessed for <str<strong>on</strong>g>the</str<strong>on</strong>g> degree<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> metal penetrati<strong>on</strong> and corundum<br />

growth [3].<br />

2. Alkali Resistance ‘Cup’ Test; sample<br />

preparati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> same as for <str<strong>on</strong>g>the</str<strong>on</strong>g> Al resistance<br />

cup test. Instead <str<strong>on</strong>g>of</str<strong>on</strong>g> Al, <str<strong>on</strong>g>the</str<strong>on</strong>g> samples<br />

are filled with mixtures <str<strong>on</strong>g>of</str<strong>on</strong>g> K 2CO 3<br />

and Na 2CO 3 and fired to 900, 1,000 or<br />

1,100°C for five hours. After secti<strong>on</strong>ing,<br />

samples are analyzed by visual inspecti<strong>on</strong><br />

for cracks, bulges, depth <str<strong>on</strong>g>of</str<strong>on</strong>g> penetrati<strong>on</strong><br />

and colour change.<br />

RESULTS AND DISCUSSION<br />

The characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> optimized new<br />

material compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> two standard<br />

baseline materials are displayed in Tables 1<br />

and 2. Both baseline materials are low cement,<br />

vibrocast grades. The optimized new material<br />

in Table 1 could be cast at 5.3% water, lower<br />

than <str<strong>on</strong>g>the</str<strong>on</strong>g> baseline grades, and gave free flow<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 125 mm and tapped flow <str<strong>on</strong>g>of</str<strong>on</strong>g> 160 mm.<br />

Primary performance parameters<br />

Abrasi<strong>on</strong> resistance test results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mate-<br />

rials are presented in Fig. 2. As dried, <str<strong>on</strong>g>the</str<strong>on</strong>g> new<br />

optimized material delivered 16% better resistance<br />

to abrasi<strong>on</strong> compared to Standard<br />

1 and 20% compared to Standard 2. When<br />

pre-fired, <str<strong>on</strong>g>the</str<strong>on</strong>g> new material delivered 30%<br />

improvement <strong>on</strong> abrasi<strong>on</strong> resistance compared<br />

to Standard 1 and 20% compared to<br />

Standard 2.<br />

Thermal shock resistance test results <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> materials are presented in Fig. 3. After 5<br />

cycles, Standard 1 lost 42% <str<strong>on</strong>g>of</str<strong>on</strong>g> its E-modulus<br />

and Standard 2 lost 32%, compared to <strong>on</strong>ly<br />

20% loss for <str<strong>on</strong>g>the</str<strong>on</strong>g> new material. These results<br />

suggest <str<strong>on</strong>g>the</str<strong>on</strong>g> new material can deliver 52% improvement<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal shock resistance compared<br />

to Standard 1 and 38% compared to<br />

Standard 2.<br />

Sec<strong>on</strong>dary performance parameters<br />

As baseline materials 1 and 2 are comm<strong>on</strong>ly<br />

used in service, we fully expected <str<strong>on</strong>g>the</str<strong>on</strong>g>m to<br />

Fig. 2: Abrasi<strong>on</strong> loss resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> test materials<br />

Fig. 3: Thermal shock resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> test materials<br />

pass <str<strong>on</strong>g>the</str<strong>on</strong>g> Al resistance ‘cup’ testing. Both materials,<br />

and all <str<strong>on</strong>g>of</str<strong>on</strong>g> our new development formulati<strong>on</strong>s,<br />

c<strong>on</strong>tain well proven ‘n<strong>on</strong>-wetting’<br />

additives. Our optimized new compositi<strong>on</strong><br />

passed all Al c<strong>on</strong>tact testing and performed<br />

identically to Standards 1 and 2 in <str<strong>on</strong>g>the</str<strong>on</strong>g> visual<br />

assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Al ‘cup’ test samples (Fig. 4).<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> alloy after testing revealed<br />

that although all materials pass <str<strong>on</strong>g>the</str<strong>on</strong>g> test (target<br />

pick up < 0.5% Si, < 0.1% Fe), Si pick up is<br />

much reduced in <str<strong>on</strong>g>the</str<strong>on</strong>g> new material compared<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> two standards. Since ‘Cup’ test failures<br />

are normally accompanied by increased<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Si and Fe in <str<strong>on</strong>g>the</str<strong>on</strong>g> alloy after<br />

testing, this result suggests a much reduced<br />

interacti<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> new material and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

test alloy compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> standards, indicating<br />

superior ‘n<strong>on</strong>-wetting’ behaviour.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> alkali resistance testing, we expected<br />

Standards 1 and 2 to possess good resistance<br />

to alkalis as <str<strong>on</strong>g>the</str<strong>on</strong>g>y are used comm<strong>on</strong>ly<br />

in service. Our final, optimized new composi-<br />

ti<strong>on</strong> passed all Alkali c<strong>on</strong>tact testing with<br />

K 2CO 3 and Na 2CO 3 and performed identically<br />

to Standards 1 and 2 in <str<strong>on</strong>g>the</str<strong>on</strong>g> visual assessment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Alkali ‘cup’ test samples after testing, at all<br />

test temperatures.<br />

CONCLUSIONS<br />

1. By working closely with alumin-<br />

20 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


Standard<br />

1<br />

Standard<br />

2<br />

New<br />

material<br />

% Si pick up 0.314 0.093 0.011<br />

% Fe pick up 0.052 0.04 0.04<br />

Table 3: Alloy analysis after Al ‘Cup’ testing<br />

ium producers, <str<strong>on</strong>g>the</str<strong>on</strong>g> most frequent cause <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

melt-hold furnace downtime has been identified<br />

as mechanical damage in <str<strong>on</strong>g>the</str<strong>on</strong>g> ramp / hearth<br />

regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> refractory lining.<br />

2. The main factors leading to mechanical<br />

damage in this regi<strong>on</strong> have been identified as<br />

severe abrasi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal shock from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

frequent loading <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy, cold ingot.<br />

3. Through re-engineering <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d chemistry<br />

and aggregate granulometry, significant<br />

improvements have been achieved in abrasi<strong>on</strong><br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal shock resistance for material in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ramp / hearth regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> melthold<br />

furnaces.<br />

4. An optimized formulati<strong>on</strong> has been shown<br />

to deliver 20-30% improvement in abrasi<strong>on</strong><br />

resistance and 40-50% improvement in <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

shock resistance compared to existing<br />

materials.<br />

5. The new material has been shown to pass<br />

MEASURING & CONTROL<br />

Fig. 4: Al ‘Cup’ testing – Standard 2 (left) and New material (right) – dried samples<br />

industry standard <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> c<strong>on</strong>tact and<br />

alkali resistance tests. More detailed investigati<strong>on</strong><br />

indicates <str<strong>on</strong>g>the</str<strong>on</strong>g> new material possesses<br />

superior ‘n<strong>on</strong>-wetting’ characteristics compared<br />

to existing materials.<br />

6. These results suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g> new material<br />

should extend service life in <str<strong>on</strong>g>the</str<strong>on</strong>g> ramp / hearth<br />

area and is thus expected to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> furnace downtime and allow <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

producers to run l<strong>on</strong>ger producti<strong>on</strong><br />

campaigns, increasing productivity and minimizing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> need for expensive repairs.<br />

7. This new material is now <strong>on</strong> trial in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ramp/hearth area <str<strong>on</strong>g>of</str<strong>on</strong>g> melt-hold furnaces at several<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> producers around <str<strong>on</strong>g>the</str<strong>on</strong>g> world.<br />

Aluminium am laufenden Band<br />

�����������������<br />

���<br />

REFERENCES<br />

1. A.M. Wynn, T.J. Coppack, T. Steele, K.J. Moody,<br />

and L. Caspersen, M<strong>on</strong>olithic Material Selecti<strong>on</strong> for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Lining <str<strong>on</strong>g>of</str<strong>on</strong>g> Aluminum Holding & Melting Furnaces,<br />

TMS 2010, Seattle, USA, Feb. 14-18, 2010.<br />

2. D. J<strong>on</strong>es, A.M. Wynn, and T.J. Coppack, The Development<br />

and Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an Aluminium Resistant<br />

Castable, UNITECR ’93, Sao Paulo, Brasil, Oct<br />

31-Nov 3, 1993.<br />

3. A.M. Wynn, T.J. Coppack, and T. Steele, Methods<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Assessing M<strong>on</strong>olithic Refractories for Material<br />

Selecti<strong>on</strong> in Aluminium Melt-Hold Furnaces, 53rd Internati<strong>on</strong>al Refractories Colloquium, Aachen,<br />

Germany, Sept. 8-9, 2010.<br />

������������������������������������<br />

������������������������������������<br />

����������������������������������������<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 21<br />


MEASURING & CONTROL<br />

Optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> rolling<br />

mill with a high speed X-ray thickness gauge<br />

Chr. Burnett, A. Quick and J. Olschewski; Thermo Fisher Scientific<br />

The high speed producti<strong>on</strong> achieved by<br />

modern <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> rolling mills requires<br />

reliable and robust thickness sensors.<br />

The Automatic Gauge C<strong>on</strong>trol (AGC)<br />

systems and hydraulic actuators in place<br />

today are capable <str<strong>on</strong>g>of</str<strong>on</strong>g> reacting to strip<br />

changes within just a few millisec<strong>on</strong>ds so<br />

accurate measurements must be supplied<br />

with comparable speed. In order to aide<br />

process c<strong>on</strong>trol engineers as <str<strong>on</strong>g>the</str<strong>on</strong>g>y optimize<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> throughput <str<strong>on</strong>g>of</str<strong>on</strong>g> a given mill, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Internati<strong>on</strong>al Electrical Commissi<strong>on</strong> (IEC)<br />

has produced Standard 61336 defining<br />

specific terms associated with thickness<br />

measurement equipment and <str<strong>on</strong>g>the</str<strong>on</strong>g> testing<br />

protocol associated with verifying gauge<br />

performance. This paper describes a new<br />

Thermo Scientific sensor that provides<br />

high speed measurements allowing faster<br />

feedback loops and tighter c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

flat sheet <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> and its alloys. For<br />

direct feedback, various communicati<strong>on</strong><br />

protocols are available such as analogue<br />

signals, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ibus or E<str<strong>on</strong>g>the</str<strong>on</strong>g>rnet. In additi<strong>on</strong><br />

to using <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement values for direct<br />

feedback, single 1 ms measurement<br />

values can be archived using iba analyzer<br />

allowing efficient post-rolling analysis for<br />

mill optimizati<strong>on</strong> and product improvement<br />

resulting in fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r cost savings.<br />

Rolled <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> strip is used in a wide variety<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> industrial and c<strong>on</strong>sumer applicati<strong>on</strong>s<br />

around <str<strong>on</strong>g>the</str<strong>on</strong>g> world. With <str<strong>on</strong>g>the</str<strong>on</strong>g> ever-growing<br />

c<strong>on</strong>cern for energy efficiency and sustainability,<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> producers strive to provide<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> world class quality strip <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> first coil<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a campaign, maximizing mill yield and<br />

minimizing scrap material. Aluminium sheet<br />

producers and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir customers have agreed<br />

up<strong>on</strong> standards to describe various physical<br />

parameters for <str<strong>on</strong>g>the</str<strong>on</strong>g> material traded. Thickness,<br />

width, hardness, strength, are am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> key<br />

variables defined in a simple product code.<br />

Both parties fully understand <str<strong>on</strong>g>the</str<strong>on</strong>g> standards<br />

and any disputes are governed by <str<strong>on</strong>g>the</str<strong>on</strong>g> scope<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> actual standard definiti<strong>on</strong> produced by<br />

<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> a few <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> industry associati<strong>on</strong>s.<br />

Thickness gauge manufactures are also expected<br />

to produce and test <str<strong>on</strong>g>the</str<strong>on</strong>g>ir equipment<br />

in accordance with an internati<strong>on</strong>al standard<br />

known as IEC 61336. Unfortunately, <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

standards are not as well known by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir customers,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> sheet producers. This<br />

can result in c<strong>on</strong>fusi<strong>on</strong> during <str<strong>on</strong>g>the</str<strong>on</strong>g> gauge selecti<strong>on</strong><br />

process, and unmet expectati<strong>on</strong>s for new<br />

mills and mill upgrade projects. This paper<br />

will review <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness gauge in<br />

a mill, present an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> standards to<br />

which all gauging systems should be held and<br />

present how a modern high speed X-ray thickness<br />

gauge can be used as a tool to optimize<br />

an <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> rolling mill.<br />

Aluminium rolling mills<br />

The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> rolling mills<br />

has accelerated as <str<strong>on</strong>g>the</str<strong>on</strong>g> speed <str<strong>on</strong>g>of</str<strong>on</strong>g> processors<br />

and digital c<strong>on</strong>trols have grown by orders <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

magnitude. The capital cost in a rolling mill is<br />

substantial and investors understand that in<br />

order to achieve <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum ROI and shortest<br />

payback time, <str<strong>on</strong>g>the</str<strong>on</strong>g> mill needs to produce<br />

high quality sheet at <str<strong>on</strong>g>the</str<strong>on</strong>g> fastest possible mill<br />

speeds. Diligent plant managers are always<br />

focused <strong>on</strong> safely maximizing mill output. To<br />

accomplish this, mills are operated 24 hours a<br />

day, seven days a week. When a mill is down<br />

for any reas<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> accountants not <strong>on</strong>ly c<strong>on</strong>sider<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> energy and labour c<strong>on</strong>sumed while<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> mill is idle, but <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> product<br />

that could have been made during that ‘lost<br />

time’. It is no surprise to hear that mills operate<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> highest speeds allowed by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir motors<br />

and drives. However, raw producti<strong>on</strong> in t<strong>on</strong>nes<br />

means nothing if <str<strong>on</strong>g>the</str<strong>on</strong>g> material produced does<br />

not meet quality standards.<br />

Many believe that strip quality begins in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

meltshop, and that is not far from <str<strong>on</strong>g>the</str<strong>on</strong>g> truth.<br />

C<strong>on</strong>trolling <str<strong>on</strong>g>the</str<strong>on</strong>g> chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> molten <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

not <strong>on</strong>ly assures <str<strong>on</strong>g>the</str<strong>on</strong>g> alloy produced<br />

will meet <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical properties desired <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> final product, but that <str<strong>on</strong>g>the</str<strong>on</strong>g> strip will handle<br />

Hot roughing mill Hot finish mill Cold rolling mill Foil mill<br />

Max. thickness > 400 mm 20-30 mm 2-6 mm 0.6 mm<br />

Min. thickness 20-30 mm 2-10 mm 0.150 mm 0.006 (x2) mm<br />

Rolling speeds<br />

(metres per min)<br />

~ 100 ~1000 ~2000 ~2000<br />

Table 1: Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> rolling mill parameters<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>nes <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure and tensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> high<br />

speed rolling process. Table 1 summarizes <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

typical thicknesses and rolling speeds for each<br />

mill type. Not surprisingly, as <str<strong>on</strong>g>the</str<strong>on</strong>g> material gets<br />

thinner, <str<strong>on</strong>g>the</str<strong>on</strong>g> speeds increase dramatically.<br />

Automatic Gauge C<strong>on</strong>trol (AGC)<br />

The average human resp<strong>on</strong>se time is <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> a quarter <str<strong>on</strong>g>of</str<strong>on</strong>g> a sec<strong>on</strong>d, at <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum<br />

rolling speed <str<strong>on</strong>g>of</str<strong>on</strong>g> a cold or foil mill, 8<br />

metres <str<strong>on</strong>g>of</str<strong>on</strong>g> strip is produced. It is easy to see<br />

why AGC is an essential comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> modern<br />

rolling mills. Comprehensive AGC algorithms<br />

incorporate readings from dozens <str<strong>on</strong>g>of</str<strong>on</strong>g> sensors<br />

around <str<strong>on</strong>g>the</str<strong>on</strong>g> mill.<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> key AGC input parameters<br />

are speed and tensi<strong>on</strong> (Fig. 1). C<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mass dictates that <str<strong>on</strong>g>the</str<strong>on</strong>g> mass per unit time entering<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> mill must equal <str<strong>on</strong>g>the</str<strong>on</strong>g> mass per unit time<br />

exiting <str<strong>on</strong>g>the</str<strong>on</strong>g> mill. So as <str<strong>on</strong>g>the</str<strong>on</strong>g> material is rolled<br />

thinner, <str<strong>on</strong>g>the</str<strong>on</strong>g> speeds must increase. If <str<strong>on</strong>g>the</str<strong>on</strong>g> drive<br />

motors are <str<strong>on</strong>g>of</str<strong>on</strong>g>f, even by a few centimetres per<br />

minute, <str<strong>on</strong>g>the</str<strong>on</strong>g> strip may break. There is a delicate<br />

balance between <str<strong>on</strong>g>the</str<strong>on</strong>g> reducti<strong>on</strong> caused by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> mill force, and <str<strong>on</strong>g>the</str<strong>on</strong>g> reducti<strong>on</strong> caused by<br />

drawing (extruding) <str<strong>on</strong>g>the</str<strong>on</strong>g> material through <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

gap.<br />

The thickness gauges are primarily used<br />

to look for dramatic deviati<strong>on</strong>s in thickness,<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than that, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir feedback is used to check<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mass flow models. Small<br />

changes are corrected by slight adjustments in<br />

speed and tensi<strong>on</strong>, as <str<strong>on</strong>g>the</str<strong>on</strong>g> motor power can<br />

be c<strong>on</strong>trolled very quickly. Larger changes<br />

are compensated by <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic cylinders in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> mill stand, which can react in a matter <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

millisec<strong>on</strong>ds.<br />

When a mill is operating at 1,800 m/min,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> material moves 3 cm every millisec<strong>on</strong>d.<br />

If <str<strong>on</strong>g>the</str<strong>on</strong>g> mill is using 0.5 metre diameter rolls,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> circumference <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> roll would be roughly<br />

equivalent to 50 millisec<strong>on</strong>ds. In order to see<br />

any eccentricity or periodic event related to a<br />

roll <str<strong>on</strong>g>of</str<strong>on</strong>g> this diameter, <strong>on</strong>e would need to have a<br />

thickness sensor not <strong>on</strong>ly capable <str<strong>on</strong>g>of</str<strong>on</strong>g> operating<br />

at 5 ms, but being able to provide measurements<br />

with manageable signal to noise values.<br />

For cable shielding applicati<strong>on</strong>s where electrical<br />

signals are carried at 1 GHz or higher, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ability to see thickness variati<strong>on</strong>s over a distance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 30 cm is essential to avoid unwanted<br />

electrical harm<strong>on</strong>ics by <str<strong>on</strong>g>the</str<strong>on</strong>g> end c<strong>on</strong>sumer.<br />

22 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


Fig. 1: Selected AGC input variables<br />

Thickness gauge selecti<strong>on</strong><br />

While <str<strong>on</strong>g>the</str<strong>on</strong>g>re are several choices in thickness<br />

gauge technology, <str<strong>on</strong>g>the</str<strong>on</strong>g>re really is <strong>on</strong>ly <strong>on</strong>e<br />

choice for <str<strong>on</strong>g>the</str<strong>on</strong>g> speed and accuracy requirements<br />

demanded in optimizing a rolling mill:<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray gauge.<br />

Direct c<strong>on</strong>tact gauges have <str<strong>on</strong>g>the</str<strong>on</strong>g> advantage<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> being insensitive to alloy, <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement<br />

stylus marks <str<strong>on</strong>g>the</str<strong>on</strong>g> strip, and <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical tolerances<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> frame prevent measurement<br />

near <str<strong>on</strong>g>the</str<strong>on</strong>g> centreline <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> strip. Additi<strong>on</strong>ally,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> small measurement spot size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stylus<br />

translates microvariati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> strip surface<br />

into a noisy signal. While <str<strong>on</strong>g>the</str<strong>on</strong>g>se variati<strong>on</strong>s may<br />

actually be in <str<strong>on</strong>g>the</str<strong>on</strong>g> strip, <str<strong>on</strong>g>the</str<strong>on</strong>g> signal needs to be<br />

filtered to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> noise, and <str<strong>on</strong>g>the</str<strong>on</strong>g> filtering<br />

will delay resp<strong>on</strong>ses to actual l<strong>on</strong>ger term<br />

changes. Therefore, high speed AGC is not<br />

practical with c<strong>on</strong>tact gauges.<br />

There are o<str<strong>on</strong>g>the</str<strong>on</strong>g>r n<strong>on</strong>-c<strong>on</strong>tact, n<strong>on</strong>-radiati<strong>on</strong><br />

based sensors available, some that use eddy<br />

current and o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs that use laser, but each also<br />

has <str<strong>on</strong>g>the</str<strong>on</strong>g>ir drawbacks, <str<strong>on</strong>g>the</str<strong>on</strong>g> eddy current sensors<br />

have an extremely narrow gap between<br />

emitter and receiver which can turn this n<strong>on</strong>-<br />

c<strong>on</strong>tact gauge into a c<strong>on</strong>tact gauge should <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

strip vary by as little as 12 mm. Additi<strong>on</strong>ally,<br />

like <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact gauge, <str<strong>on</strong>g>the</str<strong>on</strong>g> sensor frame<br />

mechanics limit <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement locati<strong>on</strong> to<br />

<strong>on</strong>ly a few centimetres from <str<strong>on</strong>g>the</str<strong>on</strong>g> edge. La-<br />

Fig. 2: Simulated sensor resp<strong>on</strong>ses to a 250 ms, 1.0% deviati<strong>on</strong> from target<br />

ser gauges do<br />

benefit from a<br />

larger air gap,<br />

but <str<strong>on</strong>g>the</str<strong>on</strong>g>y can be<br />

sensitive to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

high amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

steam and mist<br />

that occurs in<br />

a rolling mill.<br />

Additi<strong>on</strong>ally<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> laser camera<br />

technology<br />

limits <str<strong>on</strong>g>the</str<strong>on</strong>g> resoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> measurement<br />

to a few micr<strong>on</strong>s. While this may be<br />

acceptable in certain applicati<strong>on</strong>s, it does not<br />

meet <str<strong>on</strong>g>the</str<strong>on</strong>g> needs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> thinner faster mills.<br />

N<strong>on</strong>-c<strong>on</strong>tact radiati<strong>on</strong> based thickness<br />

gauges can use ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r radioisotope or X-ray<br />

sources. However in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where <str<strong>on</strong>g>the</str<strong>on</strong>g> gauge<br />

measurement is to be used in a closed loop<br />

c<strong>on</strong>trol or AGC system, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is really <strong>on</strong>ly<br />

<strong>on</strong>e soluti<strong>on</strong>: X-rays. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s<br />

emitted from an X-ray source is approx.<br />

1,000 times that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commercially available<br />

isotopes. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> statistical nature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

radiati<strong>on</strong> detecti<strong>on</strong>, measurements made with<br />

more phot<strong>on</strong>s have a better signal to noise<br />

ratio, and c<strong>on</strong>sequently a more true measurement.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray versus isotope, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

noise level for an isotope is <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

20 to 30 times worse than that <str<strong>on</strong>g>of</str<strong>on</strong>g> an X-ray<br />

based sensor when <str<strong>on</strong>g>the</str<strong>on</strong>g> same averaging time<br />

is used. Statistical noise at that level creates<br />

a situati<strong>on</strong> where small changes in thickness<br />

are lost in <str<strong>on</strong>g>the</str<strong>on</strong>g> noise <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> signal. While multiple<br />

isotope pellets might be used in an effort<br />

to increase <str<strong>on</strong>g>the</str<strong>on</strong>g> signal, <str<strong>on</strong>g>the</str<strong>on</strong>g> regulatory and safety<br />

c<strong>on</strong>siderati<strong>on</strong>s make this opti<strong>on</strong> prohibitive.<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r approach to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> noise <strong>on</strong><br />

isotope based systems is to increase <str<strong>on</strong>g>the</str<strong>on</strong>g> averaging,<br />

or resp<strong>on</strong>se time. However, when this<br />

is d<strong>on</strong>e, small, and instantaneous changes in<br />

product thickness are blurred to <str<strong>on</strong>g>the</str<strong>on</strong>g> point <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

not being seen (Fig. 2).<br />

MEASURING & CONTROL<br />

Just as low signal to noise ratio is a serious<br />

factor in source selecti<strong>on</strong>, <strong>on</strong>e must take care<br />

to select a source <str<strong>on</strong>g>of</str<strong>on</strong>g> a proper energy as to<br />

not have too much signal. While <str<strong>on</strong>g>the</str<strong>on</strong>g> density<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> and its alloys is a tremendous<br />

advantage in aerospace and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r applicati<strong>on</strong>s,<br />

it presents unique challenges in n<strong>on</strong>-c<strong>on</strong>tact<br />

radiati<strong>on</strong> gauging. At typical X-ray energies,<br />

it is nearly thirteen times less absorbing compared<br />

to steel. When compounded by <str<strong>on</strong>g>the</str<strong>on</strong>g> thin<br />

dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a foil mill, <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray energies<br />

must be reduced to <str<strong>on</strong>g>the</str<strong>on</strong>g> point where measuring<br />

and compensating for envir<strong>on</strong>mental factors<br />

such as air temperature and pressure become<br />

essential. If an X-ray gauge is operated at too<br />

high <str<strong>on</strong>g>of</str<strong>on</strong>g> an energy, <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamic range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

detector output is reduced, limiting <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement<br />

resoluti<strong>on</strong> and precisi<strong>on</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> can stock producti<strong>on</strong> at around<br />

250 micr<strong>on</strong>s, a 10 micr<strong>on</strong> change in thickness<br />

results in a signal change <str<strong>on</strong>g>of</str<strong>on</strong>g> less than 0.075%<br />

at a phot<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 60 keV, where as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same thickness change at a phot<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

10 keV will produce a signal change <str<strong>on</strong>g>of</str<strong>on</strong>g> over<br />

7% (Fig. 3). When <str<strong>on</strong>g>the</str<strong>on</strong>g> statistical noise <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

measurement is ±0.1%, it is easy to see that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> 60 keV source is just too much for <str<strong>on</strong>g>the</str<strong>on</strong>g> can<br />

stock applicati<strong>on</strong>.<br />

X-ray gauge compensati<strong>on</strong><br />

for alloys and clads<br />

Commercially pure <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> has almost no<br />

practical applicati<strong>on</strong>s due to its weak mechanical<br />

properties. In order for <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> to be<br />

useful to industry, small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> copper,<br />

manganese, magnesium and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r elements<br />

are added. While <str<strong>on</strong>g>the</str<strong>on</strong>g>se elements add strength<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> sheet, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir radiati<strong>on</strong> absorpti<strong>on</strong><br />

properties vary dramatically making<br />

alloy compensati<strong>on</strong> complex for X-ray gauges.<br />

For example, <str<strong>on</strong>g>the</str<strong>on</strong>g> AA5000 series <str<strong>on</strong>g>of</str<strong>on</strong>g> alloys<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g>ir small amount magnesium actually<br />

absorb less radiati<strong>on</strong> than pure <str<strong>on</strong>g>aluminium</str<strong>on</strong>g>, but<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> AA 7000 series can absorb twice as much<br />

radiati<strong>on</strong>, depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc<br />

and copper present.<br />

While physics can used to predict a <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical<br />

absorpti<strong>on</strong> for any alloy combinati<strong>on</strong>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> actual density can vary by several percent<br />

when compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical density. It<br />

is this density difference that makes physical<br />

measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> alloys necessary. More<br />

advanced alloy compensati<strong>on</strong> algorithms can<br />

extend this ‘density correcti<strong>on</strong>’ from <strong>on</strong>e alloy<br />

to similar alloys, but many <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

gauge manufacturers require <str<strong>on</strong>g>the</str<strong>on</strong>g> producer<br />

to provide a library <str<strong>on</strong>g>of</str<strong>on</strong>g> samples across a variety<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> thicknesses and alloys to cover <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

whole producti<strong>on</strong> range. This is not possible<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 23


MEASURING & CONTROL<br />

Fig. 3: Sensor resp<strong>on</strong>se as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> thickness for different phot<strong>on</strong> energies<br />

for some producers so <str<strong>on</strong>g>the</str<strong>on</strong>g>y must resort to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

‘stop-and-measure’ technique. A single correcti<strong>on</strong><br />

factor is calculated by comparing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

uncorrected gauge measurement to a physical<br />

c<strong>on</strong>tact measurement made while <str<strong>on</strong>g>the</str<strong>on</strong>g> strip is<br />

stopped. While simple, it limits <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gauge to <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact<br />

measurements which not <strong>on</strong>ly slow producti<strong>on</strong><br />

down, but are known to be operator dependent.<br />

The challenges <str<strong>on</strong>g>of</str<strong>on</strong>g> alloy compensati<strong>on</strong> are<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r complicated when <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> producer<br />

rolls clad products. The alloy <str<strong>on</strong>g>layer</str<strong>on</strong>g>s have<br />

different equivalent absorpti<strong>on</strong>s which by<br />

means <str<strong>on</strong>g>of</str<strong>on</strong>g> proprietary s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware can be c<strong>on</strong>verted<br />

to a single correcti<strong>on</strong> factor for that product.<br />

Without an alloy/clad compensati<strong>on</strong> algorithm,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> compensati<strong>on</strong> approach based <strong>on</strong> sample<br />

sets for each alloy becomes a logistical headache<br />

for storage and quality assurance checks.<br />

Internati<strong>on</strong>al standards<br />

Internati<strong>on</strong>al organizati<strong>on</strong>s like <str<strong>on</strong>g>the</str<strong>on</strong>g> Aluminum<br />

Associati<strong>on</strong>, ASTM, Japanese Standards<br />

Associati<strong>on</strong> and o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs provide guidance <strong>on</strong><br />

not <strong>on</strong>ly alloy chemistry tolerances, but sheet<br />

dimensi<strong>on</strong>al tolerances as well. For instrument<br />

suppliers, <str<strong>on</strong>g>the</str<strong>on</strong>g> Internati<strong>on</strong>al Electrotechnical<br />

Commissi<strong>on</strong> (IEC) has produced standards to<br />

provide guidance and definiti<strong>on</strong> for specific<br />

terms and tests used. The standards act as a<br />

c<strong>on</strong>sistent scale to compare <strong>on</strong>e instrument to<br />

ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r without c<strong>on</strong>fusing nomenclature obscuring<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> true performance <str<strong>on</strong>g>of</str<strong>on</strong>g> each.<br />

The Nuclear Instrumentati<strong>on</strong> Technical<br />

Committee (IEC Technical Committee 45)<br />

produced IEC 61336 ‘Thickness measurement<br />

systems utilizing i<strong>on</strong>izing radiati<strong>on</strong> – Definiti<strong>on</strong>s<br />

and test methods’. The first committee<br />

release was in 1983, and an update was<br />

drafted in 1996. The document is available<br />

for purchase from <str<strong>on</strong>g>the</str<strong>on</strong>g> IEC at http://webstore.<br />

iec.ch/webstore/webstore.nsf/ArtNum_PK/<br />

21703?OpenDocument, as such we cannot<br />

reproduce it here. The standard first defines<br />

comm<strong>on</strong> terms in order to clarify what specific<br />

words mean. For example <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘mean resp<strong>on</strong>se<br />

time’ may be called <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘first time c<strong>on</strong>stant’ by<br />

some, and something else by o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs. (Fig. 4)<br />

The fixed definiti<strong>on</strong>s avoid any ambiguity in<br />

interpretati<strong>on</strong>. They additi<strong>on</strong>ally provide guidance<br />

in setting up and carrying out <str<strong>on</strong>g>the</str<strong>on</strong>g> tests<br />

defined in <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> standard.<br />

The standard dedicates no less than nine<br />

terms to clarify time based parameters. Some<br />

are related to defining <str<strong>on</strong>g>the</str<strong>on</strong>g> time associated with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> time taken to resp<strong>on</strong>d to a change, while<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs are related to <str<strong>on</strong>g>the</str<strong>on</strong>g> digital processing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

signals. This is particularly critical with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

advent <str<strong>on</strong>g>of</str<strong>on</strong>g> high speed data processors. Incoming<br />

data can be manipulated and processed by<br />

advanced filters to mask or hide true statistical<br />

variati<strong>on</strong>s. As depicted in Fig. 2 above, radiati<strong>on</strong><br />

measurements are statistical by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir very<br />

nature. All noise figures should be quoted with<br />

a reference to <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> Sigmas, or c<strong>on</strong>fidence<br />

levels (CL). Most gauge manufactures<br />

present 2 sigma (95% CL) noise figures, but<br />

not all. Straightforward data processing provides<br />

for predictable results and a better representati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> process dynamics. If a change<br />

occurs in <str<strong>on</strong>g>the</str<strong>on</strong>g> process, advanced filtering may<br />

portray a porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> change, but not <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

full change. Process engineers and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir AGC<br />

algorithms may over react, or under correct<br />

thanks to <str<strong>on</strong>g>the</str<strong>on</strong>g> manipulated<br />

data.<br />

In order<br />

to ethically<br />

improve <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

speed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sensor resp<strong>on</strong>se<br />

to change, without<br />

increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> statistical<br />

noise <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> physical characteristics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sensor<br />

need to be optimized for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong>. The raw<br />

signal; must be shielded to remove as much<br />

electrical noise as possible. The ideal approach<br />

for this is represented in <str<strong>on</strong>g>the</str<strong>on</strong>g> Thermo Scientific<br />

RM 210 AS X-ray thickness gauge. In this versatile<br />

instrument, <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong> detector output<br />

is digitized right away. The analog detector signal<br />

is c<strong>on</strong>verted to a digital number within a<br />

few millimeters <str<strong>on</strong>g>of</str<strong>on</strong>g> its origin. This practically<br />

eliminates <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> electrical noise<br />

impinging <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> signal. In comparis<strong>on</strong> tests,<br />

following <str<strong>on</strong>g>the</str<strong>on</strong>g> IEC 61336 guide, <str<strong>on</strong>g>the</str<strong>on</strong>g> noise <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> new designed detector improved by a factor<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 30%. Additi<strong>on</strong>ally, users <str<strong>on</strong>g>of</str<strong>on</strong>g> this system<br />

can benefit fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r by taking advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

detector’s ability to operate at a 1 ms mean<br />

resp<strong>on</strong>se time. At this speed, and with <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced<br />

noise, process engineers have <str<strong>on</strong>g>the</str<strong>on</strong>g> tools<br />

to analyze data at high speeds, revealing mill<br />

chatter and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r higher frequency anomalies.<br />

In a typical rolling mill that produces can<br />

stock <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> at 250 um, <str<strong>on</strong>g>the</str<strong>on</strong>g> noise at a 10<br />

ms mean resp<strong>on</strong>se time might be <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> order<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ±0.20% (2 sigma). With <str<strong>on</strong>g>the</str<strong>on</strong>g> improved<br />

signal processing <str<strong>on</strong>g>of</str<strong>on</strong>g> this system <str<strong>on</strong>g>the</str<strong>on</strong>g> noise will<br />

drop to ±0.15% (2-sigma). For a mill that produces<br />

200,000 t<strong>on</strong>nes a year, that translates<br />

to a savings <str<strong>on</strong>g>of</str<strong>on</strong>g> almost $200,000 in <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

material al<strong>on</strong>e (using <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> price at $1<br />

per pound).<br />

An additi<strong>on</strong>al benefit to digitizing <str<strong>on</strong>g>the</str<strong>on</strong>g> signal<br />

so early in its journey to <str<strong>on</strong>g>the</str<strong>on</strong>g> AGC system,<br />

is speed. Once digitized, <str<strong>on</strong>g>the</str<strong>on</strong>g> data can be processed<br />

with out <str<strong>on</strong>g>the</str<strong>on</strong>g> time c<strong>on</strong>suming ADC/DAC<br />

c<strong>on</strong>versi<strong>on</strong>s. The reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a few millisec<strong>on</strong>ds<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> process delay time can assure <str<strong>on</strong>g>the</str<strong>on</strong>g> AGC<br />

has time to fully correct any strip thickness<br />

deviati<strong>on</strong>s. This can result in higher quality<br />

product.<br />

Data archiving<br />

A final benefit is realized in <str<strong>on</strong>g>the</str<strong>on</strong>g> powerful tool<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> data archiving. This ideal system is available<br />

with a s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware feature that stores any<br />

gauge data stream in <str<strong>on</strong>g>the</str<strong>on</strong>g> iba ‘.dat’ format. This<br />

format is gaining popularity as <str<strong>on</strong>g>the</str<strong>on</strong>g> iba PDA<br />

data analysis tool also grows in popularity.<br />

Fig. 4: Graphical representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gauge resp<strong>on</strong>se<br />

to an instantaneous thickness change<br />

24 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


���<br />

The flexibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> iba visualizati<strong>on</strong> tool<br />

is its real strength. As simple example <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

flexibility is depicted in Fig. 5 showing a coil<br />

report with <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness data presented as a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> length, with tolerances and coil<br />

statistics. Easy to use features allow for time<br />

based, and length based data analysis. Built in<br />

ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical tools such FFT can point process<br />

engineers to mill comp<strong>on</strong>ents that might need<br />

maintenance. In this situati<strong>on</strong>, mill downtime<br />

can be best managed, and unplanned downtime<br />

dramatically reduced.<br />

The data archiving feature can also be c<strong>on</strong>-<br />

figured to accept and record data from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

sensors with in <str<strong>on</strong>g>the</str<strong>on</strong>g> mill. Any data point that<br />

is available to <str<strong>on</strong>g>the</str<strong>on</strong>g> mill computer through an<br />

E<str<strong>on</strong>g>the</str<strong>on</strong>g>rnet c<strong>on</strong>necti<strong>on</strong> can be collected by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

system to allow for comprehensive data analysis.<br />

Thus permitting <str<strong>on</strong>g>the</str<strong>on</strong>g> pairing <str<strong>on</strong>g>of</str<strong>on</strong>g> thickness<br />

measurement output to mill tensi<strong>on</strong>s and<br />

speeds in such a way that complies with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

IEC 61336 testing standards. The IEC 61336<br />

Annex B defines appropriate test points for<br />

data collecti<strong>on</strong> and analysis. While traditi<strong>on</strong>al<br />

analog outputs are typically used for gauge<br />

validati<strong>on</strong>, it is equally acceptable to use <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

data transferred via E<str<strong>on</strong>g>the</str<strong>on</strong>g>rnet, or<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r means to a data archive.<br />

Summary<br />

Advances in <strong>on</strong>line measurement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

flat sheet have culminated in a state<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> art X-ray based sensor system<br />

that provides high speed/low noise<br />

measurements permitting <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

producers to realize material<br />

savings and quality improvements<br />

not previously achievable. This sen-<br />

MEASURING & CONTROL<br />

sor incorporates alloy and clad compensati<strong>on</strong><br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> fundamental principles <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong><br />

physics. It is housed in a robust frame designed<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> rigors <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> rolling<br />

mill. The complete package is manufactured<br />

and tested following IEC 61336 definiti<strong>on</strong>s<br />

which assure process engineers receive clear<br />

thickness data with out ambiguity. Thus allowing<br />

for mill optimizati<strong>on</strong> to achieve world<br />

class quality and strip uniformity at <str<strong>on</strong>g>the</str<strong>on</strong>g> highest<br />

rolling speeds. This results in maximizing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

return for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> rolling mill owners<br />

and investors.<br />

Acknowledgement<br />

The author thanks <str<strong>on</strong>g>the</str<strong>on</strong>g> Internati<strong>on</strong>al Electrotechnical<br />

Commissi<strong>on</strong> (IEC) for permissi<strong>on</strong> to reproduce<br />

Informati<strong>on</strong> from its Internati<strong>on</strong>al Standard IEC<br />

61336 ed.1.0 (1996). All such extracts are copyright<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> IEC, Geneva, Switzerland. All rights reserved.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r informati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> IEC is available<br />

from www.iec.ch. IEC has no resp<strong>on</strong>sibility for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

placement and c<strong>on</strong>text in which <str<strong>on</strong>g>the</str<strong>on</strong>g> extracts and<br />

c<strong>on</strong>tents are reproduced by <str<strong>on</strong>g>the</str<strong>on</strong>g> author, nor is IEC<br />

in any way resp<strong>on</strong>sible for <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>tent or accuracy<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rein.<br />

Fig. 5: Typical coil report using iba data archiving tools �<br />

�����������������������<br />

�����������������������������������<br />

����������������������������<br />

������������<br />

��������������������������<br />

��������������<br />

������������������������������<br />

���������������������<br />

������������������������<br />

������������<br />

��������������������<br />

�����������������������<br />

����������������������<br />

������������������<br />

������������������������������������������������


MEASURING & CONTROL<br />

Optimized raw material usage driven by dynamic alloying<br />

State-<str<strong>on</strong>g>of</str<strong>on</strong>g>-<str<strong>on</strong>g>the</str<strong>on</strong>g>-art casthouse producti<strong>on</strong> management<br />

Dieter Deutz, PSI Metals N<strong>on</strong> Ferrous GmbH<br />

Increasing raw material and scrap prices<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-ferrous industry are leading<br />

to a c<strong>on</strong>tinually rising porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> material<br />

costs in overall producti<strong>on</strong> costs. The<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> optimized raw material usage<br />

is getting more and more important to<br />

manage producti<strong>on</strong> costs and to ensure<br />

competitive advantages. PSImetals, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

producti<strong>on</strong> management soluti<strong>on</strong> specialized<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> needs <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong> ferrous metals<br />

producers, takes this into account by recalculating<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> charging for all scheduled<br />

melt batches giving an overall optimized<br />

decisi<strong>on</strong> support for <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>sible pers<strong>on</strong>s.<br />

The PSI system supports all aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong><br />

management. This includes a knowledge<br />

based order dressing comp<strong>on</strong>ent to manage<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> highest value <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> know-how.<br />

The sales and operati<strong>on</strong>al planning, due date<br />

quoting and order related producti<strong>on</strong> planning<br />

processes are covered as well as scheduling<br />

and executi<strong>on</strong>. All comp<strong>on</strong>ents are directly<br />

integrated in <strong>on</strong>e comm<strong>on</strong> factory model. This<br />

makes it possible to combine <str<strong>on</strong>g>the</str<strong>on</strong>g> as-is-situati<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> short term and even <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g term<br />

decisi<strong>on</strong> model.<br />

On executing level starting with <str<strong>on</strong>g>the</str<strong>on</strong>g> goods<br />

receipt, all material flows are not <strong>on</strong>ly tracked<br />

but c<strong>on</strong>trolled. Excavators, wheel loaders<br />

and fork-lift trucks and its weighing systems<br />

are integrated by mobile computers. Melting,<br />

holding, casting and all o<str<strong>on</strong>g>the</str<strong>on</strong>g>r equipments are<br />

directly c<strong>on</strong>ducted by level 2 integrati<strong>on</strong> and<br />

pdc terminals. So all producti<strong>on</strong> processes are<br />

guided and every time <strong>on</strong>line transparent.<br />

PSImetals with its simple and intuitive human<br />

interface is leading to short term implementati<strong>on</strong><br />

and direct acceptance. The real time c<strong>on</strong>necti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> actual analysis measurement<br />

during melting for <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

batch compositi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequent alloy<br />

takes into account <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace sump, lumpiness<br />

and many o<str<strong>on</strong>g>the</str<strong>on</strong>g>r aspects leads to highest<br />

quality with lowest material costs. Each material<br />

unit is tracked from <str<strong>on</strong>g>the</str<strong>on</strong>g> ingredients to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

final product.<br />

The PSI System delivers <str<strong>on</strong>g>the</str<strong>on</strong>g> current stocks,<br />

and knows <str<strong>on</strong>g>the</str<strong>on</strong>g> planned scrap inflow. The<br />

proactive c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> optimizati<strong>on</strong><br />

uses this knowledge to form follow-up<br />

charges, and thus achieve significantly lower<br />

usage <str<strong>on</strong>g>of</str<strong>on</strong>g> new material and at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time<br />

lower scrap stocks at lower costs.<br />

The tracking and optimizing <str<strong>on</strong>g>of</str<strong>on</strong>g> energy c<strong>on</strong>sumpti<strong>on</strong><br />

as basis for smarter energy procurement<br />

is also already possible.<br />

This text gives an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> how to optimize<br />

material flows within <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> casthouses<br />

by using a holistic producti<strong>on</strong> management<br />

system.<br />

Casthouse producti<strong>on</strong> management<br />

Main cost drivers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> costs in<br />

an <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> casthouse are raw material and<br />

energy costs. Both topics are addressed by<br />

PSImetals Producti<strong>on</strong> Management System<br />

(PMS).<br />

To reach targets like<br />

Minimize material and energy costs<br />

• Optimize scrap usage by integrated<br />

alloying<br />

• C<strong>on</strong>trol number <str<strong>on</strong>g>of</str<strong>on</strong>g> alloying steps<br />

• Track and plan energy c<strong>on</strong>sumpti<strong>on</strong><br />

Secure and optimize producti<strong>on</strong> processes,<br />

especially alloying<br />

• Integrated testing device and alloying<br />

recalculati<strong>on</strong><br />

• C<strong>on</strong>trol deviati<strong>on</strong> handling by customer<br />

managed workflows<br />

• Tool management<br />

Real time transparency & material genealogy<br />

• Tracking <str<strong>on</strong>g>of</str<strong>on</strong>g> all relevant events<br />

• Tracking <str<strong>on</strong>g>of</str<strong>on</strong>g> all material items<br />

• Tracking <str<strong>on</strong>g>of</str<strong>on</strong>g> material genealogy<br />

first <str<strong>on</strong>g>of</str<strong>on</strong>g> all real time transparency is needed by<br />

driving and supporting <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> processes.<br />

Step 1 – material management<br />

and material flow c<strong>on</strong>trol<br />

The fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r approaches are explained based<br />

<strong>on</strong> a casthouse example which is shown in<br />

Fig. 1:<br />

Fig. 1: Areas <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> within a casthouse<br />

Beginning with a scrap and metal stockyard<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> casthouse examples c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> melting<br />

furnaces, casting, sawing, homogenizati<strong>on</strong> and<br />

scalping devices. PSImetals covers all types<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> casthouses. The example should point out<br />

high complexity in different alloys and dimensi<strong>on</strong>s<br />

especially when casting ingots and billets<br />

is not limited.<br />

Tracking <str<strong>on</strong>g>of</str<strong>on</strong>g> all types <str<strong>on</strong>g>of</str<strong>on</strong>g> materials is essential<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r steps. The starting point is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> material input in <str<strong>on</strong>g>the</str<strong>on</strong>g> factory. On basis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

notificati<strong>on</strong>s and purchase orders <str<strong>on</strong>g>the</str<strong>on</strong>g> input is<br />

booked and <str<strong>on</strong>g>the</str<strong>on</strong>g> material is ready for fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

qualificati<strong>on</strong> and/or preparati<strong>on</strong> steps. Each<br />

movement is driven by PSImetals to ensure<br />

that every material is a <str<strong>on</strong>g>the</str<strong>on</strong>g> right positi<strong>on</strong> in<br />

accordance to <str<strong>on</strong>g>the</str<strong>on</strong>g> schedules. At each workplace<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding schedule gives <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

workers <str<strong>on</strong>g>the</str<strong>on</strong>g>ir program for <str<strong>on</strong>g>the</str<strong>on</strong>g> shift. By activating<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> next task related transport orders<br />

for forklifts, cranes or fully automatic handling<br />

devices are generated.<br />

This principle <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trolling and driving<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> material movements, tracking <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong><br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> as-is values <str<strong>on</strong>g>of</str<strong>on</strong>g> each material unit is<br />

not <strong>on</strong>ly valid for raw materials (RM), but<br />

also for work in process (WIP), semi-finished<br />

goods (SFG) and finished goods (FG).<br />

PSImetals provides all needed customizing<br />

functi<strong>on</strong>ality to make all adopti<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> customer<br />

situati<strong>on</strong> as easy as possible. As an example<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> built in editor for <str<strong>on</strong>g>the</str<strong>on</strong>g> yard topology<br />

is menti<strong>on</strong>ed. With this editor <str<strong>on</strong>g>the</str<strong>on</strong>g> customer<br />

can change his structure directly without any<br />

programming. This is in <str<strong>on</strong>g>the</str<strong>on</strong>g> casthouse area<br />

used to change <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> boxes in according<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> product mix and <str<strong>on</strong>g>the</str<strong>on</strong>g> procurement<br />

strategy.<br />

Step 2 – integrated dynamic alloying<br />

Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sufficient transparency <str<strong>on</strong>g>the</str<strong>on</strong>g> real<br />

benefits are achieved by using <str<strong>on</strong>g>the</str<strong>on</strong>g> built-in al-<br />

26 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


Fig. 2: Optimized raw material calculati<strong>on</strong> using a LP solver always c<strong>on</strong>sidering given restricti<strong>on</strong>s and<br />

optimizati<strong>on</strong> targets<br />

loying module which can be used by <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong><br />

planning, scheduling or executi<strong>on</strong>. For<br />

calculating <str<strong>on</strong>g>the</str<strong>on</strong>g> optimized raw material supply<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> actual situati<strong>on</strong>, all scheduled batches or<br />

producti<strong>on</strong> orders are taking into account.<br />

The calculating is down by feeding a LP (linear<br />

programming) solver. Fig. 2 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> schedule<br />

generati<strong>on</strong> inclusive material supply. In<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> first stage <str<strong>on</strong>g>the</str<strong>on</strong>g> melting and casting batches<br />

are built up and sequenced for each device.<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d stage <str<strong>on</strong>g>the</str<strong>on</strong>g> material supply for<br />

every scheduled batch is calculated.<br />

Managing energy<br />

The energy costs are getting more and more<br />

into <str<strong>on</strong>g>the</str<strong>on</strong>g> focus. The complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong>ally<br />

different influences and restricti<strong>on</strong>s makes<br />

it difficult to manage. The forecasting and procurement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> energy and even <str<strong>on</strong>g>the</str<strong>on</strong>g> reactivity in<br />

adopting <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <strong>on</strong> a short term notice<br />

to a different energy situati<strong>on</strong> are <str<strong>on</strong>g>the</str<strong>on</strong>g> challenges<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> future.<br />

PSImetals provides <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong>ality for<br />

c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> various aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing<br />

energy efficiency, forecasting and producti<strong>on</strong><br />

c<strong>on</strong>trol:<br />

Tracking and short term c<strong>on</strong>trol<br />

• High level <str<strong>on</strong>g>of</str<strong>on</strong>g> transparency in energy<br />

Fig. 3: Energy management to track and c<strong>on</strong>trol<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> energy c<strong>on</strong>sumpti<strong>on</strong> in producti<strong>on</strong><br />

c<strong>on</strong>sumpti<strong>on</strong><br />

• Early warning system to avoid violati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tractual limited peak loads<br />

• Predicted overall energy c<strong>on</strong>sumpti<strong>on</strong> for<br />

operati<strong>on</strong>al decisi<strong>on</strong> support<br />

Energy c<strong>on</strong>sumpti<strong>on</strong> in planning<br />

and scheduling<br />

• Energy c<strong>on</strong>sumpti<strong>on</strong> values – part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

producti<strong>on</strong> order routings<br />

• C<strong>on</strong>sumpti<strong>on</strong> forecast for different<br />

time-frames<br />

• Support for c<strong>on</strong>tract negotiati<strong>on</strong> with<br />

energy supplier<br />

Summary<br />

Potential benefits are summarized in <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

overview:<br />

Transparency and <strong>on</strong>line material genealogy<br />

• Decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> time and efforts<br />

• Integrated alloying<br />

• Optimized material supply <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

scheduled batches<br />

• Decrease in producti<strong>on</strong> costs<br />

• Secured alloying process<br />

• Reduced alloying adjustment steps<br />

(~ 1,1 steps in average)<br />

• Support in deviati<strong>on</strong> handling<br />

• Decrease in material costs by over 10%<br />

Fig. 4: Managing <str<strong>on</strong>g>the</str<strong>on</strong>g> load peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> your energy<br />

demand to avoid limit violati<strong>on</strong> costs<br />

MEASURING & CONTROL<br />

• Additi<strong>on</strong>al benefits by adopted<br />

procurement strategies<br />

Integrated energy management<br />

• Minimizing energy costs<br />

• Basis for new business model ‘selling<br />

c<strong>on</strong>trol power’<br />

Next steps<br />

For fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r improvements in adopting <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical models to <str<strong>on</strong>g>the</str<strong>on</strong>g> real world ‘Qualicisi<strong>on</strong>’<br />

will be used. Qualicisi<strong>on</strong> is an extended<br />

fuzzy logic based optimizing module which<br />

leads to more human way <str<strong>on</strong>g>of</str<strong>on</strong>g> decisi<strong>on</strong> by recalculating<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> different parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> linear<br />

programming model. With <str<strong>on</strong>g>the</str<strong>on</strong>g> Qualicisi<strong>on</strong><br />

module shows how this level as a qualitative<br />

decisi<strong>on</strong> level will be integrated into <str<strong>on</strong>g>the</str<strong>on</strong>g> system<br />

structure:<br />

About PSI Metals<br />

PSI is <str<strong>on</strong>g>the</str<strong>on</strong>g> leading IT supplier for producti<strong>on</strong><br />

management soluti<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> metals industry<br />

combining supply chain management,<br />

advanced planning and scheduling, producti<strong>on</strong><br />

executi<strong>on</strong> and logistics optimizati<strong>on</strong>.<br />

For more than 40 years, we have been delivering<br />

added-value soluti<strong>on</strong>s to maximize <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

plant performances <str<strong>on</strong>g>of</str<strong>on</strong>g> numerous metals producers<br />

around <str<strong>on</strong>g>the</str<strong>on</strong>g> globe. PSImetals s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware<br />

soluti<strong>on</strong>s enable producers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g>,<br />

steel and copper products to ensure <str<strong>on</strong>g>the</str<strong>on</strong>g>ir competitive<br />

edge by delivering products as agreed<br />

in quantity, quality and time whilst c<strong>on</strong>sidering<br />

inventory, productivity and performance<br />

targets.<br />

The PSImetals soluti<strong>on</strong> line is an end-toend<br />

approach for <str<strong>on</strong>g>the</str<strong>on</strong>g> overall supply chain caring<br />

for all <str<strong>on</strong>g>the</str<strong>on</strong>g> needs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> metals industry.<br />

From your supplier to your customer, PSImetals<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fers powerful and tailor-made products<br />

to support all processes from planning to<br />

executi<strong>on</strong> within your supply chain always<br />

c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> metals producti<strong>on</strong>:<br />

• Planning level to support all planning processes<br />

from Business Planning via Producti<strong>on</strong><br />

Planning to Detailed Scheduling<br />

• Executi<strong>on</strong> level to m<strong>on</strong>itor and c<strong>on</strong>trol producti<strong>on</strong><br />

activities as well as to assure quality<br />

• Level <str<strong>on</strong>g>of</str<strong>on</strong>g> material- and transport logistic to<br />

optimise all transports requested to keep producti<strong>on</strong><br />

running<br />

• Energy management level<br />

• Cross-applicati<strong>on</strong> KPI and producti<strong>on</strong><br />

m<strong>on</strong>itoring functi<strong>on</strong>s.<br />

All informati<strong>on</strong> is based <strong>on</strong> an integrated<br />

factory model for c<strong>on</strong>sistent real time plant<br />

status informati<strong>on</strong>.<br />

�<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 27


MEASURING & CONTROL<br />

M<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> extrusi<strong>on</strong> dies<br />

cleaning process by an optic sensor<br />

A. Pascual Formoso 1 ; E. Piñeiro Ben 1 ; L. Herrero Castilla 1 ; C. Domínguez 2 , A. Llobera 2<br />

1 2 Aimen Technology Center, P<strong>on</strong>tevedra, Centro Naci<strong>on</strong>al de Microelectrónica (IMB-CNM, CSIC),<br />

Barcel<strong>on</strong>a, Universidad Autónoma de Barcel<strong>on</strong>a, Bellaterra (Barcel<strong>on</strong>a)<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this work has been <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> a multiple internal<br />

reflecti<strong>on</strong> sensor in order to m<strong>on</strong>itor <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

advance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> extrusi<strong>on</strong> dies<br />

cleaning process. The main goal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sensor is that it is able to measure different<br />

initial c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> NaOH and it<br />

shows <str<strong>on</strong>g>the</str<strong>on</strong>g> point in which <str<strong>on</strong>g>the</str<strong>on</strong>g> aluminate<br />

starts to precipitate allowing to distinguish<br />

states <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bath <strong>on</strong> c<strong>on</strong>centrati<strong>on</strong><br />

ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> [Al] / [NaOH] = 0.1.<br />

The <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> extrusi<strong>on</strong> industry has a significant<br />

ec<strong>on</strong>omic importance all over Europe.<br />

The process is carried out using extrusi<strong>on</strong> dies,<br />

steel disks with an opening cut through <str<strong>on</strong>g>the</str<strong>on</strong>g>m,<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> size and shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> intended crosssecti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> final extruded product. An <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

billet pre-heated (500ºC) is forced<br />

to flow through <str<strong>on</strong>g>the</str<strong>on</strong>g> die in order to get <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

required pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cycle, it is<br />

necessary to remove all <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining metal<br />

inside <str<strong>on</strong>g>the</str<strong>on</strong>g> cavities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> die to reuse it in new<br />

pieces producti<strong>on</strong>. In fact, <str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> dies<br />

are resp<strong>on</strong>sible for quality and process performance<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir cost is between 35-50% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cost <str<strong>on</strong>g>of</str<strong>on</strong>g> manufacture (Guía Tecnológica).<br />

The ordinary cleaning method c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

loading <str<strong>on</strong>g>the</str<strong>on</strong>g> dies into open tanks, c<strong>on</strong>taining a<br />

soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NaOH (caustic soda) at high c<strong>on</strong>centrati<strong>on</strong><br />

and temperature near <str<strong>on</strong>g>the</str<strong>on</strong>g> boiling<br />

point. The cleaning process may even exceed<br />

10 hours, depending <strong>on</strong> die size and <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

quantity adhered to its surface. Generally,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> baths are changed after each use without<br />

making a preliminary analysis to determine<br />

if <str<strong>on</strong>g>the</str<strong>on</strong>g> bath still retains its cleaning properties.<br />

Daily bath emptying (which can exceed 3,000<br />

litre per day) causes a high cost due to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

new formulati<strong>on</strong> reagents (water and sodium<br />

hydr<str<strong>on</strong>g>oxide</str<strong>on</strong>g>) and energy. In additi<strong>on</strong>, it generates<br />

a large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> hazardous waste (with<br />

high basicity and high c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g>) (Guía Tecnológica).<br />

Several studies (Li et al, 2005a) have shown<br />

that <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> in a caustic soluti<strong>on</strong> at a temperature<br />

approaching to boiling point leads<br />

to sodium aluminate (NaAlO 2), resulting in<br />

hydrogen gas (H 2 (g)). Sodium aluminate so-<br />

luti<strong>on</strong>s begin to run out, since a mesoscopic<br />

point <str<strong>on</strong>g>of</str<strong>on</strong>g> view, due to presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

hydr<str<strong>on</strong>g>oxide</str<strong>on</strong>g>s like gibbsite and bayerite (Harris<br />

et al, 1999). Optical scattering techniques, like<br />

Dynamic Light Scattering (DLS), have been<br />

proven its feasibility to characterize <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleati<strong>on</strong><br />

and growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se species.<br />

The growing interest <str<strong>on</strong>g>of</str<strong>on</strong>g> industry for c<strong>on</strong>trol<br />

and m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> process<br />

motivates research in <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> new<br />

optical devices that allow <str<strong>on</strong>g>the</str<strong>on</strong>g>ir integrati<strong>on</strong> into<br />

producti<strong>on</strong> lines (Harris et al, 1999). These<br />

systems provide real-time informati<strong>on</strong> about<br />

a process. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se labs <strong>on</strong> a chip device<br />

are <str<strong>on</strong>g>the</str<strong>on</strong>g> multiple internal reflecti<strong>on</strong> (MIR) systems.<br />

(Llobera et al, 2007).<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this work has been <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> a low cost MIR sensor<br />

fabricated in PDMS in order to m<strong>on</strong>itor<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> advance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> extrusi<strong>on</strong> dies<br />

cleaning process.<br />

Method<br />

Soluti<strong>on</strong> preparati<strong>on</strong>: Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> impossibility<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> working with real extrusi<strong>on</strong> dies at laboratory<br />

scale, small pieces <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> have<br />

been used for <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s. Cleaning baths<br />

are prepared using NaOH soluti<strong>on</strong> in a benchscale.<br />

This bath is heated to <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> work and <str<strong>on</strong>g>the</str<strong>on</strong>g> fragment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> is put<br />

into <str<strong>on</strong>g>the</str<strong>on</strong>g> bath. Once treatment time is completed,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> attacked <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> piece is removed.<br />

When <str<strong>on</strong>g>the</str<strong>on</strong>g> bath is cool<br />

a dark gelatinous compounds<br />

start to precipitate<br />

(<str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

hydr<str<strong>on</strong>g>oxide</str<strong>on</strong>g> and aluminates).<br />

The <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong> in soluti<strong>on</strong><br />

and free sodium<br />

hydr<str<strong>on</strong>g>oxide</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

are determined in<br />

each test <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental<br />

set-up. The ratio <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

free sodium hydr<str<strong>on</strong>g>oxide</str<strong>on</strong>g><br />

and <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> in so-<br />

luti<strong>on</strong> gives an idea <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bath exhausti<strong>on</strong>.<br />

Optical characterizati<strong>on</strong>: This work has been<br />

carried out to characterize <str<strong>on</strong>g>the</str<strong>on</strong>g> optical properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> samples such as refractive index, transmittance<br />

spectral resp<strong>on</strong>se and scattering.<br />

The size distributi<strong>on</strong> has been analyzed by<br />

dynamic light scattering, from samples prepared<br />

according to <str<strong>on</strong>g>the</str<strong>on</strong>g> procedure menti<strong>on</strong>ed<br />

previously (to 95ºC from a soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> initial<br />

NaOH c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 19%). The size <str<strong>on</strong>g>of</str<strong>on</strong>g> particles<br />

suspended in <str<strong>on</strong>g>the</str<strong>on</strong>g> bath has been determined<br />

using a Spectrometer Autosizer 4800<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Malvern Instruments (PCS technique). The<br />

refractive index has been measured at different<br />

times (with a refractometer ABBEMAT-<br />

HP) for so what‘s <str<strong>on</strong>g>the</str<strong>on</strong>g> bath depleti<strong>on</strong> point.<br />

Reference measurement system: Experiments<br />

with laboratory samples have been<br />

c<strong>on</strong>ducted to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

samples measured by <str<strong>on</strong>g>the</str<strong>on</strong>g> sensor and verify<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> feasibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed detecti<strong>on</strong><br />

methods, as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> needs and tolerances<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coupling and sealing systems. For <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

tests, a setup similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed sensor<br />

has been used, but discrete optical elements<br />

were used instead <str<strong>on</strong>g>of</str<strong>on</strong>g> waveguides, as a reference<br />

measurement system. This assembly allows<br />

to develop transmissi<strong>on</strong> and dispersi<strong>on</strong><br />

measurements at 90° simultaneously. The light<br />

is injected through a multimode optical fibre<br />

and collected with plastic optical fibres <str<strong>on</strong>g>of</str<strong>on</strong>g> 1<br />

mm in diameter.<br />

In order to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> signal to noise ratio<br />

and eliminate <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> light which is<br />

Fig. 1: Attenuati<strong>on</strong> and dispersi<strong>on</strong> at 90° for soluti<strong>on</strong>s caustic soda with different<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> Images: Aimen<br />

28 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


necessary in <str<strong>on</strong>g>the</str<strong>on</strong>g> specific case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dispersi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> laser is modulated to<br />

low frequencies (721 Hz) and <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

both detectors is processed via a synchr<strong>on</strong>ic<br />

detecti<strong>on</strong> algorithm or lock-in.<br />

To perform <str<strong>on</strong>g>the</str<strong>on</strong>g>se tests, aliquots <str<strong>on</strong>g>of</str<strong>on</strong>g> soda/<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> soluti<strong>on</strong> are sampled at different<br />

reacti<strong>on</strong> times. The measurements made<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> reference system allow observing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> transmissi<strong>on</strong> and optical<br />

dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample with reacti<strong>on</strong> time.<br />

Fig. 1 show <str<strong>on</strong>g>the</str<strong>on</strong>g> measurements obtained in dB<br />

relative to <str<strong>on</strong>g>the</str<strong>on</strong>g> power transmitted to <str<strong>on</strong>g>the</str<strong>on</strong>g> sample<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NaOH (blank) and correlati<strong>on</strong> coefficients<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a linear fit.<br />

MIR based sensor: From a fluidic point <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

view, <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed system c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> a MIR<br />

structure directly c<strong>on</strong>nected to fluidic input/<br />

output reservoirs. The sensor operati<strong>on</strong> is<br />

based <strong>on</strong> circulating fluid through <str<strong>on</strong>g>the</str<strong>on</strong>g> guide<br />

MIR. The light is injected through optical fibres<br />

and light is collected after travelling part<br />

way through <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid (Fig. 2) (Llobera et al,<br />

2007). The measured magnitude is <str<strong>on</strong>g>the</str<strong>on</strong>g> loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> irradiance associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particles relevant process in questi<strong>on</strong>, which<br />

in this particular case are compounds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

(<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> particles and <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

hydr<str<strong>on</strong>g>oxide</str<strong>on</strong>g>).<br />

In order to study <str<strong>on</strong>g>the</str<strong>on</strong>g> process that takes<br />

place in <str<strong>on</strong>g>the</str<strong>on</strong>g> cleaning bath, <str<strong>on</strong>g>the</str<strong>on</strong>g> alkaline soluti<strong>on</strong><br />

should be circulated through <str<strong>on</strong>g>the</str<strong>on</strong>g> interior<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> guide MIR.<br />

Fig. 2: Experimental setup<br />

Results<br />

The experimental tests performed to validate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> optical sensor at <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory, dem<strong>on</strong>strate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> device to determine<br />

optimal initial c<strong>on</strong>diti<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> point <str<strong>on</strong>g>of</str<strong>on</strong>g> depleti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bath, allowing <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong><br />

process.<br />

Resistance testing: Some experiments have<br />

been c<strong>on</strong>ducted in order to test <str<strong>on</strong>g>the</str<strong>on</strong>g> resistance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> materials <str<strong>on</strong>g>of</str<strong>on</strong>g> MIR guide. The device is immersed<br />

in a bath (19% [NaOH], 95ºC) during<br />

a time <str<strong>on</strong>g>of</str<strong>on</strong>g> 8 hours. Fig. 3, shows <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> MIR guide after <str<strong>on</strong>g>the</str<strong>on</strong>g> resistance test <strong>on</strong> a several<br />

samples. The curve for <str<strong>on</strong>g>the</str<strong>on</strong>g> soda soluti<strong>on</strong> is<br />

similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> curve produced by <str<strong>on</strong>g>the</str<strong>on</strong>g> transmissi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> water, while <str<strong>on</strong>g>the</str<strong>on</strong>g> signal associated with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sample with <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> is an<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude lower than <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

previous <strong>on</strong>e. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

particles lead to losses to<br />

reduce light scattering coupled to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> output fibre. The sensor is not<br />

damaged in its functi<strong>on</strong>al capacity.<br />

The materials used for m<strong>on</strong>itoring<br />

purposes are feasible for at least<br />

<strong>on</strong>e cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> industrial process.<br />

Process m<strong>on</strong>itoring: The aim<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this study has been <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> an optic sensor<br />

in order to m<strong>on</strong>itor <str<strong>on</strong>g>the</str<strong>on</strong>g> advance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> extrusi<strong>on</strong> dies<br />

cleaning process, and estimate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

end point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bath. Aliquots <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

caustic soda (NaOH 14%, 95°C) /<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> soluti<strong>on</strong> are sampled<br />

at different reacti<strong>on</strong> times have<br />

been injected into <str<strong>on</strong>g>the</str<strong>on</strong>g> guide MIR.<br />

Fig. 4 illustrates <str<strong>on</strong>g>the</str<strong>on</strong>g> signal decay<br />

with increasing time <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong><br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore decreases as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ratio [NaOH] / [Al]. These variati<strong>on</strong>s<br />

are due to <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> and<br />

growth <str<strong>on</strong>g>of</str<strong>on</strong>g> particles in <str<strong>on</strong>g>the</str<strong>on</strong>g> sample.<br />

In Fig. 5 (see next<br />

page) two characteristic<br />

regi<strong>on</strong>s can be distinguished.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong><br />

between 10 and 60 min<br />

a rapid decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ratio [NaOH]/[Al] is observed toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

with a low sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

signal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> device (0.4 ±0.06 dB/<br />

(M/M)). The sec<strong>on</strong>d regi<strong>on</strong> is located<br />

above 60 min. Here <str<strong>on</strong>g>the</str<strong>on</strong>g> change is<br />

less pr<strong>on</strong>ounced but device sensitivity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> device is higher (3.7 ±0.5<br />

dB/(M/M)) for ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> [NaOH]/<br />

[Al] inferior to 3. Starting from this<br />

point <str<strong>on</strong>g>the</str<strong>on</strong>g> values c<strong>on</strong>verge to bath<br />

saturati<strong>on</strong> <strong>on</strong>es. In <str<strong>on</strong>g>the</str<strong>on</strong>g> first regi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dissolved <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> increases<br />

but <str<strong>on</strong>g>the</str<strong>on</strong>g> particle size is below <str<strong>on</strong>g>the</str<strong>on</strong>g> wavelength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> emitted light so that no signal <str<strong>on</strong>g>of</str<strong>on</strong>g> scattering<br />

is recorded. This explains <str<strong>on</strong>g>the</str<strong>on</strong>g> low intensity<br />

measured by <str<strong>on</strong>g>the</str<strong>on</strong>g> device. However, in <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d<br />

regi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> particle size is superior to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

selected wavelength and <str<strong>on</strong>g>the</str<strong>on</strong>g> sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

device increases. These results are in accordance<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s made by Harris et<br />

MEASURING & CONTROL<br />

al, 1999, regarding <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

inducti<strong>on</strong> period, from where a linear growth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> particles present in <str<strong>on</strong>g>the</str<strong>on</strong>g> saturated soluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Al in NaOH at high temperature is<br />

observed.<br />

The maximum sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sensor for<br />

process m<strong>on</strong>itoring is achieved with a wave-<br />

Fig. 3: Device resp<strong>on</strong>se for a sample <str<strong>on</strong>g>of</str<strong>on</strong>g> distilled water, [NaOH]<br />

5.94 M and [NaOH]/[Al] 0.78<br />

Fig. 4: Spectral resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> measurand for each time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

bath<br />

length <str<strong>on</strong>g>of</str<strong>on</strong>g> 577 nm with a linear slope <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.041<br />

±0.004 dB / min. This allows to distinguish<br />

states <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bath <strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> ratios <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

[Al] / [NaOH] = 0.1.<br />

Initial c<strong>on</strong>diti<strong>on</strong>s: Laboratory scale assays to<br />

measure <str<strong>on</strong>g>the</str<strong>on</strong>g> transducer resp<strong>on</strong>se for different<br />

initial c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> baths show that <str<strong>on</strong>g>the</str<strong>on</strong>g> device<br />

has <str<strong>on</strong>g>the</str<strong>on</strong>g> capacity to distinguish different<br />

initial c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> caustic soda. Different<br />

samples <str<strong>on</strong>g>of</str<strong>on</strong>g> NaOH soluti<strong>on</strong> (10%, 14% and<br />

19% c<strong>on</strong>centrati<strong>on</strong>) have been injected into<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> device. C<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

10% as blank, an increasing to 19% NaOH<br />

c<strong>on</strong>centrati<strong>on</strong> represents an increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> signal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 1.04 dB (Fig. 6). These increases in signal<br />

are due to changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> refractive index <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> different soluti<strong>on</strong>s: 1.360 (NaOH 10%)<br />

1.367 (NaOH 14%) 1.379 (19% NaOH).<br />

The sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> device to scattering<br />

losses and refractive index changes enable to<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 29


MEASURING & CONTROL<br />

Fig. 5: Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> intensity losses and ratio [NaOH]/[Al] in functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> time at laboratory c<strong>on</strong>diti<strong>on</strong>s<br />

determine as <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal initial c<strong>on</strong>diti<strong>on</strong>s as<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exhausti<strong>on</strong> point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong>.<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

This work aims <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

industrial process <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> extrusi<strong>on</strong> die<br />

www<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g>ePaper.com<br />

Please be our guest<br />

and discover <str<strong>on</strong>g>the</str<strong>on</strong>g> benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>ALU</strong>MINIUM-ePaper yourself in a<br />

free three-m<strong>on</strong>th trial:<br />

� accessible at least a week<br />

before <str<strong>on</strong>g>the</str<strong>on</strong>g> printed editi<strong>on</strong><br />

� available from any locati<strong>on</strong><br />

� simple download<br />

� keyword researches<br />

� linked list <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tents<br />

� direct c<strong>on</strong>tact with advertisers<br />

cleaning using optical sensors. An integrated<br />

optical technology, with capacity for m<strong>on</strong>itoring<br />

industrial processes in c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> very<br />

extreme temperature and pH has been developed.<br />

The results show that <str<strong>on</strong>g>the</str<strong>on</strong>g> prototype exceeds<br />

all critical requirements.<br />

The data obtained after <str<strong>on</strong>g>the</str<strong>on</strong>g> validati<strong>on</strong><br />

dem<strong>on</strong>strate <str<strong>on</strong>g>the</str<strong>on</strong>g> applicability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> optical<br />

sensors for m<strong>on</strong>itoring<br />

bath dedicated<br />

to <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> dissoluti<strong>on</strong>.<br />

Absorpti<strong>on</strong><br />

and scattering losses,<br />

related to <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

particles present in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cleaning soluti<strong>on</strong>s,<br />

have been correlated<br />

with initial<br />

caustic soluti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> study<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sensor reflects<br />

after use for an industrial<br />

bath, <str<strong>on</strong>g>the</str<strong>on</strong>g> device<br />

does not suffer<br />

damage affecting <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

proper operati<strong>on</strong>.<br />

The results <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

research indicate that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this optic sensor as a<br />

m<strong>on</strong>itoring technique<br />

in <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> caustic<br />

soluti<strong>on</strong>s is feasible.<br />

The industrial applicati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this sensor<br />

would help <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

companies to<br />

select <str<strong>on</strong>g>the</str<strong>on</strong>g> most suitable<br />

cleaning opera-<br />

Fig. 6: Spectral resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> different soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> NaOH<br />

according to its requirements. By stating <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved <str<strong>on</strong>g>aluminium</str<strong>on</strong>g>, <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

industry could work under different c<strong>on</strong>diti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sodium hydr<str<strong>on</strong>g>oxide</str<strong>on</strong>g> c<strong>on</strong>cen trati<strong>on</strong>, temperature<br />

and time. This would mean a decrease<br />

in c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> raw materials (caustic soda<br />

and water), energy and a reducti<strong>on</strong> in effluents<br />

and waste management. M<strong>on</strong>itoring is a useful<br />

investment with wide practical benefits.<br />

Acknowledgements<br />

This work was supported by project <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Ministerio de Industria, Turismo y Comercio.<br />

Secretaría de Estado de Telecomunicaci<strong>on</strong>es y<br />

para la Sociedad de la Información Dirección<br />

General para el Desarrollo de la Sociedad de<br />

la Información, TSI-020301-2008-11. The assistance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Iñigo Salinas and David Izquierdo<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Zaragoza for design and<br />

measurement implementati<strong>on</strong> with reference<br />

system is gratefully acknowledged.<br />

Bibliography<br />

Guía Tecnológica. Directiva 96/61 relativa a la prevención<br />

y c<strong>on</strong>trol integrados a la prevención y c<strong>on</strong>trol<br />

integrados de la c<strong>on</strong>taminación. Epígrafe 2.5.<br />

Metalurgia de aluminio.<br />

Harris D.R., Keir R.I., Prestidge C.A., Thomas J.C.,<br />

1999. A dynamic light scattering investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nucleati<strong>on</strong> and growth in supersaturated alkaline<br />

sodium aluminate soluti<strong>on</strong>s (syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic Bayer liquors),<br />

Colloids and Surfaces A, p. 154 343-352.<br />

Li H.; Addai-Mensah J.; Thomasb J. C.; Gers<strong>on</strong>a A.<br />

R. 2005a. The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Al(III) supersaturati<strong>on</strong><br />

and NaOH c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Al(OH)3 precursor particles from sodium<br />

aluminate soluti<strong>on</strong>s. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Colloid and Interface<br />

Science 286, p. 511-519.<br />

Llobera A. Demming S.; Wilkea R. and Bu¨ttgenbacha<br />

S.; 2007. Multiple internal reflecti<strong>on</strong> poly (dimethylsiloxane)<br />

systems for optical sensing. Advance Article<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> www.rsc.org/loc | Lab <strong>on</strong> a Chip.<br />

ti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s and �<br />

30 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


<str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> raw material c<strong>on</strong>stituti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gloss alloy-type extrusi<strong>on</strong> billets – a report from practice<br />

Klaus H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann, Ralf Munk, Marcel Rosefort and Dietmar Bramh<str<strong>on</strong>g>of</str<strong>on</strong>g>f, Trimet Aluminium AG<br />

The Trimet group provides <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

processing industry with primary metal,<br />

alloys, semi-finished products, castings<br />

and recycling. The competences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

business unit Primary Products are electrolysis<br />

and c<strong>on</strong>tinuous casting. Products<br />

are rolling slabs, extrusi<strong>on</strong> and forging<br />

billets, hot dip-coating alloys, initial products<br />

for safety parts and liquid <str<strong>on</strong>g>aluminium</str<strong>on</strong>g>.<br />

Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> demand for high quality<br />

and services regarding <str<strong>on</strong>g>the</str<strong>on</strong>g>se products in<br />

particular <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> automotive industry it<br />

is essential to enforce and secure quality<br />

c<strong>on</strong>trol. All <str<strong>on</strong>g>the</str<strong>on</strong>g>se high quality products<br />

from Trimet, especially <str<strong>on</strong>g>the</str<strong>on</strong>g> safety parts,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> gloss alloys and parts with functi<strong>on</strong>al<br />

surfaces for automotive applicati<strong>on</strong>s, are<br />

characterized by an extremely homogenous<br />

microstructure without<br />

internal defects or inclusi<strong>on</strong>s.<br />

Within our permanent quality<br />

improvement programme an examinati<strong>on</strong><br />

has been carried out to<br />

measure <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> raw material<br />

c<strong>on</strong>stituti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> product<br />

quality. Therefore <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> liquid<br />

metal, ingot metal and mixtures <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se has been tested. The paper<br />

covers <str<strong>on</strong>g>the</str<strong>on</strong>g> essential producti<strong>on</strong><br />

steps for such challenging high<br />

quality billets. It gives a report<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> quality requirements, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

qualifying <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> alloying material and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

process parameters. Especially <str<strong>on</strong>g>the</str<strong>on</strong>g> methods<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> analysis, like PoDFa and inclusi<strong>on</strong><br />

identificati<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> correlati<strong>on</strong>s between<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> process parameters, <str<strong>on</strong>g>the</str<strong>on</strong>g> feedstock<br />

and metal quality are described.<br />

The market for extrusi<strong>on</strong> billets for bright surface<br />

products in Europe is bigger than 15,000<br />

t<strong>on</strong>nes a year. The highest demand for this<br />

special material comes from <str<strong>on</strong>g>the</str<strong>on</strong>g> automotive<br />

industry. There it is used for trim parts, ro<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

racks and cover plates. But <str<strong>on</strong>g>the</str<strong>on</strong>g>re is also a<br />

market for this material in <str<strong>on</strong>g>the</str<strong>on</strong>g> lighting and audio<br />

industry. One can say that <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

black coated trims is over – for <str<strong>on</strong>g>the</str<strong>on</strong>g> moment.<br />

To fulfil <str<strong>on</strong>g>the</str<strong>on</strong>g> very challenging specificati<strong>on</strong>s<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> final parts, <str<strong>on</strong>g>the</str<strong>on</strong>g> whole process from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

alumina for <str<strong>on</strong>g>the</str<strong>on</strong>g> electrolyses up to <str<strong>on</strong>g>the</str<strong>on</strong>g> anodising<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> final part has to be fully tuned and<br />

straight designed. All changes in this process<br />

chain have to be scrutinised, and all changes<br />

have to be discussed and well co-ordinated<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> partners <str<strong>on</strong>g>of</str<strong>on</strong>g> this sensitive process<br />

chain.<br />

So, why change such a sensitive process?<br />

If we want to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> end<br />

product, we will have to change <str<strong>on</strong>g>the</str<strong>on</strong>g> process<br />

from time to time, or <str<strong>on</strong>g>the</str<strong>on</strong>g>re are technical needs<br />

to change a step in <str<strong>on</strong>g>the</str<strong>on</strong>g> process. This paper discusses<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solid/liquid metal<br />

ratio.<br />

The trimal BQ process<br />

Trimet developed a special process named BQ<br />

(Brilliant Quality) to fulfil all <str<strong>on</strong>g>the</str<strong>on</strong>g>se requirements<br />

for a brilliant end product.<br />

The trimal BQ process is a special process<br />

for producing extrusi<strong>on</strong> billets, to fulfil high<br />

requirements and to cover all <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong><br />

steps and parameters that are adjusted for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

end product: <str<strong>on</strong>g>the</str<strong>on</strong>g> alumina, melting, casting, homogenizing,<br />

testing.<br />

This process includes all parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro-<br />

Producti<strong>on</strong> flow in <str<strong>on</strong>g>the</str<strong>on</strong>g> casthouse<br />

Images: Trimet<br />

EXTRUSION<br />

ducti<strong>on</strong> chain starting with <str<strong>on</strong>g>the</str<strong>on</strong>g> alumina and<br />

anodes for <str<strong>on</strong>g>the</str<strong>on</strong>g> electrolysis at <str<strong>on</strong>g>the</str<strong>on</strong>g> Essen or<br />

Hamburg smelter to produce <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid and<br />

solid raw material. Followed by alloying, metal<br />

treatment, grain refining and casting, finished<br />

up with <str<strong>on</strong>g>the</str<strong>on</strong>g> customised homogenizing process<br />

unique for <str<strong>on</strong>g>the</str<strong>on</strong>g>se billets.<br />

The electrolysis process<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> electrolysis <str<strong>on</strong>g>the</str<strong>on</strong>g>re are several pots operated<br />

as high purity pots. For <str<strong>on</strong>g>the</str<strong>on</strong>g>se pots <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

alumina is not used in <str<strong>on</strong>g>the</str<strong>on</strong>g> waste gas purificati<strong>on</strong><br />

process to avoid <str<strong>on</strong>g>the</str<strong>on</strong>g> enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

elements. The anodes are hand selected according<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir metal c<strong>on</strong>tent and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir operating<br />

life in <str<strong>on</strong>g>the</str<strong>on</strong>g> cells is shorter than in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

standard pots.<br />

The c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pots is d<strong>on</strong>e by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Trimet 9-box matrix model [1]. This<br />

is increasing current efficiency and reducing<br />

energy c<strong>on</strong>sumpti<strong>on</strong>. After <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

transport, crucible with <str<strong>on</strong>g>the</str<strong>on</strong>g> pot room<br />

metal is arriving at <str<strong>on</strong>g>the</str<strong>on</strong>g> casthouse <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dross is accurately removed from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

metal surface. Now <str<strong>on</strong>g>the</str<strong>on</strong>g> metal is transferred<br />

to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> melting furnaces or<br />

casted into sow forms.<br />

Melting and casting<br />

The process in <str<strong>on</strong>g>the</str<strong>on</strong>g> casthouse (see flow<br />

chart) starts with <str<strong>on</strong>g>the</str<strong>on</strong>g> loading <str<strong>on</strong>g>of</str<strong>on</strong>g> solid metal into<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> gas fired melting furnace. When <str<strong>on</strong>g>the</str<strong>on</strong>g> solid<br />

metal is heated up to <str<strong>on</strong>g>the</str<strong>on</strong>g> required temperature<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> hot pot room metal (approx. 930°C)<br />

is added to <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace. In this step we use <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy which is stored in <str<strong>on</strong>g>the</str<strong>on</strong>g> pot room metal<br />

to bring <str<strong>on</strong>g>the</str<strong>on</strong>g> sows into <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid state. The liq-<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 31


EXTRUSION<br />

Grain refiner rod (AlTixBx )<br />

• Chemical analysis<br />

• Efficiency<br />

• Metallography<br />

Oxide, <str<strong>on</strong>g>oxide</str<strong>on</strong>g> lines<br />

TiB2 agglomerate<br />

Al3Ti - phases<br />

Grain refiner input [2]<br />

uid metal will <str<strong>on</strong>g>the</str<strong>on</strong>g>n be mixed thoroughly.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> end product <str<strong>on</strong>g>the</str<strong>on</strong>g> quality<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> metal input is essentially important. If<br />

low quality base material is used, <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a clean melt will be impossible. At Trimet<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> hot metal is analysed and melt-dross<br />

is skimmed <str<strong>on</strong>g>of</str<strong>on</strong>g>f; when cold metal is used, <strong>on</strong>ly<br />

ingots from in-house producti<strong>on</strong> are added to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pot room metal.<br />

After skimming <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bath,<br />

a sample will be taken and <str<strong>on</strong>g>the</str<strong>on</strong>g> required elements<br />

will be brought into <str<strong>on</strong>g>the</str<strong>on</strong>g> batch. This<br />

additi<strong>on</strong> will be d<strong>on</strong>e in <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriate sequence<br />

and at <str<strong>on</strong>g>the</str<strong>on</strong>g> needed temperature. For <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

alloying we use master alloys from certified<br />

suppliers. The melt will be stirred, skimmed<br />

and a sample will be taken. If <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis is<br />

Filter box for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuous casting [3]<br />

Unacceptable <str<strong>on</strong>g>oxide</str<strong>on</strong>g> lines and TiB 2<br />

agglomerates in a grain refiner rod<br />

within <str<strong>on</strong>g>the</str<strong>on</strong>g> range given by <str<strong>on</strong>g>the</str<strong>on</strong>g> customer and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> temperature at <str<strong>on</strong>g>the</str<strong>on</strong>g> demanded level, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

melt will be transferred into <str<strong>on</strong>g>the</str<strong>on</strong>g> inductive<br />

heated casting furnace. From this point <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re is no fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> any alloying<br />

agent. The <strong>on</strong>ly excepti<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> grain refiner<br />

rod, which is added process-related during <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

casting. All delivered batches <str<strong>on</strong>g>of</str<strong>on</strong>g> grain refiner<br />

are tested for chemical analysis, <str<strong>on</strong>g>oxide</str<strong>on</strong>g> lines,<br />

TiB 2 agglomerates and Al 3Ti particle size.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> following it is very important to prevent<br />

any turbulence to avoid <str<strong>on</strong>g>the</str<strong>on</strong>g> forming <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dross in <str<strong>on</strong>g>the</str<strong>on</strong>g> melt. The melt cleaning process is<br />

divided into three separate steps.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> casting furnace <str<strong>on</strong>g>the</str<strong>on</strong>g> first step <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

metal cleaning is<br />

d<strong>on</strong>e. The melt is<br />

cleaned by a mixture<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Ar and Cl,<br />

this is dispersed<br />

by a rotary gas<br />

injector into <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

melt. During this<br />

step sodium, calcium,<br />

hydrogen<br />

and n<strong>on</strong>-metallic<br />

inclusi<strong>on</strong>s are removed.<br />

After <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sec<strong>on</strong>d step, a suf-<br />

Automated casting using <str<strong>on</strong>g>the</str<strong>on</strong>g> spout and floater technique at <str<strong>on</strong>g>the</str<strong>on</strong>g> Trimet plant in Essen [4]<br />

ficient holding time, <str<strong>on</strong>g>the</str<strong>on</strong>g> casting is started and<br />

during casting <str<strong>on</strong>g>the</str<strong>on</strong>g> third step <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> metal cleaning<br />

is operated in-line by a CFF (see Fig. 3).<br />

Usually we use 40 ppi CCFs for <str<strong>on</strong>g>the</str<strong>on</strong>g> trimal BQ<br />

process. For <str<strong>on</strong>g>the</str<strong>on</strong>g> automated casting we use <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

spout and floater technique, which has some<br />

advantages c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> inclusi<strong>on</strong> c<strong>on</strong>tent.<br />

With this technique we are able to cast all our<br />

alloys in <str<strong>on</strong>g>the</str<strong>on</strong>g> desired quality.<br />

Quality c<strong>on</strong>trol<br />

First a short overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inspecti<strong>on</strong>s and<br />

tests which have to be d<strong>on</strong>e before, during and<br />

after <str<strong>on</strong>g>the</str<strong>on</strong>g> BQ process to secure <str<strong>on</strong>g>the</str<strong>on</strong>g> expected<br />

brilliant quality.<br />

Melting: analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> hot and cold metal and <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

master alloys.<br />

Metal treatment: analysis, quantities, times,<br />

filter.<br />

Casting: H 2 measurement, analysis at casting<br />

start, casting parameter, analysis at end casting,<br />

PoDFA samples.<br />

First inspecti<strong>on</strong>: ultras<strong>on</strong>ic test, length, shape,<br />

surface defects.<br />

Homogenizati<strong>on</strong>: recipe, temperature, time,<br />

cooling.<br />

Structure: cracks, inclusi<strong>on</strong>s, porosity, coarse<br />

grain, surface defects.<br />

Of particular importance during quality<br />

c<strong>on</strong>trol in <str<strong>on</strong>g>the</str<strong>on</strong>g> cast shop are <str<strong>on</strong>g>the</str<strong>on</strong>g> melt analysis<br />

c<strong>on</strong>cerning H 2 and inclusi<strong>on</strong>s (PoDFA-measurements),<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuous c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> all casting<br />

parameters and <str<strong>on</strong>g>the</str<strong>on</strong>g> ultras<strong>on</strong>ic testing after<br />

casting.<br />

These checks are supplemented by metallographic<br />

quality c<strong>on</strong>trol in <str<strong>on</strong>g>the</str<strong>on</strong>g> Trimet laboratory.<br />

This means detailed c<strong>on</strong>trolling <str<strong>on</strong>g>of</str<strong>on</strong>g> possible<br />

cracks, inclusi<strong>on</strong>s, porosity, grain structure,<br />

etc.<br />

Trials about <str<strong>on</strong>g>the</str<strong>on</strong>g> solid / liquid ratio<br />

So why should we change a stable and successful<br />

process? One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong>s was <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

crisis that started in 2009. Trimet had to reduce<br />

its output <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> casthouse and to switch<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f around two thirds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electrolyses capacity.<br />

This implied that <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> high<br />

purity pots was decreased, too. This resulted<br />

in a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> high purity metal for a trimal BQ<br />

campaign.<br />

The trials were supposed to answer <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

questi<strong>on</strong> whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a difference in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> billets when <str<strong>on</strong>g>the</str<strong>on</strong>g>y are produced<br />

from 100% solid metal or 100% liquid metal<br />

or 50/50%.<br />

The melt quality was checked with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

PoDFA method. The Porous Disc Filtrati<strong>on</strong><br />

Apparatus is a method by which liquid metal<br />

32 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


Principle <str<strong>on</strong>g>of</str<strong>on</strong>g> taking PoDFA-samples [5]<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> melt is pressed by pressed air or<br />

sucked by vacuum through a ceramic filter<br />

disc (see Fig. 5). Inclusi<strong>on</strong>s are c<strong>on</strong>centrated<br />

by filtrati<strong>on</strong> in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> filter disc. This area<br />

has to be prepared with metallographic techniques<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> microscopic examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sample and <str<strong>on</strong>g>the</str<strong>on</strong>g> identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inclusi<strong>on</strong><br />

types. The evaluati<strong>on</strong> has to be d<strong>on</strong>e by an<br />

experienced metallographer who is counting<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> covered area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> single inclusi<strong>on</strong>s. The<br />

c<strong>on</strong>centrati<strong>on</strong> is given for each type <str<strong>on</strong>g>of</str<strong>on</strong>g> inclusi<strong>on</strong><br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> covered area in mm 2 /kg filtered<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g>. The inclusi<strong>on</strong>s are identified by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir colour and shape with <str<strong>on</strong>g>the</str<strong>on</strong>g> assistance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> PoDFA-catalogue.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> unknown inclu-<br />

Typical inclusi<strong>on</strong>s in <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> melt [5]<br />

si<strong>on</strong>s a scanning electr<strong>on</strong><br />

microscope with<br />

energy dispersive Xray<br />

is helpful.<br />

The advantage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> PoDFA method<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility to<br />

identify <str<strong>on</strong>g>the</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> inclusi<strong>on</strong>s and to<br />

count <str<strong>on</strong>g>the</str<strong>on</strong>g>ir frequency.<br />

A handicap <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

technique is that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> test is a<br />

snap-shot <str<strong>on</strong>g>of</str<strong>on</strong>g> just <strong>on</strong>e<br />

moment. This is <str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong> why <str<strong>on</strong>g>the</str<strong>on</strong>g> sampling<br />

has to be d<strong>on</strong>e very carefully and well planned<br />

to get repeatable results. It has to be scheduled<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> sampling will be d<strong>on</strong>e, when and<br />

how <str<strong>on</strong>g>of</str<strong>on</strong>g>ten it has to be d<strong>on</strong>e.<br />

As metal input for <str<strong>on</strong>g>the</str<strong>on</strong>g>se tests we used liquid<br />

pot room metal and cold pot room metal as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

solid raw material. For <str<strong>on</strong>g>the</str<strong>on</strong>g> tests we produced<br />

a 6,000 series with approx. 0,5% silic<strong>on</strong> and<br />

magnesium, which is usually used for automotive<br />

applicati<strong>on</strong>s. The PoDFA samples were<br />

taken at <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning and at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

castings. One sample was taken in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

filter and <strong>on</strong>e after <str<strong>on</strong>g>the</str<strong>on</strong>g> filter.<br />

These tests were also used to verify <str<strong>on</strong>g>the</str<strong>on</strong>g> performance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ceramic foam filter system.<br />

The results <str<strong>on</strong>g>of</str<strong>on</strong>g> both parameters for six casting<br />

heats are shown in <str<strong>on</strong>g>the</str<strong>on</strong>g> figure. There is no significant<br />

difference in <str<strong>on</strong>g>the</str<strong>on</strong>g> inclusi<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong><br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> product whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r 100% liquid pot<br />

room metal is used as metal input or 100%<br />

solid potroom metal or 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> each is used as<br />

metal input. The comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PoDFA results<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> casting and at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> casting shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> filter system<br />

is capable to reduce all kind <str<strong>on</strong>g>of</str<strong>on</strong>g> inclusi<strong>on</strong>s.<br />

The comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PoDFA results<br />

shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> filter system is working effec-<br />

PoDFA measurements to compare inclusi<strong>on</strong> amount using hot metal and cold metal (50%), before and after <str<strong>on</strong>g>the</str<strong>on</strong>g> ceramic foam filter-system<br />

SESSION EXTRUSION<br />

tively and is reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> all types<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> inclusi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> melt. The filter system is<br />

working solid during <str<strong>on</strong>g>the</str<strong>on</strong>g> whole casting run.<br />

C<strong>on</strong>clusi<strong>on</strong><br />

The exceedingly sophisticated standard <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

producti<strong>on</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> Trimet Aluminium as<br />

well as <str<strong>on</strong>g>the</str<strong>on</strong>g> intensive fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a product will also satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> growing quality<br />

requirements in <str<strong>on</strong>g>the</str<strong>on</strong>g> future. The sum <str<strong>on</strong>g>of</str<strong>on</strong>g> process<br />

steps, quality c<strong>on</strong>trol and quality management<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> high standard <str<strong>on</strong>g>of</str<strong>on</strong>g> Trimet<br />

quality.<br />

In additi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> metal input is essential for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> product quality. The advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> Trimet<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> own liquid and solid metal for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong>. Trials have shown that <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

is no significant difference between 100%<br />

liquid pot room metal and 100% solid pot<br />

room metal or any mixture as metal input for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> product quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> trimal BQ process.<br />

Due to this great variability c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

metal input, ec<strong>on</strong>omic fluctuati<strong>on</strong>s, such as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

above menti<strong>on</strong>ed crisis, induce no quality variati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> producti<strong>on</strong> at Trimet.<br />

References<br />

[1] Light Metals 2003: Increased Current Efficiency<br />

And Reduced Energy C<strong>on</strong>sumti<strong>on</strong> At The Trimet<br />

Smelter Essen Using 9 Box Matrix C<strong>on</strong>trol, [pp.<br />

449ff] T.Rieck, M. Iffert, P. White, R. Rodrigo and<br />

P. Kelchtermans<br />

[2] Light Metals 2008: Producing Bright Shining<br />

Products For Special Applicati<strong>on</strong>s – Experience<br />

from Practice”, J. Dressler, D. Bramh<str<strong>on</strong>g>of</str<strong>on</strong>g>f, C. Deiters,<br />

H. Koch<br />

[3] Fa. Drache Umwelttechnik<br />

[4] C. Kammer: Aluminium Taschenbuch, Aluminium<br />

Verlag Düsseldorf<br />

[5] ABB: PoDFA – Inclusi<strong>on</strong> Identificati<strong>on</strong> And<br />

Quantificati<strong>on</strong> Analysis. �<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 33


EXTRUSION<br />

Heavy duty extrusi<strong>on</strong> presses for large pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile applicati<strong>on</strong>s<br />

Axel Bauer, SMS Meer GmbH<br />

SMS Meer, a member <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> SMS group,<br />

is currently building several heavy extrusi<strong>on</strong><br />

presses for large pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile applicati<strong>on</strong>s.<br />

Two <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se presses have a nominal<br />

pressing force <str<strong>on</strong>g>of</str<strong>on</strong>g> 150 MN and are c<strong>on</strong>sidered<br />

as <str<strong>on</strong>g>the</str<strong>on</strong>g> largest state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-<str<strong>on</strong>g>the</str<strong>on</strong>g>-art fr<strong>on</strong>tloading<br />

presses in <str<strong>on</strong>g>the</str<strong>on</strong>g> world. Typical applicati<strong>on</strong>s<br />

for those presses for large pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles<br />

are am<strong>on</strong>g o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs railway pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles.<br />

Looking at <str<strong>on</strong>g>the</str<strong>on</strong>g> market for railway pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles, it is<br />

clearly seen that it is a tight market with <strong>on</strong>ly<br />

few global p<str<strong>on</strong>g>layer</str<strong>on</strong>g>s, e. g. C<strong>on</strong>stellium (formerly<br />

Alcan Engineered Products) or Aleris, but also<br />

some growing competitors from Far East like<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Jilin Midas Group.<br />

The global distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> railway<br />

applicati<strong>on</strong>s shows regi<strong>on</strong>al differences:<br />

in North America <str<strong>on</strong>g>the</str<strong>on</strong>g> passenger transportati<strong>on</strong><br />

system is more or less limited to commuter<br />

service within <str<strong>on</strong>g>the</str<strong>on</strong>g> great metropolitan areas<br />

<strong>on</strong>ly, while in Europe in general <str<strong>on</strong>g>the</str<strong>on</strong>g> passenger<br />

volume is very high. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand freight<br />

transportati<strong>on</strong> by rail is very comm<strong>on</strong> in North<br />

America, whereas in Europe we have mainly<br />

freight transportati<strong>on</strong> by road. For China,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> most populous territorial state, passenger<br />

transportati<strong>on</strong> by train is getting more and<br />

more important.<br />

All <str<strong>on</strong>g>the</str<strong>on</strong>g> fast developing countries like China,<br />

Russia, India or Brazil <str<strong>on</strong>g>the</str<strong>on</strong>g>se days do have<br />

infrastructural programmes which include<br />

new railway lines. These projects comprise<br />

high-speed lines for <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g distance c<strong>on</strong>necti<strong>on</strong>s<br />

as well as investments in Intercity<br />

c<strong>on</strong>necti<strong>on</strong>s, commuter trains or metros. China’s<br />

aim is to build 20.000 km <str<strong>on</strong>g>of</str<strong>on</strong>g> high-speed<br />

tracks until 2020 while in Russia an investment<br />

programme <str<strong>on</strong>g>of</str<strong>on</strong>g> 7,5 billi<strong>on</strong> euros for <str<strong>on</strong>g>the</str<strong>on</strong>g> erecti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 11.000 km <str<strong>on</strong>g>of</str<strong>on</strong>g> high-speed rail tracks<br />

has started recently. Also India, which has <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

world’s largest railway network, is looking for<br />

fundamental modernizati<strong>on</strong>.<br />

Even in those projects where normally <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

big p<str<strong>on</strong>g>layer</str<strong>on</strong>g>s like Siemens, Bombardier or Alstom<br />

are in involved, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is always a certain<br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> local c<strong>on</strong>tent in <str<strong>on</strong>g>the</str<strong>on</strong>g> supplies,<br />

i. e. <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> extrusi<strong>on</strong>s are produced<br />

locally.<br />

This is <strong>on</strong>e explanati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> big invest-<br />

View <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> manipulator for loose dummy block handling and <str<strong>on</strong>g>the</str<strong>on</strong>g> 52,000-litre hydraulic tank<br />

ments in large extrusi<strong>on</strong> presses in China.<br />

The Internati<strong>on</strong>al Uni<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Railways (UIC)<br />

is expecting that <str<strong>on</strong>g>the</str<strong>on</strong>g> global high-speed network<br />

will triple within <str<strong>on</strong>g>the</str<strong>on</strong>g> next 15 years.<br />

Taking into account that this is <strong>on</strong>ly an outlook<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> high-speed network, a huge demand for<br />

railway extrusi<strong>on</strong>s is expected.<br />

Aluminium is not <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly material railway<br />

cars can be built with. Steel is a permanent<br />

competitor. There are even some ideas to use<br />

composite material for certain areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> car<br />

body. But <str<strong>on</strong>g>the</str<strong>on</strong>g> comparis<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> integrated<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> design and <str<strong>on</strong>g>the</str<strong>on</strong>g> steel structure<br />

design clearly shows a weight reducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> more than 20 percent <strong>on</strong> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> design.<br />

This is resulting in an estimated energy saving<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> five percent for every ten percent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

weight reducti<strong>on</strong>. The limited axle load <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

European railway network <strong>on</strong>ly allows for<br />

higher pay loads if <str<strong>on</strong>g>the</str<strong>on</strong>g> net weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> train<br />

is reduced.<br />

Additi<strong>on</strong>ally <str<strong>on</strong>g>the</str<strong>on</strong>g>re are o<str<strong>on</strong>g>the</str<strong>on</strong>g>r known advantages<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> like nearly 100 percent<br />

recyclability, good corrosi<strong>on</strong> resistance, high<br />

strength to weight ratio or <str<strong>on</strong>g>the</str<strong>on</strong>g> decorative as-<br />

34 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011<br />

Photos: SMS Meer


Counter platen with fixed tie rods<br />

EXTRUSION<br />

pect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g>. Looking at <str<strong>on</strong>g>the</str<strong>on</strong>g> global greenhouse gas emissi<strong>on</strong>s,<br />

27 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se emissi<strong>on</strong>s are caused by transportati<strong>on</strong><br />

and 73 percent are caused by road transportati<strong>on</strong>, while<br />

<strong>on</strong>ly 2 percent arise due to rail transportati<strong>on</strong>. Rail transportati<strong>on</strong><br />

is a ‘green soluti<strong>on</strong>’ to move people or goods and a low<br />

carb<strong>on</strong> technology. A slogan <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> railway manufacturer Bombardier<br />

is pointing out, that ‘<str<strong>on</strong>g>the</str<strong>on</strong>g> climate is right for trains!’<br />

Eventually all this leads to an increasing market for large<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles and since <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> operative heavy presses were<br />

limited, now big investments in extrusi<strong>on</strong> plants for heavy duty<br />

and large secti<strong>on</strong>s are being made, especially in China.<br />

But it is not <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> presses; it is also <str<strong>on</strong>g>the</str<strong>on</strong>g> size<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> presses that is c<strong>on</strong>stantly increasing over <str<strong>on</strong>g>the</str<strong>on</strong>g> last years.<br />

While a 65 MN press was c<strong>on</strong>sidered as a huge press a few years<br />

ago, today some people would call it ‘medium size’ <strong>on</strong>ly.<br />

C<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> recent orders <str<strong>on</strong>g>of</str<strong>on</strong>g> SMS…<br />

• 70 MN fr<strong>on</strong>tloading press for Nanshan Aluminium<br />

• 82 MN fr<strong>on</strong>tloading press for Nanshan Aluminium<br />

• 82 MN fr<strong>on</strong>tloading press for Yankuang Aluminium<br />

• 82 MN fr<strong>on</strong>tloading press for Nanshan USA<br />

• 100 MN fr<strong>on</strong>tloading press for Jilin Lijuan<br />

• 150 MN fr<strong>on</strong>tloading tube press for Yankuang Aluminium<br />

• 150 MN fr<strong>on</strong>tloading press for Nanshan Aluminium<br />

…we see a high potential <strong>on</strong> this market regarding also o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

press manufacturers from Europe or Asia who are getting significant<br />

orders <strong>on</strong> big presses, too.<br />

�<br />

ETS<br />

Extrusi<strong>on</strong> Tooling Soluti<strong>on</strong>s<br />

����������������������������������������������������<br />

�����������������������������������������������������������������������������������������������������������������������������<br />

������������������������������������������<br />

�����������������������������������������������������<br />

���������������������������������������������������������������������������<br />

�������������������������������������������������������������������������<br />

������������������������������������<br />

��������������������������������������<br />

���������������������������������������������<br />

����������������������<br />

���������������������������������������������������������������������������� �������������������


EXTRUSION<br />

Gerhardi Alutechnik and GIA Clecim – a European partnership<br />

Extrusi<strong>on</strong> line from a single source for intelligent pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles (I)<br />

Christoph Deiters, Gerhardi AluTechnik GmbH<br />

The German Gerhardi Alutechnik, founded<br />

in 1796 and even today owned by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

founder family, c<strong>on</strong>sequently transfers<br />

values like reliability, l<strong>on</strong>g term thinking<br />

and traditi<strong>on</strong>, but also innovati<strong>on</strong><br />

and willingness to invest. The latter has<br />

carried <str<strong>on</strong>g>the</str<strong>on</strong>g> company through more than<br />

two centuries and was <strong>on</strong>ce more proved<br />

during <str<strong>on</strong>g>the</str<strong>on</strong>g> last three years: management<br />

and owners decided for a sec<strong>on</strong>d extrusi<strong>on</strong><br />

line with <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary mechanical<br />

periphery and a c<strong>on</strong>siderable expansi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> factory. This investment lead to an<br />

augmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> capacity from 6, 000 to<br />

16.000 t<strong>on</strong>nes a year.<br />

Today <str<strong>on</strong>g>the</str<strong>on</strong>g>re are 125 employees who develop,<br />

produce and market 10,000 to 11,000 t<strong>on</strong>nes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles. These are sold to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

building industry (‘Gerac<strong>on</strong>struct’ including<br />

‘Gerasolar’ – shutters pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles and guide rails,<br />

shading technique, room-dividing elements,<br />

sanitary equipment, skirting boards, solar<br />

industry), <str<strong>on</strong>g>the</str<strong>on</strong>g> automotive industry (‘Geramotive’<br />

– window frames, guide rails, decorative<br />

parts, ro<str<strong>on</strong>g>of</str<strong>on</strong>g> rail systems), <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>ic industry<br />

(‘Geratr<strong>on</strong>ics’ – pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles for cooling elements)<br />

and industrial technique (‘Geratechnics’ – machine<br />

building, lighting industry, furniture).<br />

Gerhardi is a state<str<strong>on</strong>g>of</str<strong>on</strong>g>-<str<strong>on</strong>g>the</str<strong>on</strong>g>-art<br />

manufacturer<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> semi-finished <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

products and – also due to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> new 33 MN extrusi<strong>on</strong> line –<br />

in a positi<strong>on</strong> to meet <str<strong>on</strong>g>the</str<strong>on</strong>g> market’s high<br />

requirements as to technical and organizati<strong>on</strong>al<br />

quality.<br />

The Spanish partner, GIA Clecim Press,<br />

has become <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> leaders in <str<strong>on</strong>g>the</str<strong>on</strong>g> metal<br />

extrusi<strong>on</strong> market during <str<strong>on</strong>g>the</str<strong>on</strong>g> past years. The<br />

company was established in <str<strong>on</strong>g>the</str<strong>on</strong>g> early eighties<br />

by Gaspar Fernández in Albacete, Spain. This<br />

is nowadays <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly manufacturing plant with<br />

300 employees exclusively working for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

field <str<strong>on</strong>g>of</str<strong>on</strong>g> extrusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metals and special alloys.<br />

GIA took its positi<strong>on</strong> as a complete plant<br />

supplier throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> years. The company<br />

got <str<strong>on</strong>g>the</str<strong>on</strong>g> vast majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spanish market as<br />

well as presence in many o<str<strong>on</strong>g>the</str<strong>on</strong>g>r countries. In<br />

2006, GIA Clecim Press purchased <str<strong>on</strong>g>the</str<strong>on</strong>g> knowhow<br />

and all activities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Presses divisi<strong>on</strong><br />

from Siemens. After this acquisiti<strong>on</strong>, GIA<br />

Clecim Press became <str<strong>on</strong>g>the</str<strong>on</strong>g> press manufacturer<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> largest number <str<strong>on</strong>g>of</str<strong>on</strong>g> references in Europe.<br />

Why did Gerhardi invest<br />

in a new extrusi<strong>on</strong> press?<br />

Gerhardi installed <str<strong>on</strong>g>the</str<strong>on</strong>g> first extrusi<strong>on</strong> line in<br />

1945. Up to 2009 <str<strong>on</strong>g>the</str<strong>on</strong>g> company produced with<br />

a 2,000-t<strong>on</strong>ne extrusi<strong>on</strong> press <str<strong>on</strong>g>of</str<strong>on</strong>g> 1979. From<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> management’s viewpoint this meant a<br />

risk – for <str<strong>on</strong>g>the</str<strong>on</strong>g> customers as well as for <str<strong>on</strong>g>the</str<strong>on</strong>g> enterprise,<br />

which bears <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>sibility for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

employees and for which <str<strong>on</strong>g>the</str<strong>on</strong>g> subject ‘future’<br />

traditi<strong>on</strong>ally was and still is <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>siderable<br />

importance according to <str<strong>on</strong>g>the</str<strong>on</strong>g> company’s philosophy<br />

‘Comm<strong>on</strong> Future in Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile’.<br />

As a c<strong>on</strong>sequence – after thorough c<strong>on</strong>siderati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all strategic alternatives – owners<br />

and management decided to invest in a sec<strong>on</strong>d<br />

extrusi<strong>on</strong> line in order to be a reliable supplier<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> semi-finished <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> products.<br />

As <str<strong>on</strong>g>the</str<strong>on</strong>g> market forecast for semi-finished<br />

products in <str<strong>on</strong>g>the</str<strong>on</strong>g> alu-minium sector is positive<br />

and even shows c<strong>on</strong>siderable<br />

growth rates, <str<strong>on</strong>g>the</str<strong>on</strong>g> company<br />

acts in a<br />

developable<br />

and growing<br />

market.<br />

This could<br />

already be<br />

observed<br />

and had<br />

major influence<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

investment<br />

decisi<strong>on</strong> – a very courageous decisi<strong>on</strong>:<br />

Regarding <str<strong>on</strong>g>the</str<strong>on</strong>g> market potential <str<strong>on</strong>g>of</str<strong>on</strong>g> about<br />

800.000 tpy in Germany, <str<strong>on</strong>g>the</str<strong>on</strong>g> decisi<strong>on</strong> makers,<br />

however, came to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>clusi<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

accumulated maximum producti<strong>on</strong> capacity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 16.000 tpy <str<strong>on</strong>g>of</str<strong>on</strong>g> two Gerhardi presses<br />

might be a reas<strong>on</strong>able and realizable target.<br />

The investment would be suitable to secure<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> company by providing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> technical prerequisites for an expanded<br />

product range and adapting <str<strong>on</strong>g>the</str<strong>on</strong>g>m<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> company’s high innovati<strong>on</strong> potential.<br />

Installati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> line<br />

New products like pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <str<strong>on</strong>g>of</str<strong>on</strong>g> glossy and<br />

crash-relevant <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> alloys for automotive<br />

applicati<strong>on</strong>s, resulting from <str<strong>on</strong>g>the</str<strong>on</strong>g> close<br />

cooperati<strong>on</strong> especially with Gerhardi’s raw<br />

material supplier, required more flexibility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> process.<br />

What did Gerhardi buy?<br />

Gerhardi has invested in a sec<strong>on</strong>d extrusi<strong>on</strong><br />

line with many technical opti<strong>on</strong>s. It was important<br />

to run <str<strong>on</strong>g>the</str<strong>on</strong>g> press with <str<strong>on</strong>g>the</str<strong>on</strong>g> same billet<br />

diameter (8 inch) as <str<strong>on</strong>g>the</str<strong>on</strong>g> existing press. This<br />

guarantees that <str<strong>on</strong>g>the</str<strong>on</strong>g> matrices <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> older device<br />

can also be used in <str<strong>on</strong>g>the</str<strong>on</strong>g> new press. The<br />

dialog with GIA resulted in <str<strong>on</strong>g>the</str<strong>on</strong>g> decisi<strong>on</strong> for a<br />

press with a power <str<strong>on</strong>g>of</str<strong>on</strong>g> 33 MN in order to be<br />

later able to apply a 9 inch or maybe also a<br />

10 inch billet.<br />

In order to reach a c<strong>on</strong>stant quality, which<br />

is especially important for <str<strong>on</strong>g>the</str<strong>on</strong>g> decorative parts<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong>al parts, Gerhardi bought a<br />

combined billet heating: pre-heating with gas<br />

and complementary inducti<strong>on</strong> heating, which<br />

allows an even temperature for <str<strong>on</strong>g>the</str<strong>on</strong>g> pressing<br />

process at <str<strong>on</strong>g>the</str<strong>on</strong>g> point <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix. Special attenti<strong>on</strong><br />

is given to <str<strong>on</strong>g>the</str<strong>on</strong>g> cooling process.<br />

GIA installed a pr<strong>on</strong>ounced cooling tunnel<br />

with air- / air-water- and water-cooling.<br />

These cooling mechanisms allow <str<strong>on</strong>g>the</str<strong>on</strong>g> extru-<br />

si<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> higher strength material – also an<br />

36 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011<br />

Gerhardi


opti<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> future.<br />

As Gerhardi wanted to use its building’s<br />

full size <str<strong>on</strong>g>of</str<strong>on</strong>g> 120 metres for <str<strong>on</strong>g>the</str<strong>on</strong>g> line, <str<strong>on</strong>g>the</str<strong>on</strong>g> length<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> run-out-system is c<strong>on</strong>siderable. The<br />

60-metre pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles are stacked and <str<strong>on</strong>g>the</str<strong>on</strong>g>n sewed<br />

to customized size from 2,000 mm upwards.<br />

Press, stacker and saw are followed by a fully<br />

automatic assembly line which guarantees that<br />

no worker touches <str<strong>on</strong>g>the</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles until reaching<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> packing unit.<br />

The building c<strong>on</strong>cept over two floors prescribes<br />

a stringent material flow. Oven storage,<br />

packaging and processing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles are<br />

effected <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper floor.<br />

All <str<strong>on</strong>g>the</str<strong>on</strong>g>se requirements were laid down in a<br />

specificati<strong>on</strong> sheet. The Gerhardi project team<br />

travelled a lot, visited various extrusi<strong>on</strong> companies<br />

and as many suppliers as possible. The<br />

managing director and his team went through<br />

all <str<strong>on</strong>g>of</str<strong>on</strong>g> Europe to get to know <str<strong>on</strong>g>the</str<strong>on</strong>g> relevant companies,<br />

to talk to <str<strong>on</strong>g>the</str<strong>on</strong>g>m and to see reference<br />

lines.<br />

Whom did Gerhardi choose?<br />

After an intensive analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>of</str<strong>on</strong>g>fers as to<br />

ec<strong>on</strong>omic aspects, but also as to <str<strong>on</strong>g>the</str<strong>on</strong>g> product<br />

availability and <str<strong>on</strong>g>the</str<strong>on</strong>g> vertical range <str<strong>on</strong>g>of</str<strong>on</strong>g> manufacture,<br />

Gerhardi decided to buy an extrusi<strong>on</strong><br />

line made by <str<strong>on</strong>g>the</str<strong>on</strong>g> Spanish company GIA Clecim.<br />

The core business for GIA is <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacturing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> extrusi<strong>on</strong> plants and 95% <str<strong>on</strong>g>of</str<strong>on</strong>g> jobs<br />

are turnkey projects. The strategies <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>subc<strong>on</strong>tracting<br />

lets GIA get <str<strong>on</strong>g>the</str<strong>on</strong>g> highest quality<br />

for such equipment. GIA holds a manufacturing<br />

ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 80%, which means that all equipment<br />

is manufactured, assembled and tested<br />

in its facilities.<br />

For Gerhardi <str<strong>on</strong>g>the</str<strong>on</strong>g> most important criteria<br />

in favour <str<strong>on</strong>g>of</str<strong>on</strong>g> GIA were <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following:<br />

• Under an ec<strong>on</strong>omic<br />

point <str<strong>on</strong>g>of</str<strong>on</strong>g> view <str<strong>on</strong>g>the</str<strong>on</strong>g> GIA<br />

Clecim <str<strong>on</strong>g>of</str<strong>on</strong>g>fer was persuading<br />

in comparis<strong>on</strong><br />

to all <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r suppliers<br />

• Gerhardi got a good<br />

impressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> technical<br />

aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> a GIA press<br />

– especially <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solid<br />

machine c<strong>on</strong>structi<strong>on</strong>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extremely effective<br />

and good hydraulic system,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> in a<br />

completely coordinated<br />

system<br />

• All from a single<br />

source – GIA is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly<br />

producer <str<strong>on</strong>g>of</str<strong>on</strong>g> complete extrusi<strong>on</strong><br />

systems from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

billet store over <str<strong>on</strong>g>the</str<strong>on</strong>g> billet heating to <str<strong>on</strong>g>the</str<strong>on</strong>g> press,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> saw and <str<strong>on</strong>g>the</str<strong>on</strong>g> assembling device<br />

• GIA has an enormous in-house producti<strong>on</strong><br />

depth. All mechanical parts are manufactured<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> company itself and even <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic<br />

system is developed in Albacete and produced<br />

by GIA<br />

• GIA is a family enterprise like Gerhardi and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> customer negotiates with <str<strong>on</strong>g>the</str<strong>on</strong>g> owner himself<br />

• GIA very much wanted to install a reference<br />

extrusi<strong>on</strong> line in Germany so that Gerhardi<br />

could take it for granted that <str<strong>on</strong>g>the</str<strong>on</strong>g> Spanish<br />

partner would make c<strong>on</strong>siderable efforts in<br />

this project.<br />

How was <str<strong>on</strong>g>the</str<strong>on</strong>g> installati<strong>on</strong><br />

process effected?<br />

33 MN GIA extrusi<strong>on</strong> press for Gerhardi<br />

After signing <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tract both parties formed<br />

project teams who communicated directly<br />

with each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. GIA employed a German<br />

speaking coordinator for <str<strong>on</strong>g>the</str<strong>on</strong>g> German market,<br />

so that <str<strong>on</strong>g>the</str<strong>on</strong>g> communicati<strong>on</strong> could take place<br />

in German. Innumerable plans were exchanged.<br />

In interacti<strong>on</strong> between architects,<br />

c<strong>on</strong>structi<strong>on</strong> companies and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r project<br />

partners <str<strong>on</strong>g>the</str<strong>on</strong>g> prerequisites for <str<strong>on</strong>g>the</str<strong>on</strong>g> installati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> line were created. Various<br />

journeys from Germany to Spain and vice<br />

versa were necessary to realize <str<strong>on</strong>g>the</str<strong>on</strong>g> planned<br />

targets.<br />

After <str<strong>on</strong>g>the</str<strong>on</strong>g> preparing activities <str<strong>on</strong>g>the</str<strong>on</strong>g> actual installati<strong>on</strong><br />

was effected by a competent team <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

technical assemblers and s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware engineers.<br />

Highlights <str<strong>on</strong>g>of</str<strong>on</strong>g> this phase were certainly <str<strong>on</strong>g>the</str<strong>on</strong>g> socalled<br />

marriage, <str<strong>on</strong>g>the</str<strong>on</strong>g> merging <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> press with <str<strong>on</strong>g>the</str<strong>on</strong>g> building, and <str<strong>on</strong>g>the</str<strong>on</strong>g> first<br />

warm billet.<br />

Summary<br />

EXTRUSION<br />

The installati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a technologically sophisticated<br />

extrusi<strong>on</strong> line is always a great challenge<br />

– especially if it is a European line like in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> Gerhardi, where <str<strong>on</strong>g>the</str<strong>on</strong>g> devices came primarily<br />

from Spain, but also from <str<strong>on</strong>g>the</str<strong>on</strong>g> Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands,<br />

from Italy and Germany.<br />

Gerhardi – after a careful choice <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

suppliers – was very satisfied that all partners<br />

were eager to c<strong>on</strong>structively accompany <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

investment. All companies involved learnt a<br />

lot in <str<strong>on</strong>g>the</str<strong>on</strong>g> project – like <str<strong>on</strong>g>the</str<strong>on</strong>g> adequate estimati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a permanent dialogue, <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> quality<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> exchanged informati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> presence and<br />

otivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> own team within <str<strong>on</strong>g>the</str<strong>on</strong>g> planning<br />

and installati<strong>on</strong> process and <str<strong>on</strong>g>the</str<strong>on</strong>g> anticipatory<br />

understanding for <str<strong>on</strong>g>the</str<strong>on</strong>g> partner’s different<br />

mentality. Gerhardi is aware <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> special<br />

challenge <str<strong>on</strong>g>of</str<strong>on</strong>g> a European extrusi<strong>on</strong> line, but<br />

is at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time c<strong>on</strong>vinced to have placed<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> GIA Clecim press <str<strong>on</strong>g>the</str<strong>on</strong>g> right investment<br />

following its philosophy ‘Comm<strong>on</strong> future<br />

in Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile’. ‘Comm<strong>on</strong>’ not <strong>on</strong>ly with customers<br />

and employees, but also, as it was laid<br />

down in <str<strong>on</strong>g>the</str<strong>on</strong>g> corporate presentati<strong>on</strong> many<br />

years ago, also with <str<strong>on</strong>g>the</str<strong>on</strong>g> suppliers.<br />

Especially with <str<strong>on</strong>g>the</str<strong>on</strong>g> Spanish partners Gerhardi<br />

developed a business relati<strong>on</strong>ship, which<br />

also lead to comm<strong>on</strong> private activities. Visits<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Mr Gaspar Roldan or his fa<str<strong>on</strong>g>the</str<strong>on</strong>g>r Gaspar<br />

Fernandez were remarkable events as well as<br />

visits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Gerhardi owners in Spain.<br />

Gerhardi and GIA – this is not <strong>on</strong>ly a partnership<br />

resulting from <str<strong>on</strong>g>the</str<strong>on</strong>g> purchase <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

extrusi<strong>on</strong> press for intelligent Gerhardi <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles, but also a European friendship.<br />

�<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 37


EXTRUSION<br />

Gerhardi and GIA Clecim – an European partnership<br />

Extrusi<strong>on</strong> line from a single source for intelligent pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles (II)<br />

Gaspar Fernandez Roldán, GIA Clecim Press<br />

GIA Clecim Press would like use this<br />

unique opportunity at <str<strong>on</strong>g>the</str<strong>on</strong>g> GDA c<strong>on</strong>ference<br />

to introduce itself as a company able<br />

to attend <str<strong>on</strong>g>the</str<strong>on</strong>g> existing <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> extrusi<strong>on</strong><br />

demands. GIA Clecim Press is a dynamic<br />

company which has become, during<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> past years, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> leaders in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> metal extrusi<strong>on</strong> market in <str<strong>on</strong>g>the</str<strong>on</strong>g> world.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1980s, when GIA in<br />

Albacete, Spain, began producing extrusi<strong>on</strong><br />

dies, <str<strong>on</strong>g>the</str<strong>on</strong>g>re was a boom in Spain’s building<br />

industry which provided huge market opportunities<br />

for <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> window and structural<br />

secti<strong>on</strong>s. Good starting c<strong>on</strong>diti<strong>on</strong>s, which encouraged<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> young company to extend<br />

its engineering performance besides<br />

die manufacturing to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r applicati<strong>on</strong>s<br />

in extrusi<strong>on</strong> plants. So GIA became an<br />

equipment manufacturer which <str<strong>on</strong>g>of</str<strong>on</strong>g>fered<br />

handling and processing equipment for<br />

extruded secti<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>n growing<br />

Spanish market.<br />

A substantial gap was filled when,<br />

towards <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1980s, <str<strong>on</strong>g>the</str<strong>on</strong>g> technical<br />

staff at GIA ventured to attempt<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> centrepiece <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plants: <str<strong>on</strong>g>the</str<strong>on</strong>g> first<br />

extrusi<strong>on</strong> press designed by <str<strong>on</strong>g>the</str<strong>on</strong>g> company<br />

itself and made by it in 1990 was<br />

a 14 MN press <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al, backloading<br />

c<strong>on</strong>figurati<strong>on</strong>, which began<br />

operating as part <str<strong>on</strong>g>of</str<strong>on</strong>g> a complete plant<br />

supplied by GIA to a Spanish extruder<br />

in Albacete.<br />

Following <str<strong>on</strong>g>the</str<strong>on</strong>g> company policy to<br />

become a supplier <str<strong>on</strong>g>of</str<strong>on</strong>g> turn-key projects<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> business, GIA developed<br />

and introduced to <str<strong>on</strong>g>the</str<strong>on</strong>g> market <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

short-stroke back loading design <str<strong>on</strong>g>of</str<strong>on</strong>g> 18<br />

to 22 MN. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> factory locati<strong>on</strong><br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> great growth <str<strong>on</strong>g>of</str<strong>on</strong>g> extruded <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

c<strong>on</strong>sumpti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> main approached market at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> time was Spain where <str<strong>on</strong>g>the</str<strong>on</strong>g> equipment had<br />

a huge demand and customer acceptance.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1990s <str<strong>on</strong>g>the</str<strong>on</strong>g> leap to trading<br />

overseas took place. After orders from <str<strong>on</strong>g>the</str<strong>on</strong>g> Dominican<br />

Republic o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs followed from Mexico<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> Sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn states <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> USA. By<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> millennium, that is within about<br />

ten years, GIA had supplied 45 new extrusi<strong>on</strong><br />

plants equipped with 18 and 35 MN presses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its own. Changed c<strong>on</strong>diti<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> extru-<br />

si<strong>on</strong> market and also <str<strong>on</strong>g>the</str<strong>on</strong>g> advance into new<br />

markets such as <str<strong>on</strong>g>the</str<strong>on</strong>g> gulf regi<strong>on</strong> demanded <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> larger presses from <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> new millennium. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> short stroke back-loading presses was extended<br />

up to 45 MN. As before, <str<strong>on</strong>g>the</str<strong>on</strong>g>se formed<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> centrepiece <str<strong>on</strong>g>of</str<strong>on</strong>g> complete GIA plants.<br />

The decisi<strong>on</strong> by Siemens VAI in 2006 to<br />

break away from <str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> press c<strong>on</strong>structi<strong>on</strong><br />

activities <str<strong>on</strong>g>of</str<strong>on</strong>g> its French traditi<strong>on</strong>al trademark<br />

Clecim opened up new perspectives for<br />

GIA. It was so<strong>on</strong> decided to acquire <str<strong>on</strong>g>the</str<strong>on</strong>g> rights<br />

to and designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Clecim presses and, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> company’s own press programme, to<br />

market ‘GIA Clecim’ presses. For GIA, Clecim’s<br />

technology was a milest<strong>on</strong>e for <str<strong>on</strong>g>the</str<strong>on</strong>g> company’s<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r development. At <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sale Clecim still had a proud reference list <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

more than 100 extrusi<strong>on</strong> presses built since<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> early 1970s.<br />

GIA Clecim Press became <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> press<br />

manufacturer with <str<strong>on</strong>g>the</str<strong>on</strong>g> largest number <str<strong>on</strong>g>of</str<strong>on</strong>g> references<br />

in Europe. This transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> property<br />

c<strong>on</strong>gregated technology and know-how from<br />

all companies which have merged to Clecim<br />

al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> time. GIA Clecim Press also took<br />

advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> this transfer by hiring expert engineers<br />

from former Clecim Presses Divisi<strong>on</strong>.<br />

Therefore, GIA Clecim Press became <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

successor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> companies Loewy, Davy, Morane,<br />

Somu, Loire, Secim, Clesid and finally<br />

Clecim, since <str<strong>on</strong>g>the</str<strong>on</strong>g> foundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Chavanne<br />

Brun in M<strong>on</strong>tbris<strong>on</strong> (France) in 1857. All <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

company were extraordinary press builders<br />

al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> time, and have dem<strong>on</strong>strated outstanding<br />

designs for <str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> field.<br />

GIA Clecim Press has in its archive all <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

informati<strong>on</strong>, calculati<strong>on</strong>s and drawings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

presses designed by <str<strong>on</strong>g>the</str<strong>on</strong>g>se manufacturers during<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir activity. Our company maintains <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

willing <str<strong>on</strong>g>of</str<strong>on</strong>g> keeping c<strong>on</strong>tact with all users <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se equipments as well as c<strong>on</strong>tinues increasing<br />

this reference list.<br />

Particularly important in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> extrusi<strong>on</strong><br />

field, GIA acquired an established <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> modern short-stroke presses. Since<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n, al<strong>on</strong>g with its own back loading<br />

presses <str<strong>on</strong>g>the</str<strong>on</strong>g> company has been able<br />

to react flexibly to <str<strong>on</strong>g>the</str<strong>on</strong>g> various needs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> market and <str<strong>on</strong>g>of</str<strong>on</strong>g>fer <str<strong>on</strong>g>the</str<strong>on</strong>g> optimum<br />

press c<strong>on</strong>figurati<strong>on</strong> for each individual<br />

case as <str<strong>on</strong>g>the</str<strong>on</strong>g> market de-mands. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

benefit for GIA is <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that Clecim<br />

extrusi<strong>on</strong> presses were not built for<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> al<strong>on</strong>e. Through Clecim<br />

GIA also acquired technologies and<br />

references for <str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

materials, such as stainless steel, copper,<br />

special alloys as well as particular<br />

projects. In that c<strong>on</strong>necti<strong>on</strong> it is worth<br />

menti<strong>on</strong>ing that GIA Clecim Press has<br />

just commissi<strong>on</strong>ed 22 MN press for a<br />

stainless steel plant in Austria and has<br />

been awarded for o<str<strong>on</strong>g>the</str<strong>on</strong>g>r interesting<br />

projects as <str<strong>on</strong>g>the</str<strong>on</strong>g> 42 MN extrusi<strong>on</strong> press<br />

for stainless also in Sweden and a 35<br />

MN complete extrusi<strong>on</strong> plant for copper<br />

alloys in China.<br />

The meanwhile c<strong>on</strong>solidated engineering<br />

programme that originated<br />

from GIA and Clecim today includes<br />

presses <str<strong>on</strong>g>of</str<strong>on</strong>g> any load and type including direct<br />

and indirect extrusi<strong>on</strong> with or without piercer,<br />

opti<strong>on</strong>ally in fr<strong>on</strong>t-loading or back-loading<br />

versi<strong>on</strong>s. In <str<strong>on</strong>g>the</str<strong>on</strong>g> recent past several complete<br />

plants have been commissi<strong>on</strong>ed all over <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

world such as a 14 MN line in Bosnia, 18 MN<br />

in Ireland, a 30 MN fr<strong>on</strong>t loading press plant<br />

in Bahrain, a 22 MN press line in Saudi Arabia,<br />

a 65 MN fr<strong>on</strong>t loading press to Japan.<br />

All <str<strong>on</strong>g>the</str<strong>on</strong>g> plants are developed, designed, produced,<br />

assembled and tested at <str<strong>on</strong>g>the</str<strong>on</strong>g> company’s<br />

own works in Spain. In <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical workshop<br />

parts weighing up to 100 t<strong>on</strong>nes can be<br />

machined.<br />

38 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


Photos: GIA<br />

In autumn 2009 Gerhardi Alutechnik in<br />

Lüdenscheid, Germany, began operating its<br />

sec<strong>on</strong>d extrusi<strong>on</strong> line which was supplied by<br />

GIA. Its centrepiece is a 35 MN short-stroke,<br />

fr<strong>on</strong>t-loading press <str<strong>on</strong>g>of</str<strong>on</strong>g> GIA Clecim Press design.<br />

The press enables short extrusi<strong>on</strong> cycle<br />

times and so achieves corresp<strong>on</strong>dingly high<br />

productivity.<br />

To understand and appreciate <str<strong>on</strong>g>the</str<strong>on</strong>g> big step<br />

this project was for GIA Clecim Press, it is<br />

worth menti<strong>on</strong>ing <str<strong>on</strong>g>the</str<strong>on</strong>g> challenges and <str<strong>on</strong>g>the</str<strong>on</strong>g> importance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this c<strong>on</strong>tract. It should be known<br />

that Gerhardi’s producti<strong>on</strong> programme is not<br />

c<strong>on</strong>cerned with mass goods but c<strong>on</strong>tains many<br />

special products for niche markets, some <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>m made in relatively small quantities to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> highest quality standards, e. g. stretch-bent<br />

decorative trim strips <str<strong>on</strong>g>of</str<strong>on</strong>g> a high-gloss alloy can<br />

be menti<strong>on</strong>ed here. The Gerhardi c<strong>on</strong>tract is<br />

<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> projects where GIA engineering<br />

shows state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-<str<strong>on</strong>g>the</str<strong>on</strong>g>-art technological developments,<br />

which <str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> industry in highlydeveloped<br />

industrialised countries now demands<br />

from extrusi<strong>on</strong> plant manufacturers.<br />

Gerhardi is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> companies<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> highest level <str<strong>on</strong>g>of</str<strong>on</strong>g> flexibility without giving<br />

away any productivity ratios. This extrusi<strong>on</strong><br />

plant meant a great step forward for Gerhardi<br />

but for GIA also as it shows <str<strong>on</strong>g>the</str<strong>on</strong>g> Spanish<br />

company is at <str<strong>on</strong>g>the</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most demanding<br />

extruders.<br />

The more than 100 extrusi<strong>on</strong> presses built<br />

so far by GIA are almost without excepti<strong>on</strong><br />

used in extrusi<strong>on</strong> lines which, from <str<strong>on</strong>g>the</str<strong>on</strong>g> log<br />

store to <str<strong>on</strong>g>the</str<strong>on</strong>g> finishing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> secti<strong>on</strong>s, were<br />

designed and c<strong>on</strong>structed by <str<strong>on</strong>g>the</str<strong>on</strong>g> company.<br />

GIA group is divided in several business units<br />

coordinated to provide complete soluti<strong>on</strong>s to<br />

extruders. GIA Matriceria, as ever, produces<br />

extrusi<strong>on</strong> dies and all kind <str<strong>on</strong>g>of</str<strong>on</strong>g> tooling for extrusi<strong>on</strong>.<br />

Log stores, shears, billet saws, billet loader,<br />

extrusi<strong>on</strong> presses, handling and puller systems<br />

are all designed and made by <str<strong>on</strong>g>the</str<strong>on</strong>g> core<br />

unit GIA. Special positi<strong>on</strong>ing devices for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

secti<strong>on</strong> saws ensure precise lengths and rapid<br />

material flow. The fully automatic stackers<br />

developed by GIA not <strong>on</strong>ly ensure a rapid<br />

and reliable producti<strong>on</strong> sequence, but are so<br />

c<strong>on</strong>structed as to protect <str<strong>on</strong>g>the</str<strong>on</strong>g> finished secti<strong>on</strong>s<br />

from damage.<br />

Besides pure extrusi<strong>on</strong> lines, under <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

trade name ‘GIA Aplicaci<strong>on</strong>es’ GIA supplies<br />

units for heating and heat treatment within<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> line which include log furnaces,<br />

die heaters, ageing ovens and die nitriding<br />

furnaces. In additi<strong>on</strong>, o<str<strong>on</strong>g>the</str<strong>on</strong>g>r units developed,<br />

designed and manufactured by <str<strong>on</strong>g>the</str<strong>on</strong>g> company<br />

itself are <str<strong>on</strong>g>of</str<strong>on</strong>g>fered, which are important for finishing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> secti<strong>on</strong>s, namely units for powder<br />

coating and anodising. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> company can<br />

supply complete extrusi<strong>on</strong> plants, from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

EXTRUSION<br />

log store right up to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface finishing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ready secti<strong>on</strong>s.<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r company <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> group, GIA Hidraulica,<br />

not <strong>on</strong>ly builds hydraulic power units<br />

for various applicati<strong>on</strong>s in general mechanical<br />

engineering, especially in combinati<strong>on</strong> with<br />

GIA’s own extrusi<strong>on</strong> machines. This unit also<br />

specialises in electrical and electr<strong>on</strong>ic equipment<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol and automati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extrusi<strong>on</strong><br />

plants and is, moreover, resp<strong>on</strong>sible for<br />

commissi<strong>on</strong>ing <str<strong>on</strong>g>the</str<strong>on</strong>g> plants supplied by GIA.<br />

There is a fifth business unit, GIA Suministros,<br />

in charge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> service and supply <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

spare parts for GIA Clecim Press extrusi<strong>on</strong><br />

equipment. This unit keeps a great number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parts in stock in order to provide a perfect<br />

service to its customers.<br />

GIA Clecim Press is located, as ever, in<br />

Albacete, Spain, which is nowadays <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly<br />

manufacturing plant with 35.000 m2 <str<strong>on</strong>g>of</str<strong>on</strong>g> bays<br />

and where counts with 275 employees exclusively<br />

working in <str<strong>on</strong>g>the</str<strong>on</strong>g> field <str<strong>on</strong>g>of</str<strong>on</strong>g> extrusi<strong>on</strong>.<br />

Core business for GIA Clecim Press is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

manufacturing <str<strong>on</strong>g>of</str<strong>on</strong>g> extrusi<strong>on</strong> and surface treatment<br />

plants and 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> jobs are turnkey<br />

projects. Its strategy <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-subc<strong>on</strong>tracting let<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>m get <str<strong>on</strong>g>the</str<strong>on</strong>g> highest quality for such equipment.<br />

GIA Clecim Press holds a manufacturing<br />

ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 80%, which means that all equipment<br />

is manufactured, assembled and tested<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own facilities.<br />

�<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 39


EXTRUSION<br />

Integrated processing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles subsequent to hot extrusi<strong>on</strong><br />

A. Jäger, N. Ben Khalifa, A.E. Tekkaya, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Forming Technology<br />

and Lightweight C<strong>on</strong>structi<strong>on</strong>, TU Dortmund University, Dortmund, Germany<br />

Strategies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmo-mechanical processing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles subsequent to<br />

hot extrusi<strong>on</strong> were developed and tested.<br />

By using <str<strong>on</strong>g>the</str<strong>on</strong>g> process heat <str<strong>on</strong>g>of</str<strong>on</strong>g> extrusi<strong>on</strong> for<br />

subsequent forming and heat treatment<br />

steps, process chains for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> graded <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles were developed<br />

and realized <strong>on</strong> an experimental<br />

scale. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> geometric limitati<strong>on</strong>s,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> technology <str<strong>on</strong>g>of</str<strong>on</strong>g> realizing a grading in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> open and hollow pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles<br />

is different. Therefore, two innovative<br />

c<strong>on</strong>cepts for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmo-mechanical<br />

processing <str<strong>on</strong>g>of</str<strong>on</strong>g> open and hollow secti<strong>on</strong>s<br />

were developed, allowing electromagnetic<br />

compressi<strong>on</strong> and rolling to become<br />

integrated within <str<strong>on</strong>g>the</str<strong>on</strong>g> process chains. Possible<br />

applicati<strong>on</strong>s are seen in producing<br />

functi<strong>on</strong>ally graded products with locally<br />

adapted properties.<br />

C<strong>on</strong>venti<strong>on</strong>al hot metal extrusi<strong>on</strong> is used to<br />

produce straight, semi-finished products in<br />

mass producti<strong>on</strong> (Laue and Stenger, 1976) with<br />

a c<strong>on</strong>stant cross secti<strong>on</strong> over <str<strong>on</strong>g>the</str<strong>on</strong>g> length and<br />

homogeneous mechanical and micro-structural<br />

properties (Hall and Mudawar, 1996).<br />

Aluminium secti<strong>on</strong>s are frequently used as<br />

c<strong>on</strong>structi<strong>on</strong> elements. Generally, <str<strong>on</strong>g>the</str<strong>on</strong>g> loading<br />

c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> structure elements in technical<br />

c<strong>on</strong>structi<strong>on</strong>s differ locally. The c<strong>on</strong>stant cross<br />

Fig. 2: C<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> extrusi<strong>on</strong> and subsequent forming by rollers (schematic)<br />

Fig. 1: C<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> extrusi<strong>on</strong> with in-line electromagnetic compressi<strong>on</strong> (l<strong>on</strong>gitudinal secti<strong>on</strong>, schematic)<br />

secti<strong>on</strong>, which is attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> peculiarity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> process itself, mostly represents<br />

a compromise between <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong>ality<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent design, which e. g. involves<br />

a local oversizing and thus an excessive use<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> resources. Here, a local adapti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

geometry could be suitable in order to meet<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> locally specific demands <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> structure<br />

properties. For this reas<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> innovative forming technologies is indispensable<br />

in order to manufacture products<br />

with graded, locally adapted structural properties<br />

as well as varying geometric shapes.<br />

The increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> formability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

can be enhanced by heat treatment<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> single forming steps. The integrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmo-mechanical processing after<br />

extrusi<strong>on</strong> is a desirable<br />

substitute for additi<strong>on</strong>al<br />

heat treatment processes<br />

for several reas<strong>on</strong>s:<br />

additi<strong>on</strong>al producti<strong>on</strong><br />

steps lead to increased<br />

producti<strong>on</strong> time, energy<br />

c<strong>on</strong>sumpti<strong>on</strong> and producti<strong>on</strong><br />

costs. Incorporating<str<strong>on</strong>g>the</str<strong>on</strong>g>rmo-mechanical<br />

processing immediately<br />

after extrusi<strong>on</strong><br />

will save <str<strong>on</strong>g>the</str<strong>on</strong>g> time and<br />

energy needed to reheat<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles for o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hot<br />

forming steps.<br />

In this paper, strategies<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmo-mechanical<br />

processing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles by<br />

hot forming subsequent to hot extrusi<strong>on</strong> for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> manufacturing <str<strong>on</strong>g>of</str<strong>on</strong>g> geometrically graded<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles are given. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> geometric<br />

limitati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> technology <str<strong>on</strong>g>of</str<strong>on</strong>g> subsequent<br />

processing <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> open and<br />

hollow pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles is different. Two c<strong>on</strong>cepts for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> processing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles by applying<br />

hot extrusi<strong>on</strong> combined with subsequent<br />

hot electromagnetic compressi<strong>on</strong> and alternatively<br />

combined with an integrated hot rolling<br />

c<strong>on</strong>cept were developed and tested <strong>on</strong> an<br />

experimental scale. By process integrati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

process heat <str<strong>on</strong>g>of</str<strong>on</strong>g> extrusi<strong>on</strong> is used for <str<strong>on</strong>g>the</str<strong>on</strong>g> successive<br />

forming operati<strong>on</strong>.<br />

Descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> new c<strong>on</strong>cepts<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> processing <str<strong>on</strong>g>of</str<strong>on</strong>g> hollow pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles a combinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hot extrusi<strong>on</strong> and electromagnetic<br />

compressi<strong>on</strong> was developed. Hot metal extrusi<strong>on</strong><br />

is used to produce tubular semi-finished<br />

products c<strong>on</strong>tinuously by pushing a billet<br />

through a die (DIN 8583-6, 2003). In typical<br />

industrial hot <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> extrusi<strong>on</strong>, pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

exiting speeds <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 50 m/min are comm<strong>on</strong><br />

(Ostermann, 2007). In c<strong>on</strong>trast to this,<br />

electromagnetic compressi<strong>on</strong> is used to reduce<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a workpiece locally (Harvey<br />

and Brower, 1961). The applied magnetic<br />

pressure can achieve values <str<strong>on</strong>g>of</str<strong>on</strong>g> up to several<br />

hundred MPa and accelerates <str<strong>on</strong>g>the</str<strong>on</strong>g> workpiece<br />

to typical strain rates <str<strong>on</strong>g>of</str<strong>on</strong>g> about 10 4 s -1 completing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> entire forming process in approximately<br />

50 to 200 μs. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> favourable<br />

relati<strong>on</strong> between resulting exit speed in extrusi<strong>on</strong><br />

and processing time in electromagnetic<br />

compressi<strong>on</strong>, a l<strong>on</strong>gitudinal translati<strong>on</strong> be-<br />

40 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011<br />

Images: IUL


Fig. 3: Experimental setup for extrusi<strong>on</strong> with subsequent electromagnetic compressi<strong>on</strong><br />

tween <str<strong>on</strong>g>the</str<strong>on</strong>g> workpiece and <str<strong>on</strong>g>the</str<strong>on</strong>g> tool coil during<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> compressi<strong>on</strong> process can be neglected. For<br />

example, with an exiting speed <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 m/min,<br />

and 100 μs for <str<strong>on</strong>g>the</str<strong>on</strong>g> electromagnetic forming<br />

process, a relative movement between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extrudate pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile and <str<strong>on</strong>g>the</str<strong>on</strong>g> tool coil <str<strong>on</strong>g>of</str<strong>on</strong>g> about<br />

160 μm results, which meets <str<strong>on</strong>g>the</str<strong>on</strong>g> geometrical<br />

tolerance field <str<strong>on</strong>g>of</str<strong>on</strong>g> macroscopic forming processes.<br />

Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electromagnetic<br />

compressi<strong>on</strong> subsequent to extrusi<strong>on</strong><br />

is possible without a compensati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

relative speed between <str<strong>on</strong>g>the</str<strong>on</strong>g> workpiece and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

tooling.<br />

To integrate both processes, a tool coil for<br />

compressi<strong>on</strong> was positi<strong>on</strong>ed behind <str<strong>on</strong>g>the</str<strong>on</strong>g> die<br />

exit and coaxial to <str<strong>on</strong>g>the</str<strong>on</strong>g> extrudate in order to<br />

reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> workpiece cross secti<strong>on</strong> locally<br />

(Fig. 1). Additi<strong>on</strong>ally, a counter die in <str<strong>on</strong>g>the</str<strong>on</strong>g> shape<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a mandrel can be mounted to <str<strong>on</strong>g>the</str<strong>on</strong>g> mandrel<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a porthole extrusi<strong>on</strong> die, which extended<br />

into <str<strong>on</strong>g>the</str<strong>on</strong>g> tool coil (Jäger et al., 2009). By this,<br />

besides achieving a more defined geometry in<br />

comparis<strong>on</strong> to a free forming operati<strong>on</strong>, an<br />

increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> geometrical complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> locally<br />

compressed areas can be achieved.<br />

For processing open secti<strong>on</strong>s, like L-, T<br />

and double-T-shaped pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles, a rolling pro-<br />

cess was developed. By executing <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequent<br />

forming operati<strong>on</strong> as a rolling process,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuous run out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile can be<br />

taken into account.<br />

Fig. 4: Dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mandrel for electromagnetic forming<br />

A special rolling stand was developed and<br />

mounted behind <str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> platen <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

extrusi<strong>on</strong> press, allowing <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuous forming<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> outgoing extrusi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles. The<br />

rollers mesh toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with sinusoidal teeth,<br />

creating a corrugated c<strong>on</strong>tour <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> web <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a c<strong>on</strong>tinuously fed I-beam-shaped pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. The<br />

c<strong>on</strong>tour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> forming dies stores <str<strong>on</strong>g>the</str<strong>on</strong>g> desired<br />

geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> workpiece. As <str<strong>on</strong>g>the</str<strong>on</strong>g> exit speed <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extrudate varies, compensati<strong>on</strong> strategies<br />

have to be provided. For this, <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling stand<br />

was swivel-mounted and <str<strong>on</strong>g>the</str<strong>on</strong>g> rotati<strong>on</strong>al speed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rollers was adapted permanently (Fig. 2).<br />

Extrusi<strong>on</strong> and electromagnetic forming<br />

A test rig for evaluating <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an electromagnetic compressi<strong>on</strong><br />

step subsequent to extrusi<strong>on</strong> was built (Fig. 3).<br />

A tool coil was positi<strong>on</strong>ed behind <str<strong>on</strong>g>the</str<strong>on</strong>g> die exit<br />

in order to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> workpiece cross secti<strong>on</strong><br />

locally. To adapt <str<strong>on</strong>g>the</str<strong>on</strong>g> tool coil and <str<strong>on</strong>g>the</str<strong>on</strong>g> extrudate<br />

geometry, a field shaper made out <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

CuCrZr-alloy, electrically insulated with a<br />

polyimide foil, is used. Bey<strong>on</strong>d shaping and<br />

c<strong>on</strong>centrating <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electromagnetic field, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

field shaper also prevents an overheating <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> tool coil by <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal radiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> processed<br />

hot extrudate. To assure a uniform air<br />

gap between <str<strong>on</strong>g>the</str<strong>on</strong>g> field shaper and <str<strong>on</strong>g>the</str<strong>on</strong>g> workpiece<br />

guiding rollers made out <str<strong>on</strong>g>of</str<strong>on</strong>g> brass are ar-<br />

EXTRUSION<br />

ranged pairwise at <str<strong>on</strong>g>the</str<strong>on</strong>g> inlet and run-out side<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tool coil. For heat treating <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extruded<br />

and subsequently hot deformed workpieces<br />

made <str<strong>on</strong>g>of</str<strong>on</strong>g> heat treatable alloys, an additi<strong>on</strong>al<br />

quenching setup was positi<strong>on</strong>ed behind<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> tool coil. Atomizing nozzles are located<br />

around <str<strong>on</strong>g>the</str<strong>on</strong>g> press axis providing air atomized<br />

water mist streams. To use <str<strong>on</strong>g>the</str<strong>on</strong>g> press heat <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

extrusi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequent <str<strong>on</strong>g>the</str<strong>on</strong>g>rmo-mechanical<br />

processing steps efficiently, <str<strong>on</strong>g>the</str<strong>on</strong>g> whole<br />

setup is designed compactly. From <str<strong>on</strong>g>the</str<strong>on</strong>g> die exit<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> quenching, <str<strong>on</strong>g>the</str<strong>on</strong>g> whole setup has a length<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> less than <strong>on</strong>e meter.<br />

Experimental trials were performed using<br />

a 250-t<strong>on</strong> direct extrusi<strong>on</strong> press (Collin<br />

PLA250t) and a pulse power generator (Maxwell-Magneform<br />

series 7000). Solenoid coils<br />

fabricated from copper and embedded in a<br />

fibre-reinforced resin were used as tool coils<br />

(Poynting GmbH). Using an EN AW-6082 <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

alloy, a porthole extrusi<strong>on</strong> die and a<br />

squared field shaper, a squared hollow pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

(30 x 30 x 1.8 mm) was extruded with an exiting<br />

speed <str<strong>on</strong>g>of</str<strong>on</strong>g> about 16 mm/s while compressi<strong>on</strong><br />

by electromagnetic forming was applied<br />

periodically in intervals <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately<br />

10s. Semi-finished products with local bulges<br />

arranged around <str<strong>on</strong>g>the</str<strong>on</strong>g> circumference <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

squared tube can be produced.<br />

In order to expand <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> geometrical<br />

shapes with cross-secti<strong>on</strong>s o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than that<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extruded <str<strong>on</strong>g>aluminium</str<strong>on</strong>g>, a mandrel can be<br />

used to define <str<strong>on</strong>g>the</str<strong>on</strong>g> cross secti<strong>on</strong> geometry. A<br />

squared mandrel for <str<strong>on</strong>g>the</str<strong>on</strong>g> processing <str<strong>on</strong>g>of</str<strong>on</strong>g> a round<br />

tube was chosen and specially designed to prevent<br />

force fit between <str<strong>on</strong>g>the</str<strong>on</strong>g> workpiece and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

die (Fig. 4). By using a squared field shaper,<br />

with an aperture <str<strong>on</strong>g>of</str<strong>on</strong>g> 43.4 x 43.4 mm and a<br />

length <str<strong>on</strong>g>of</str<strong>on</strong>g> 27 mm <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrator, in combinati<strong>on</strong><br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a round tube<br />

(Ø 40 x 2 mm) fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r trials were performed.<br />

In this combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> field shaper, workpiece<br />

and mandrel an adapted air gap and<br />

pressure distributi<strong>on</strong> al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> workpiece<br />

circumference can be achieved which helps<br />

to prevent a force fit between <str<strong>on</strong>g>the</str<strong>on</strong>g> extrudate<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> mandrel. In order to character-<br />

ize <str<strong>on</strong>g>the</str<strong>on</strong>g> forming results when a mandrel was<br />

used as a form defining tool, an experimental<br />

study was performed at charging energies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 6.4 kJ, 8 kJ and 8.8 kJ. To measure <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

high speed current pulse in <str<strong>on</strong>g>the</str<strong>on</strong>g> tool coil a<br />

Rogowski coil was used. The best forming result/geometrical<br />

accuracy could be achieved at<br />

a charging energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 8 kJ. For this a maximum<br />

coil current amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> 62 kA and frequency<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> discharging current <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.5 kHz were detected.<br />

To prevent damage by overheating <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> tool coil and <str<strong>on</strong>g>the</str<strong>on</strong>g> electrical isolati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

field shaper was cooled by compressed air<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 41


EXTRUSION<br />

Fig. 5: (a) tubular product, (b) positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mandrel (l<strong>on</strong>gitudinal secti<strong>on</strong>), (c) applicati<strong>on</strong> ‘crashbox’<br />

during stops, e. g. due to billet loading. In an<br />

industrial applicati<strong>on</strong> a water-cooling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

field shaper by integrated cooling channels<br />

would be useful. Strategies for cooling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coil or <str<strong>on</strong>g>the</str<strong>on</strong>g> field shaper in electromagnetic<br />

forming are suggested e. g. by Golovashchenko<br />

et al. (2006) or Hahn (2006).<br />

Fig. 5 a shows a locally geometrically graded<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile manufactured by <str<strong>on</strong>g>the</str<strong>on</strong>g> introduced<br />

process chain processing <str<strong>on</strong>g>of</str<strong>on</strong>g> a round tube in<br />

combinati<strong>on</strong> with a squared mandrel (Fig. 5 b).<br />

The distance between <str<strong>on</strong>g>the</str<strong>on</strong>g> local bulges is determined<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile’s exit speed and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

discharging frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electromagnetic<br />

forming machine, which is limited by <str<strong>on</strong>g>the</str<strong>on</strong>g> capacitor<br />

charging time. The general feasibility<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this technological c<strong>on</strong>cept could be proven.<br />

Details about <str<strong>on</strong>g>the</str<strong>on</strong>g> geometric accuracy, <str<strong>on</strong>g>the</str<strong>on</strong>g> process<br />

limits and defects are provided in Jäger et<br />

al. (2011a).<br />

A possible applicati<strong>on</strong> might be <str<strong>on</strong>g>the</str<strong>on</strong>g> use as<br />

a ‘crashbox’, as a crash absorbing element in<br />

a car bumper system, with an adapted forcedisplacement<br />

characteristic (Fig. 5 c), e. g. designed<br />

as a telescoping tube or inversi<strong>on</strong> tube.<br />

The inversi<strong>on</strong> process involves <str<strong>on</strong>g>the</str<strong>on</strong>g> turning<br />

inside out <str<strong>on</strong>g>of</str<strong>on</strong>g> a tube under axial compressive<br />

load, characterized by a c<strong>on</strong>stant load level<br />

(Guist, L.R. and Marble, D.P., 1966.).<br />

Extrusi<strong>on</strong> and rolling<br />

A roll stand for <str<strong>on</strong>g>the</str<strong>on</strong>g> corrugating <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles subsequent to hot extrusi<strong>on</strong> was developed<br />

and aligned to <str<strong>on</strong>g>the</str<strong>on</strong>g> press axis <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

extrusi<strong>on</strong> press (Fig. 7). The roll stand c<strong>on</strong>sists<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two, e. g. sinusoidal shaped, counter<br />

rotating rollers driven by a gear motor. For<br />

adjusting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling gap, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rollers<br />

can be moved laterally by a manually driven<br />

threaded spindle.<br />

As <str<strong>on</strong>g>the</str<strong>on</strong>g> exit speed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extrudate varies,<br />

in particular when extrusi<strong>on</strong> is initiated<br />

or restarted after billet loading, <str<strong>on</strong>g>the</str<strong>on</strong>g> roll<br />

stand is swivelling-mounted at <str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong><br />

platen <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> press. By this, a clearance for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> compensati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a varying exit speed <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extrudate is given. Additi<strong>on</strong>ally, excessive<br />

reacti<strong>on</strong> forces between <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> process are prevented. To adapt<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> circumferential speed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rollers to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> speed, <str<strong>on</strong>g>the</str<strong>on</strong>g> deflecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> roll<br />

stand is measured by a potentiometer which is<br />

mounted in <str<strong>on</strong>g>the</str<strong>on</strong>g> swivelling axis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling<br />

stand. The obtained signal is used for a closed<br />

Fig. 6: Experimental setup for extrusi<strong>on</strong> and rolling<br />

loop process c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling speed.<br />

This allows <str<strong>on</strong>g>the</str<strong>on</strong>g> rolling stand to be kept parallel<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> platen. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r details<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> process c<strong>on</strong>trol are given in Jäger et<br />

al. (2011b). For damping <str<strong>on</strong>g>of</str<strong>on</strong>g> possible vibrati<strong>on</strong>s,<br />

a hydraulic shock absorber is mounted<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> press and <str<strong>on</strong>g>the</str<strong>on</strong>g> free end<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> roll stand.<br />

Experimental trials were performed extruding<br />

a double-T-shaped pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> an EN AW-<br />

6082 <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> alloy using a 1,000-t<strong>on</strong>ne<br />

direct extrusi<strong>on</strong> press (SMS Meer) and two<br />

sets <str<strong>on</strong>g>of</str<strong>on</strong>g> sinusoidal shaped rollers, pairwise.<br />

Corrugated web beams with partial corrugati<strong>on</strong><br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> web <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam secti<strong>on</strong> could be<br />

produced quasi c<strong>on</strong>tinuously (Figs. 7 a & 7 b).<br />

As an alternative to produce regularly<br />

deformed pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles, irregularly shaped rollers<br />

with e. g. varying amplitude and phase and<br />

even with secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>stant radius can<br />

be used to manufacture geometrical graded<br />

products with e. g. locally adapted torsi<strong>on</strong> rigidity<br />

or bending stiffness.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> first trials two sets composed <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

two sinusoidally shaped rollers were manufac-<br />

tured out <str<strong>on</strong>g>of</str<strong>on</strong>g> sheet metal blanks with a thickness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 10 mm by laser cutting. Geometrical<br />

details <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> corrugati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong>ing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rollers are given in Figs. 7 a) and 7 b).<br />

To prevent shear cutting in <str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong><br />

area between <str<strong>on</strong>g>the</str<strong>on</strong>g> flange and <str<strong>on</strong>g>the</str<strong>on</strong>g> web, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rollers were positi<strong>on</strong>ed at a distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 mm<br />

parallel to <str<strong>on</strong>g>the</str<strong>on</strong>g> flanges. The metal forming operati<strong>on</strong><br />

processes comprise elements <str<strong>on</strong>g>of</str<strong>on</strong>g> bending<br />

and stretch bending, partially performed<br />

as a free forming and a tool-bounded operati<strong>on</strong>.<br />

Microscopic analysis revealed a crack<br />

42 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


initiati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> pole <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> corrugati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

transiti<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> flange and <str<strong>on</strong>g>the</str<strong>on</strong>g> web for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> tested c<strong>on</strong>figurati<strong>on</strong> (Fig. 7 c). To prevent<br />

excessive shear, especially in <str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong><br />

area between <str<strong>on</strong>g>the</str<strong>on</strong>g> flange and <str<strong>on</strong>g>the</str<strong>on</strong>g> web, a redesign<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> geometry and <str<strong>on</strong>g>the</str<strong>on</strong>g> rollers is necessary.<br />

Possible applicati<strong>on</strong>s are seen in <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> lightweight c<strong>on</strong>structi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles<br />

(Fig. 8 a) with reduced web thickness. Bey<strong>on</strong>d<br />

that, pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles with a varying or even a partial<br />

corrugati<strong>on</strong> geometry are c<strong>on</strong>ceivable (Fig.<br />

8 b), which would result in graded bending<br />

rigidity or torsi<strong>on</strong>al stiffness properties.<br />

C<strong>on</strong>clusi<strong>on</strong><br />

Two strategies for <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacturing <str<strong>on</strong>g>of</str<strong>on</strong>g> products,<br />

or ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r semi-finished products, with<br />

locally adapted geometrical properties were<br />

developed. Due to geometric limitati<strong>on</strong>s and<br />

accessibilities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cross secti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> technology<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> integrated processing <str<strong>on</strong>g>of</str<strong>on</strong>g> open and hollow<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles by forming is different.<br />

For open secti<strong>on</strong>s a rolling setup for corrugating<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> web <str<strong>on</strong>g>of</str<strong>on</strong>g> an I-beam secti<strong>on</strong> subsequent<br />

to hot extrusi<strong>on</strong> was developed and<br />

tested. Future work will focus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> geometrical complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> products<br />

and <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> geometrical, mechanical<br />

and resulting structural properties.<br />

Experiments were c<strong>on</strong>ducted <strong>on</strong> hollow<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles which were compressed by electromagnetic<br />

forming subsequent to extrusi<strong>on</strong>.<br />

Due to an extremely short processing time <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> high speed forming process, a compensati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> relative speed between <str<strong>on</strong>g>the</str<strong>on</strong>g> workpiece<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> tooling can be ignored. By <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>tactless force inducti<strong>on</strong>, an additi<strong>on</strong>al benefit<br />

is given for <str<strong>on</strong>g>the</str<strong>on</strong>g> heat balance. To fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

understand this process, analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> process<br />

dependencies in <str<strong>on</strong>g>the</str<strong>on</strong>g> system workpiece, field<br />

shaper and mandrel is necessary.<br />

Fig. 7: (a) L<strong>on</strong>gitudinal cut, (b) cross secti<strong>on</strong>, (c) crack<br />

Acknowledgement<br />

This work was carried out in <str<strong>on</strong>g>the</str<strong>on</strong>g> subproject<br />

TPA2 within <str<strong>on</strong>g>the</str<strong>on</strong>g> Transregi<strong>on</strong>al Collaborative<br />

Research Centre SFB/TR30, funded by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

German Research Foundati<strong>on</strong> (DFG).<br />

References<br />

Fig. 8: Corrugated web beam, a) c<strong>on</strong>tinuously corrugate, b) partly corrugated<br />

DIN 8583-6, 2003. Manufacturing processes forming<br />

under compressive c<strong>on</strong>diti<strong>on</strong>s – Part 6: Extrusi<strong>on</strong>;<br />

Classificati<strong>on</strong>, subdivisi<strong>on</strong>, terms and definiti<strong>on</strong>s,<br />

Beuth, Berlin.<br />

Guist, L.R., Marble, D.P., 1966. Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

inversi<strong>on</strong> load. NASA<br />

Technical Note 3622.<br />

Golovashchenko, S.,<br />

Dmitriev, V., Canfield,<br />

P., Krause, A., Maranville,<br />

C., 2006. Patent<br />

applicati<strong>on</strong> US<br />

2006/0086165A1.<br />

Apparatus for electromagnetic<br />

forming with<br />

durability and efficiency<br />

enhancement.<br />

Hahn, R., 2004.<br />

Werkzeuge zum impulsmagnetischenWarmfügen<br />

v<strong>on</strong> Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilen aus<br />

Aluminium- und Magnesiumlegierungen,doctoral<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>sis, Technische<br />

Universität Berlin.<br />

Hall, D. D., Mudawar, I.,<br />

EXTRUSION<br />

1996. Optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quench history <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

parts for superior mechanical properties, Internati<strong>on</strong>al<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Heat and Mass Transfer 39 (1),<br />

p. 81-95.<br />

Harvey, G. W., Brower, D. F., 1961. US patent 2 976<br />

907. Metal forming device and method, 28 March.<br />

Jäger, A., Risch, D., Tekkaya, A. E., 2009. Patent<br />

applicati<strong>on</strong> <strong>DE</strong> 10 2009 039 759 A1. Verfahren und<br />

Vorrichtung zum Strangpressen und nachfolgender<br />

elektromagnetischer Umformung, 31 August.<br />

Jäger, A., Risch, D., Tekkaya, A. E., 2011a. Thermomechanical<br />

processing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles by<br />

integrated electromagnetic compressi<strong>on</strong> subsequent<br />

to hot extrusi<strong>on</strong>, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Processing<br />

Technology 211 (5), Special Issue: Impulse Forming,<br />

p. 936-943.<br />

Jäger, A., Ben Khalifa, N., Psyk, V., Tekkaya, A.<br />

E. 2011b. Thermo-mechanical processing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles subsequent to hot extrusi<strong>on</strong>, steel<br />

research internati<strong>on</strong>al, Special editi<strong>on</strong>: Internati<strong>on</strong>al<br />

C<strong>on</strong>ference <strong>on</strong> Technology <str<strong>on</strong>g>of</str<strong>on</strong>g> Plasticity,<br />

ICTP, 2011, Aachen, Germany<br />

Laue, K. Stenger, H., 1976. Strangpressen, Aluminium<br />

Verlag, Düsseldorf, p. 1. Ostermann, F.,<br />

2007. Anwendungstechnologie Aluminium, 2nd<br />

Editi<strong>on</strong>. Springer, Berlin, p. 440-441.<br />

Authors<br />

Dipl.-Ing. Andreas Jäger is head <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bulk metal forming at <str<strong>on</strong>g>the</str<strong>on</strong>g> Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Forming<br />

Technology and Lightweight C<strong>on</strong>structi<strong>on</strong> (IUL).<br />

Dipl.-Ing. Nooman Ben Khalifa is chief engineer for<br />

research at <str<strong>on</strong>g>the</str<strong>on</strong>g> IUL.<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Dr.-Ing. A. Erman Tekkaya is head <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> IUL.<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 43


EXTRUSION<br />

Flexible automated material flow in extrusi<strong>on</strong> operati<strong>on</strong>s<br />

Georg Papadopoulos, H+H Herrmann + Hieber GmbH<br />

The logistics specialist H+H Herrmann +<br />

Hieber based in Denkendorf near Stuttgart<br />

has worked for more than 20 years<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> special field <str<strong>on</strong>g>of</str<strong>on</strong>g> in-house transport<br />

in extrusi<strong>on</strong> plants. Since 1989 H+H has<br />

planned and supplied machinery and<br />

equipment for almost every major extrusi<strong>on</strong><br />

plants in Germany and for many<br />

elsewhere in Europe.<br />

The fact that material flow automati<strong>on</strong> in this<br />

sector has become so successfully established,<br />

can be attributed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e hand to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinual<br />

growth <str<strong>on</strong>g>of</str<strong>on</strong>g> extrusi<strong>on</strong> producti<strong>on</strong> in Germany,<br />

but in additi<strong>on</strong> ec<strong>on</strong>omic c<strong>on</strong>diti<strong>on</strong>s in<br />

Europe after <str<strong>on</strong>g>the</str<strong>on</strong>g> fall <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ir<strong>on</strong> Curtain have<br />

played a part not to be underestimated. The<br />

ec<strong>on</strong>omic opening has created opportunities,<br />

but has at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time brought Germany, as<br />

an established industrial locati<strong>on</strong>, under str<strong>on</strong>g<br />

pressure. Faced with <str<strong>on</strong>g>the</str<strong>on</strong>g> choice between relocating<br />

to regi<strong>on</strong>s with lower labour costs<br />

and embarking up<strong>on</strong> rati<strong>on</strong>alisati<strong>on</strong> efforts,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> industry solved <str<strong>on</strong>g>the</str<strong>on</strong>g> dilemma by<br />

opting for <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d alternative. This set in<br />

moti<strong>on</strong> unprecedented rati<strong>on</strong>alisati<strong>on</strong> initiatives,<br />

which have brought extrusi<strong>on</strong> plants in<br />

Germany to a worldwide peak positi<strong>on</strong> from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> technological standpoint.<br />

Numerous technical and organisati<strong>on</strong>al innovati<strong>on</strong>s<br />

have c<strong>on</strong>tributed to this successful<br />

development. And in this it is certain that, not<br />

least, <str<strong>on</strong>g>the</str<strong>on</strong>g> step by step automati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> material<br />

flow through <str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> plant has been an<br />

important factor. It can now be stated with<br />

some c<strong>on</strong>fidence that <str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> plants<br />

which operate most successfully are those<br />

which paid attenti<strong>on</strong> to that aspect in good<br />

time. Since <str<strong>on</strong>g>the</str<strong>on</strong>g>re is unanimous c<strong>on</strong>victi<strong>on</strong><br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> branch that in times to come competitive<br />

pressure will not get any less severe, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

compulsi<strong>on</strong> to rati<strong>on</strong>alise and automate is becoming<br />

still more urgent – and thus too, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

demand for automated internal logistics.<br />

Analysis and planning – <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

starting point <str<strong>on</strong>g>of</str<strong>on</strong>g> any project<br />

At H+H Herrmann + Hieber every project<br />

begins with analysis and comprehensive, forward-looking<br />

planning. This demands specialists<br />

who not <strong>on</strong>ly have mastery over <str<strong>on</strong>g>the</str<strong>on</strong>g> tools<br />

for material flow planning, but in additi<strong>on</strong><br />

possess comprehensive knowledge about <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

processes involved in extrusi<strong>on</strong> operati<strong>on</strong>s.<br />

Automated material flow at Pandolfo Alluminio<br />

In every case <str<strong>on</strong>g>the</str<strong>on</strong>g> planning is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

individual circumstances <str<strong>on</strong>g>of</str<strong>on</strong>g> a project and <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> planning figures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> operati<strong>on</strong>.<br />

As dem<strong>on</strong>strated for H+H in well over<br />

50 successfully completed extrusi<strong>on</strong> projects,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> specificati<strong>on</strong>s and requirements to be met<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> planning are always different. In practice<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re is no standard soluti<strong>on</strong>.<br />

Planning starts with observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

current situati<strong>on</strong>, for which all <str<strong>on</strong>g>the</str<strong>on</strong>g> data are<br />

collected. The quantitative framework (press<br />

capacity, ageing capacity, etc.) is specified by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> department. For <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> target situati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> planning must generally<br />

take into account that what is involved<br />

is not static values, but a dynamic, variable<br />

operating situati<strong>on</strong>. This means that <str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong><br />

plant must by capable <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>ding flexibly<br />

to changing market needs. The associated<br />

material flow variati<strong>on</strong>s necessarily have to be<br />

based <strong>on</strong> forward-looking planning c<strong>on</strong>siderati<strong>on</strong>s.<br />

In this c<strong>on</strong>text overall planning takes into<br />

account not just <str<strong>on</strong>g>the</str<strong>on</strong>g> transport <str<strong>on</strong>g>of</str<strong>on</strong>g> extruded secti<strong>on</strong>s,<br />

but also that <str<strong>on</strong>g>of</str<strong>on</strong>g> all auxiliary materials<br />

required for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> process. This includes<br />

in particular <str<strong>on</strong>g>the</str<strong>on</strong>g> transport <str<strong>on</strong>g>of</str<strong>on</strong>g> spacers<br />

and packing materials, as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> transport<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> scrap.<br />

When <str<strong>on</strong>g>the</str<strong>on</strong>g> individual material flows have<br />

been defined and <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary areas calculated,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> next step is to implement <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong><br />

in design and structural terms. For this,<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> first instance tried and tested basic<br />

modules are available – manually c<strong>on</strong>trolled<br />

trolleys, automatic cranes and o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs – whose<br />

dimensi<strong>on</strong>s and capacities can be adapted to<br />

suit <str<strong>on</strong>g>the</str<strong>on</strong>g> requirements in each case. During this<br />

planning phase it is found in many cases that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> planned material flow cannot be achieved<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> standard comp<strong>on</strong>ents available – or<br />

<strong>on</strong>ly insufficiently so. At that point <str<strong>on</strong>g>the</str<strong>on</strong>g> innovative<br />

ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> planning team is called<br />

into play.<br />

Generally, in projects <str<strong>on</strong>g>of</str<strong>on</strong>g> this type <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

changes to be made have to be carried out<br />

while interfering as little as possible with<br />

<strong>on</strong>-going extrusi<strong>on</strong> operati<strong>on</strong>s. If this is not<br />

achieved <str<strong>on</strong>g>the</str<strong>on</strong>g> investment project is doomed to<br />

failure already from <str<strong>on</strong>g>the</str<strong>on</strong>g> start, since it is <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

no l<strong>on</strong>ger viable.<br />

Pandolfo Alluminio – an<br />

example <str<strong>on</strong>g>of</str<strong>on</strong>g> a successful project<br />

How to set about implementing such a project,<br />

and what its effects can be, is shown here by<br />

c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> example <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Italian extrusi<strong>on</strong><br />

plant Pandolfo Alluminio in Padua in<br />

nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Italy.<br />

“Please supply us with a detailed material<br />

flow plan, to include all structural changes for<br />

automating <str<strong>on</strong>g>the</str<strong>on</strong>g> pallet transport with a view<br />

to increasing output in <str<strong>on</strong>g>the</str<strong>on</strong>g> medium term by<br />

about a third, up to 32,000 t<strong>on</strong>nes per year!”<br />

With this request, made by Gianfranco Pandolfo,<br />

chairman <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> board and CEO <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Italian extrusi<strong>on</strong> plant Pandolfo Alluminio to<br />

H+H, a comprehensive modernisati<strong>on</strong> and<br />

extensi<strong>on</strong> programme worth some 15 milli<strong>on</strong><br />

euros began in 2003. The result sets new standards<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> sector.<br />

44 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011<br />

Images: H + H


The medium-sized, family-run company was<br />

at that time producing up to 23,000 tpy at its<br />

Plant 1, with around 400 employees and four<br />

extrusi<strong>on</strong> lines. In Plant 2, about five kilometres<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> plant, <str<strong>on</strong>g>the</str<strong>on</strong>g> Pandolfo<br />

group also operates efficient secti<strong>on</strong> machining<br />

and surface finishing facilities.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> project, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with<br />

Pandolfo H+H worked out a general plan<br />

which – after approval by <str<strong>on</strong>g>the</str<strong>on</strong>g> customer – was<br />

implemented in several steps, and this in such<br />

a way that secti<strong>on</strong> producti<strong>on</strong> was affected as<br />

little as possible. The fourth and for <str<strong>on</strong>g>the</str<strong>on</strong>g> time<br />

being <str<strong>on</strong>g>the</str<strong>on</strong>g> last step <str<strong>on</strong>g>of</str<strong>on</strong>g> this comprehensive<br />

project was completed according to plan in<br />

2008.<br />

The project starts at <str<strong>on</strong>g>the</str<strong>on</strong>g> point where <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sawn secti<strong>on</strong> lengths, stacked in racks, are<br />

available. At this point <str<strong>on</strong>g>the</str<strong>on</strong>g> previously fixed<br />

material flow has now been replaced by flexible<br />

handling. This flexible automati<strong>on</strong> makes<br />

special demands. At Pandolfo <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

logistical opti<strong>on</strong>s available was drastically increased<br />

by free allocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material to<br />

furnaces, storage positi<strong>on</strong>s and packing stati<strong>on</strong>s<br />

and by partial sorting out for fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

processing.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> project, according to plan<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> heat treatment<br />

capacities were extended<br />

and modernised.<br />

Two older heat<br />

treatment furnaces<br />

were dismantled and<br />

replaced by new units.<br />

In additi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> heat<br />

treatment capacity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plant was also<br />

massively increased<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> commissi<strong>on</strong>ing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r, large<br />

furnace unit. The final<br />

result is that <str<strong>on</strong>g>the</str<strong>on</strong>g> plant<br />

now has a total <str<strong>on</strong>g>of</str<strong>on</strong>g> seven<br />

furnace units.<br />

In accordance with works specificati<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

total producti<strong>on</strong> from all four presses can be<br />

allocated arbitrarily to any <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total <str<strong>on</strong>g>of</str<strong>on</strong>g> seven<br />

heat treatment furnaces. Operati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g>refore<br />

free and individual charges, made up in<br />

accordance with various criteria, can be distributed<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> existing furnaces without<br />

any restricti<strong>on</strong>. Besides, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is <str<strong>on</strong>g>of</str<strong>on</strong>g> course<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> opti<strong>on</strong> to omit heat treatment entirely.<br />

All <str<strong>on</strong>g>the</str<strong>on</strong>g> furnaces are charged by a central<br />

automatic crane which moves over <str<strong>on</strong>g>the</str<strong>on</strong>g> full<br />

EXTRUSION<br />

Interim storage <str<strong>on</strong>g>of</str<strong>on</strong>g> racks at <str<strong>on</strong>g>the</str<strong>on</strong>g> transfer stati<strong>on</strong> between two automatic cranes<br />

width <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> shed. In this case <str<strong>on</strong>g>the</str<strong>on</strong>g> automatic<br />

crane is, as it were, <str<strong>on</strong>g>the</str<strong>on</strong>g> link between <str<strong>on</strong>g>the</str<strong>on</strong>g> presses<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> heat treatment. The racks, filled by<br />

stacking machines, are stored intermediately<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crane at depositi<strong>on</strong> points<br />

underneath <str<strong>on</strong>g>the</str<strong>on</strong>g> crane track and are <str<strong>on</strong>g>the</str<strong>on</strong>g>n taken<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace c<strong>on</strong>cerned as necessary.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> outlet <str<strong>on</strong>g>of</str<strong>on</strong>g> each furnace <str<strong>on</strong>g>the</str<strong>on</strong>g> heat<br />

treated goods are checked. Special inspecti<strong>on</strong><br />

positi<strong>on</strong>s have been installed for this purpose.<br />

All <str<strong>on</strong>g>the</str<strong>on</strong>g> racks that leave <str<strong>on</strong>g>the</str<strong>on</strong>g> heat treatment fur-<br />

TOOL STEEL AND TOOLING<br />

COMPETENCE<br />

FROM<br />

ONE SOURCE<br />

Kind & Co., Edelstahlwerk, KG<br />

Bielsteiner Str. 124 – 130<br />

D-51674 Wiehl<br />

Tel +49 (0) 22 62 / 84-0<br />

Fax +49 (0) 22 62 / 84-175<br />

info@kind-co.de · www.kind-co.de


EXTRUSION<br />

naces pass through this inspecti<strong>on</strong><br />

stage. The heat treatment process<br />

data are recorded by <str<strong>on</strong>g>the</str<strong>on</strong>g> transport<br />

management system (TMS), archived,<br />

and sent <strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> superordinated<br />

operati<strong>on</strong>al computer level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plant for charge tracking<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> QA system.<br />

The checked racks are again<br />

stored intermediately and are <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

taken to individual packing positi<strong>on</strong>s<br />

as necessary. In this area too<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re has to be unrestricted flexibility:<br />

any rack can be assigned to<br />

any packing positi<strong>on</strong>. To be able<br />

to achieve this a hi<str<strong>on</strong>g>the</str<strong>on</strong>g>rto unique<br />

transport and storage system was<br />

developed. Owing to <str<strong>on</strong>g>the</str<strong>on</strong>g> numerous transport<br />

opti<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sequently large storage<br />

area involved, a system comprising several<br />

automatic cranes was provided. The cranes operate<br />

redundantly, i. e. <str<strong>on</strong>g>the</str<strong>on</strong>g>y match <str<strong>on</strong>g>the</str<strong>on</strong>g>ir acti<strong>on</strong>s<br />

to <strong>on</strong>e ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r in a flexible manner. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore,<br />

as a special feature automatic optimisati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all transport and storage movements<br />

is provided and this covers all <str<strong>on</strong>g>the</str<strong>on</strong>g> transport<br />

units. In practice this means that for every task<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> optimum procedure (shortest path, smallest<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> individual movements, etc.) is<br />

sought. This takes place having regard to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

system as a whole, i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> rack movements are<br />

co-ordinated automatically in accordance with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> specified optimum.<br />

A fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r automatic crane is provided for<br />

goods to be separated out, which are taken in<br />

special racks to Plant 2 for fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r processing.<br />

These secti<strong>on</strong>s have to be re-stacked in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

special racks. The same crane provides transport<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> re-stacking stati<strong>on</strong>.<br />

The detailed planning <str<strong>on</strong>g>of</str<strong>on</strong>g> this area had<br />

to ensure that <str<strong>on</strong>g>the</str<strong>on</strong>g> floor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> shed remains<br />

freely accessible and not obstructed by transport<br />

units. This was achieved by locating <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rack transport so far as possible around <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

edges. Full racks are transported at floor level<br />

whereas in c<strong>on</strong>trast empty racks are generally<br />

moved three metres above floor level.<br />

The packing positi<strong>on</strong>s are located after <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

store areas. Here too, <str<strong>on</strong>g>the</str<strong>on</strong>g> packing positi<strong>on</strong>s<br />

can receive material automatically from any<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> store. For this, <str<strong>on</strong>g>the</str<strong>on</strong>g> racks are placed<br />

by <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> automatic cranes <strong>on</strong>to <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriate<br />

roller track and taken automatically<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> packing positi<strong>on</strong> intended. At present a<br />

total <str<strong>on</strong>g>of</str<strong>on</strong>g> seven packing positi<strong>on</strong>s are available.<br />

Each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m is equipped with accessories<br />

which facilitate <str<strong>on</strong>g>the</str<strong>on</strong>g> work <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> packers and<br />

help to increase packing output.<br />

The system as a whole is c<strong>on</strong>trolled by a<br />

central transport management system. This<br />

Automatic crane No 4 with overhead roller track for empty racks at <str<strong>on</strong>g>the</str<strong>on</strong>g> back<br />

system, which also assists producti<strong>on</strong> planning,<br />

was developed by H+H toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

company Aberle Steuerungstechnik in Leingarten.<br />

At Pandolfo <str<strong>on</strong>g>the</str<strong>on</strong>g> new system was installed<br />

already during <str<strong>on</strong>g>the</str<strong>on</strong>g> first phase <str<strong>on</strong>g>of</str<strong>on</strong>g> project<br />

implementati<strong>on</strong>, so that <str<strong>on</strong>g>the</str<strong>on</strong>g> areas completed<br />

<strong>on</strong>e after ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r could be integrated into<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> system step by step. The central transport<br />

management system records all <str<strong>on</strong>g>the</str<strong>on</strong>g> secti<strong>on</strong><br />

racks by means <str<strong>on</strong>g>of</str<strong>on</strong>g> barcodes and c<strong>on</strong>trols <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

movements up to <str<strong>on</strong>g>the</str<strong>on</strong>g> storage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> packed<br />

goods. It is c<strong>on</strong>sequently in a positi<strong>on</strong> at anytime<br />

to provide informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> current<br />

positi<strong>on</strong> and processing status <str<strong>on</strong>g>of</str<strong>on</strong>g> each and<br />

every rack. This ability makes <str<strong>on</strong>g>the</str<strong>on</strong>g> transport<br />

management system a valuable aid to producti<strong>on</strong><br />

planning.<br />

Moreover, it was decided at Pandolfo<br />

to integrate scrap transport as well into <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

automatic system. Any scrap produced in or<br />

arriving at <str<strong>on</strong>g>the</str<strong>on</strong>g> packing area, which has to be<br />

returned to <str<strong>on</strong>g>the</str<strong>on</strong>g> foundry, is taken <str<strong>on</strong>g>the</str<strong>on</strong>g>re fully<br />

automatically by a central transport system.<br />

To maximise value recovery, this even takes<br />

place after sorting into distinct alloys.<br />

Success factors: flexibility<br />

and low operating costs<br />

Already at <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning it was stated that automated<br />

secti<strong>on</strong> transport through <str<strong>on</strong>g>the</str<strong>on</strong>g> plant<br />

– under <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s prevailing in <str<strong>on</strong>g>the</str<strong>on</strong>g> work<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> central-European extrusi<strong>on</strong> plants – has<br />

ec<strong>on</strong>omic advantages and substantially improves<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> competitiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> an appropriately<br />

equipped extrusi<strong>on</strong> plant.<br />

The prerequisite for this is, firstly, that operati<strong>on</strong>s<br />

must take place absolutely faultlessly.<br />

For that reas<strong>on</strong> particular attenti<strong>on</strong> is paid to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> aim <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘maximum availability’. At Pandolfo,<br />

for example, <str<strong>on</strong>g>the</str<strong>on</strong>g> design <str<strong>on</strong>g>of</str<strong>on</strong>g> a new rack<br />

type adapted to <str<strong>on</strong>g>the</str<strong>on</strong>g> system has proved to be a<br />

decisive factor. Before being fed into <str<strong>on</strong>g>the</str<strong>on</strong>g> trans-<br />

port system each rack is checked<br />

for damage. In this way and with<br />

a series <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r measures, a total<br />

availability <str<strong>on</strong>g>of</str<strong>on</strong>g> 98.5 percent over<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> year, and for some parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

plant even more than 99 percent,<br />

is achieved.<br />

The end result is that <str<strong>on</strong>g>the</str<strong>on</strong>g> logistical<br />

objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> project have<br />

been fully implemented:<br />

• automated material transport<br />

• absolute flexibility, i. e. all aggregates<br />

can freely be called into<br />

acti<strong>on</strong><br />

• linking <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material flow to<br />

and from Plant 2<br />

• automatic return transport to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

central scrap collecti<strong>on</strong> point and <str<strong>on</strong>g>the</str<strong>on</strong>g> foundry,<br />

etc.<br />

The c<strong>on</strong>diti<strong>on</strong>s set by <str<strong>on</strong>g>the</str<strong>on</strong>g> customer:<br />

• maximum availability <str<strong>on</strong>g>of</str<strong>on</strong>g> all units<br />

• no damage during transport<br />

• implementati<strong>on</strong> without interfering with<br />

operati<strong>on</strong>s<br />

• high safety standards<br />

• unobstructed shed floor surface<br />

have also been met in full. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>clusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> project it emerged that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> forecast planning figures are in some cases<br />

being substantially exceeded.<br />

The extrusi<strong>on</strong> enterprise is benefiting from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> automati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its mat flow in many ways.<br />

The rati<strong>on</strong>alisati<strong>on</strong> effect is directly visible in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> reduced pers<strong>on</strong>nel needs and <str<strong>on</strong>g>the</str<strong>on</strong>g> troublefree<br />

operati<strong>on</strong>. Transport-generated scrap, a<br />

not negligible cost factor during <str<strong>on</strong>g>the</str<strong>on</strong>g> operati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>venti<strong>on</strong>ally equipped extrusi<strong>on</strong> plant,<br />

has never yet been produced so far!<br />

Above all, however, <str<strong>on</strong>g>the</str<strong>on</strong>g> company is in a<br />

positi<strong>on</strong> to resp<strong>on</strong>d, with <str<strong>on</strong>g>the</str<strong>on</strong>g> same staff, to<br />

changing market circumstances. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Pandolfo Alluminio it has proved possible in<br />

this way to increase <str<strong>on</strong>g>the</str<strong>on</strong>g> plant’s capacity by<br />

more than <str<strong>on</strong>g>the</str<strong>on</strong>g> promised 35 percent. If necessary<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> company is now capable <str<strong>on</strong>g>of</str<strong>on</strong>g> producing<br />

35,000 t<strong>on</strong>nes a year. Should <str<strong>on</strong>g>the</str<strong>on</strong>g> market<br />

weaken, however, as it did unexpectedly for<br />

extrusi<strong>on</strong> plants at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2008, producti<strong>on</strong><br />

can be adapted flexibly thanks to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

lower staffing level.<br />

To what extent ec<strong>on</strong>omy and flexibility<br />

can be increased in specific, individual cases<br />

depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> initial situati<strong>on</strong> and <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

circumstances <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> case. No generally valid<br />

figure can be given, for that reas<strong>on</strong>. However,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> projects implemented until now show that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> return <str<strong>on</strong>g>of</str<strong>on</strong>g> investment (ROI) for <str<strong>on</strong>g>the</str<strong>on</strong>g> resources<br />

devoted to extrusi<strong>on</strong> plant automati<strong>on</strong> is<br />

not l<strong>on</strong>ger than four to five years.<br />

�<br />

46 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


���<br />

����������<br />

����������<br />

Please be our guest<br />

and discover <str<strong>on</strong>g>the</str<strong>on</strong>g> benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Aluminium ePaper yourself in a<br />

free three-m<strong>on</strong>th trial:<br />

������������������������������������<br />

�������������������<br />

�����������������������������<br />

�����������������<br />

��������������������<br />

�������������������������<br />

���������������������������������


APPLICATION-ORIENTED TECHNOLOGIES<br />

Laser cleaning and surface modificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> – first step to a green plant<br />

Edwin Büchter, Clean-Lasersysteme GmbH<br />

Advanced industrial lasers have evolved<br />

well bey<strong>on</strong>d simple cutting and welding<br />

applicati<strong>on</strong>s. Laser technology now <str<strong>on</strong>g>of</str<strong>on</strong>g>fers<br />

an industrial de-coating and surface<br />

cleaning soluti<strong>on</strong> that is cost-effective<br />

as well as resp<strong>on</strong>sive to envir<strong>on</strong>mental<br />

c<strong>on</strong>cerns. From <str<strong>on</strong>g>the</str<strong>on</strong>g> automated cleaning<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moulds to precise de-coating to<br />

<str<strong>on</strong>g>oxide</str<strong>on</strong>g> removal, laser surface treatments<br />

are proving to be an attractive opti<strong>on</strong> to<br />

traditi<strong>on</strong>al labour intensive methods. Besides<br />

simple cleaning applicati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> laser<br />

technology is also capable to apply modificati<strong>on</strong>s<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate surface such as<br />

roughening or changing <str<strong>on</strong>g>the</str<strong>on</strong>g> metallurgical<br />

structure. Using a laser for surface modificati<strong>on</strong><br />

means substituting critical c<strong>on</strong>venti<strong>on</strong>al<br />

chemical media blasting process<br />

by cleaning with laser light.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> past decade laser cleaning and surface<br />

treatment systems have generated significant<br />

interest as a viable alternative to c<strong>on</strong>venti<strong>on</strong>al<br />

cleaning and paint removal technologies.<br />

Research <str<strong>on</strong>g>of</str<strong>on</strong>g> mobile, reliable, and powerful<br />

laser systems for cleaning and paint removal<br />

operati<strong>on</strong>s began in <str<strong>on</strong>g>the</str<strong>on</strong>g> late eighties with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weld or cutting lasers into laser<br />

systems for surface preparati<strong>on</strong>. This approach<br />

did not meet <str<strong>on</strong>g>the</str<strong>on</strong>g> requirements for a surface<br />

preparati<strong>on</strong> laser, which are significantly different<br />

than for cutting and welding. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

early nineties, research took place around <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

world for more efficient, reliable laser systems<br />

for surface preparati<strong>on</strong> work. It took ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

few years to develop <str<strong>on</strong>g>the</str<strong>on</strong>g> technology from a<br />

laboratory system to a system capable for use<br />

in day-to-day industrial operati<strong>on</strong>s. Today, laser<br />

systems are widely used for various surface<br />

preparati<strong>on</strong> tasks in many industries. Those<br />

tasks include: mould cleaning, paint removal,<br />

joining pretreatment, oil and grease removal,<br />

and many more.<br />

Operating principle<br />

The laser generates a directed and m<strong>on</strong>ochromatic<br />

beam <str<strong>on</strong>g>of</str<strong>on</strong>g> light. In order to create a high<br />

power density, <str<strong>on</strong>g>the</str<strong>on</strong>g> laser beam is also typically<br />

tightly focused. In <str<strong>on</strong>g>the</str<strong>on</strong>g> focal point, <str<strong>on</strong>g>the</str<strong>on</strong>g> intense<br />

laser beam is absorbed by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>taminati<strong>on</strong><br />

or paint and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmally incinerates or sublimates<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> target material, i. e. paint or c<strong>on</strong>-<br />

Operating principle (Nd:YAG): pulsed laser vaporizes <str<strong>on</strong>g>the</str<strong>on</strong>g> absorbing ‘dirt’ <str<strong>on</strong>g>layer</str<strong>on</strong>g>, scanned beam covers and<br />

cleans <str<strong>on</strong>g>the</str<strong>on</strong>g> whole surface until <str<strong>on</strong>g>the</str<strong>on</strong>g> blank substrate reflects <str<strong>on</strong>g>the</str<strong>on</strong>g> laser radiati<strong>on</strong><br />

taminati<strong>on</strong>s. This incinerati<strong>on</strong> or vaporizati<strong>on</strong><br />

will, in combinati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting micro<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal shockwave, remove <str<strong>on</strong>g>the</str<strong>on</strong>g> target material<br />

as l<strong>on</strong>g as <str<strong>on</strong>g>the</str<strong>on</strong>g> target material is able to<br />

absorb <str<strong>on</strong>g>the</str<strong>on</strong>g> laser energy. The better <str<strong>on</strong>g>the</str<strong>on</strong>g> target<br />

material absorbs <str<strong>on</strong>g>the</str<strong>on</strong>g> energy, <str<strong>on</strong>g>the</str<strong>on</strong>g> faster it can<br />

be removed.<br />

Colour, chemical compositi<strong>on</strong> and thickness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> target <str<strong>on</strong>g>layer</str<strong>on</strong>g> all have a direct impact <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> process. The removal<br />

process automatically stops <strong>on</strong>ce a metal substrate<br />

is reached since metal surfaces reflect<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> laser beam and do not generally absorb<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> laser energy.<br />

The heat transfer into <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate material<br />

can be a critical factor. To minimize this<br />

effect, many laser equipment manufacturers<br />

use pulsed laser sources.<br />

The laser intensity, known as <str<strong>on</strong>g>the</str<strong>on</strong>g> laser<br />

power per beam spot, is a critical parameter<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> heat transfer into <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate material.<br />

Very short laser pulses with a pulse durati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly a few nanosec<strong>on</strong>ds (ns) in combinati<strong>on</strong><br />

with a very small focus diameter (less<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n 500 μm) result in a minimal heat transfer<br />

into <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate material. Under normal operating<br />

c<strong>on</strong>diti<strong>on</strong>s and with <str<strong>on</strong>g>the</str<strong>on</strong>g> right process<br />

parameters, damage to <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate material<br />

can be eliminated. The heat transfer factor <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>tinuous wave laser systems is much higher<br />

and might result in substrate temperatures that<br />

will damage <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate. Test results with a<br />

Precise automated paint stripping / manual paint stripping for repair applicati<strong>on</strong>s<br />

48 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


Surface modificati<strong>on</strong> and de-coating <str<strong>on</strong>g>of</str<strong>on</strong>g> anodized <str<strong>on</strong>g>layer</str<strong>on</strong>g>s for electrical b<strong>on</strong>ding<br />

Laser modificati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> surfaces for adhesive b<strong>on</strong>ding and improved wettability prior to painting<br />

handheld pulsed Nd:YAG laser with an average<br />

laser power <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 W (peak power <str<strong>on</strong>g>of</str<strong>on</strong>g> over<br />

400 kW) <strong>on</strong> an <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> sheet resulted in<br />

maximum substrate temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> 80°C.<br />

Pulsed laser systems generate laser power<br />

levels well bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> average power <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

laser source. A pulsed 150 W solid-state laser<br />

will generate a peak pulse power <str<strong>on</strong>g>of</str<strong>on</strong>g> over<br />

160 kW. This high peak power and <str<strong>on</strong>g>the</str<strong>on</strong>g> above<br />

menti<strong>on</strong>ed beam parameter results in a power<br />

intensity removing many target materials with<br />

acceptable producti<strong>on</strong> rates.<br />

Currently, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are three different kinds<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> laser sources available for surface preparati<strong>on</strong><br />

works. The main difference is <str<strong>on</strong>g>the</str<strong>on</strong>g> laser<br />

generati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting beam delivery<br />

c<strong>on</strong>figurati<strong>on</strong>. Respecting<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> automati<strong>on</strong> and<br />

integrati<strong>on</strong> possibilities,<br />

solid-state Nd:YAG laser<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fer special advantages<br />

in industrial, automated<br />

applicati<strong>on</strong>s such adhesive<br />

b<strong>on</strong>ding preparati<strong>on</strong>, pint<br />

stripping, mould cleaning<br />

and pre- / post treatment<br />

for welding and brazing.<br />

The operative wavelength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 1,064 nanometres<br />

(nm) lies within <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

transmissi<strong>on</strong> bandwidth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

comm<strong>on</strong> optical glass and<br />

enables <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> fibre<br />

optic cables for beam delivery. Fibre optics<br />

dramatically increases <str<strong>on</strong>g>the</str<strong>on</strong>g> flexibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

laser system. Nd:YAG lasers can be used for<br />

work <strong>on</strong> hard to reach areas. Currently, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

maximum fibre optic length is 150 ft. Nd:YAG<br />

lasers are nearly maintenance free and very<br />

simple to operate. Pulsed systems for surface<br />

preparati<strong>on</strong> use reach average laser power<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 1,000 W.<br />

Sustainable technology<br />

Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> media free cleaning with light,<br />

cleanLaser <str<strong>on</strong>g>of</str<strong>on</strong>g>fer several advantages. These<br />

advantages, which are leading to sustainable<br />

savings, are:<br />

Laser cleaning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> car body parts for welding preparati<strong>on</strong><br />

APPLICATION-ORIENTED TECHNOLOGIES<br />

• No media and chemical materials required<br />

• Energy c<strong>on</strong>sumpti<strong>on</strong> far low<br />

(typically 5 kW or less)<br />

• Up to 80% lower running costs and waste<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> resources significant reduced<br />

• No noise and dirt allocati<strong>on</strong> leading to<br />

better and safer workplaces.<br />

This combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> saving resources an reducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> costs will have a sustainable l<strong>on</strong>g<br />

term effect in industrial cleaning and surface<br />

applicati<strong>on</strong>s.<br />

In October 2010, <str<strong>on</strong>g>the</str<strong>on</strong>g> founders <str<strong>on</strong>g>of</str<strong>on</strong>g> cleanLA-<br />

SER have been awarded with Europe’s highest<br />

doped envir<strong>on</strong>mental award, <str<strong>on</strong>g>the</str<strong>on</strong>g> German envir<strong>on</strong>mental<br />

award (Deutscher Umweltpreis).<br />

Clean Laser has also been nominated for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Clean Tech Media Award 2011.<br />

Current applicati<strong>on</strong> fields<br />

for cleanLaser technology<br />

Currently, a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> industrial applicati<strong>on</strong><br />

fields are applicable for cleanLaser surface<br />

treatment and cleaning technology:<br />

• Cleaning <str<strong>on</strong>g>of</str<strong>on</strong>g> metal parts, especially alumin-<br />

ium for following producti<strong>on</strong> steps<br />

• Pre-treatment prior to painting<br />

• Adhesive b<strong>on</strong>ding and pre-treatment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> for l<strong>on</strong>g term stability<br />

• Welding and brazing preparati<strong>on</strong>s<br />

• (Precise) de-coating and ablati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g>s<br />

for joining or electrical b<strong>on</strong>ding <str<strong>on</strong>g>of</str<strong>on</strong>g> plated<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

• Modificati<strong>on</strong> and structuring <str<strong>on</strong>g>of</str<strong>on</strong>g> (metal)<br />

surfaces for enhanced performance.<br />

cleanLaser Systems<br />

Clean-Lasersysteme GmbH, an ISO 9001:<br />

2008 certified laser system manufacturer <str<strong>on</strong>g>of</str<strong>on</strong>g>fers<br />

a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> powerful laser systems for<br />

surface applicati<strong>on</strong>s. These systems are available<br />

with different end effectors. Laser optics<br />

are available for manual use and as well as for<br />

automated applicati<strong>on</strong>s. Due to cleanLaser’s<br />

fibre coupling technology, <str<strong>on</strong>g>the</str<strong>on</strong>g> compact basic<br />

laser unit can be c<strong>on</strong>nected to a laser optics by<br />

using an up to 50 m l<strong>on</strong>g flexible fibre cable.<br />

The flexibility <str<strong>on</strong>g>of</str<strong>on</strong>g>fers easy integrati<strong>on</strong> as<br />

well as suitable power ranges for applicati<strong>on</strong>s<br />

in an industrial envir<strong>on</strong>ment. Advantages such<br />

as in-line cleaning are evident.<br />

High efficient laser systems mainly based<br />

<strong>on</strong> Q-switched solid state laser sources guaranty<br />

short laser pulse impact times for sensitive<br />

cleaning by nothing else <str<strong>on</strong>g>the</str<strong>on</strong>g>n laser light.<br />

Current laser systems are available in a<br />

power range between 20 to 1,000 Watts, ready<br />

for serving nearly every speed and cycle time<br />

demand.<br />

�<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 49<br />

Audi AG


APPLICATION-ORIENTED TECHNOLOGIES<br />

Corrosi<strong>on</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

materials in aqueous cleaning soluti<strong>on</strong>s<br />

Silvio Koehler, Georg Reinhard, Excor Korrosi<strong>on</strong>sforschung GmbH<br />

Especially in <str<strong>on</strong>g>the</str<strong>on</strong>g> car and aviati<strong>on</strong> industry<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> and its alloys are <str<strong>on</strong>g>the</str<strong>on</strong>g> most important<br />

materials. One advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> generally passive and corrosi<strong>on</strong> resistance<br />

in aqueous soluti<strong>on</strong>s within a defined<br />

pH range except for pitting corrosi<strong>on</strong> due to<br />

some reactive species, such as chloride. While<br />

pure <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> is covered by a homogenous<br />

<str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g>, <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> alloys <str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

several phases (aggregates and mixed phases<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> alloying elements) leading to an inhomogeneous<br />

<str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g>. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> alloying elements<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> passive film<br />

was extensively studied using various grades<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> and different metals [1,2].<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> cleaning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> materials<br />

most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> problems arise because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

wr<strong>on</strong>g pH-value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> respective cleaning<br />

bath. The Pourbaix diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> can<br />

be used for a rough estimati<strong>on</strong>, but it is not valid<br />

by 100% for <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> alloys. The sec<strong>on</strong>d<br />

problem is <str<strong>on</strong>g>the</str<strong>on</strong>g> present <str<strong>on</strong>g>of</str<strong>on</strong>g> corrosi<strong>on</strong> promoting<br />

ani<strong>on</strong>s, not <strong>on</strong>ly chloride. In combinati<strong>on</strong> with<br />

an unsuitable pH-value <str<strong>on</strong>g>the</str<strong>on</strong>g> follows for <str<strong>on</strong>g>the</str<strong>on</strong>g> material<br />

to clean can be dramatically, also in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

present <str<strong>on</strong>g>of</str<strong>on</strong>g> small quantities.<br />

Before <str<strong>on</strong>g>the</str<strong>on</strong>g> corrosi<strong>on</strong> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

materials Al1050 and 2014 was characterized<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> aqueous soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial<br />

available cleaning c<strong>on</strong>centrates, <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pH and <str<strong>on</strong>g>the</str<strong>on</strong>g> chloride c<strong>on</strong>centrati<strong>on</strong> were<br />

investigated in model electrolytes with pH<br />

values between 3 and 10 at room temperature.<br />

In ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r set <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments sodium chloride<br />

was added to soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> pH8. In all soluti<strong>on</strong>s<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> free corrosi<strong>on</strong> potential as well as time<br />

depending impedance spectra were recorded<br />

using <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> materials as working<br />

electrode in a top part measuring cell.<br />

For pure <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> (Al 1050) <str<strong>on</strong>g>the</str<strong>on</strong>g> results<br />

measured in <str<strong>on</strong>g>the</str<strong>on</strong>g> model electrolytes with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> different pH values were in accordance<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> Pourbaix diagram. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r, passive<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> is ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r stable up to high chloride<br />

c<strong>on</strong>tents. But in <str<strong>on</strong>g>the</str<strong>on</strong>g> industrial aqueous<br />

cleaning soluti<strong>on</strong>s Al1050 corrosi<strong>on</strong> attacks<br />

were observed, although <str<strong>on</strong>g>the</str<strong>on</strong>g> pH value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cleaning soluti<strong>on</strong> was in <str<strong>on</strong>g>the</str<strong>on</strong>g> passive regi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g>. Surfactants and complexing<br />

agents included in <str<strong>on</strong>g>the</str<strong>on</strong>g> cleaners seem to have<br />

a corrosi<strong>on</strong> promoting effect. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> alloy Al 2014 in all soluti<strong>on</strong>s<br />

(model electrolytes as well as cleaning baths)<br />

a corrosi<strong>on</strong> attack was observed. It could be<br />

shown by means <str<strong>on</strong>g>of</str<strong>on</strong>g> SEM that in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Al 2014 <str<strong>on</strong>g>the</str<strong>on</strong>g> selective corrosi<strong>on</strong> around <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cathodic copper-rich inter-metallic dominates<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> corrosi<strong>on</strong> performance.<br />

The next step was to find suitable inhibitors<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> cleaning soluti<strong>on</strong>, which are able<br />

to protect <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> materials, but <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

should not lower <str<strong>on</strong>g>the</str<strong>on</strong>g> pH-value to uphold <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cleaning effect. Promising results were observed<br />

at combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> substances creating<br />

a c<strong>on</strong>verting <str<strong>on</strong>g>layer</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> basis<br />

material with substances inhibiting <str<strong>on</strong>g>the</str<strong>on</strong>g> copper<br />

rich phases selectively.<br />

1. Introducti<strong>on</strong><br />

Aluminium materials are widely used in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

automotive, aerospace and railways industries<br />

[3]. Therefore, protecti<strong>on</strong> c<strong>on</strong>cepts for semifinished<br />

as well as final products made <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

and its alloys are requested.<br />

One way to protect <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> surfaces<br />

during <str<strong>on</strong>g>the</str<strong>on</strong>g>ir storage into moist air is <str<strong>on</strong>g>the</str<strong>on</strong>g> use<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> volatile corrosi<strong>on</strong> inhibitors. These are inhibiting<br />

substances with a sufficient vapour<br />

pressure, which can be incorporated in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> packaging materials like paper<br />

and films. The VCI can be released by sublimati<strong>on</strong><br />

and/or be transporting by water vapour<br />

into <str<strong>on</strong>g>the</str<strong>on</strong>g> package. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> densely closed<br />

packages <str<strong>on</strong>g>the</str<strong>on</strong>g> VCI enrich and saturate <str<strong>on</strong>g>the</str<strong>on</strong>g> inner<br />

atmosphere. Through a reversible adsorpti<strong>on</strong><br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> metal surface <str<strong>on</strong>g>the</str<strong>on</strong>g>y inhibit corrosi<strong>on</strong> as<br />

far as <str<strong>on</strong>g>the</str<strong>on</strong>g> packaging is closed [4,5]. Besides <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

densely closed packages <str<strong>on</strong>g>the</str<strong>on</strong>g> right combinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> inhibitors has to be used depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> alloy [6].<br />

The surfaces to protect have to be accessible<br />

and clean. To install an effective cleaning<br />

process a plenty <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters and requirements<br />

have to take into account especially<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> compatibility <str<strong>on</strong>g>of</str<strong>on</strong>g> cleaner and material [7].<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> cleaning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> materials most<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> problems arise because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wr<strong>on</strong>g<br />

pH-value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> respective cleaning bath. The<br />

sec<strong>on</strong>d problem is <str<strong>on</strong>g>the</str<strong>on</strong>g> present <str<strong>on</strong>g>of</str<strong>on</strong>g> corrosi<strong>on</strong><br />

promoting ani<strong>on</strong>s like chloride, because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g-term use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> respective cleaning<br />

baths. In combinati<strong>on</strong> with an unsuitable pHvalue<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> follows for <str<strong>on</strong>g>the</str<strong>on</strong>g> material to clean can<br />

be dramatically, also in <str<strong>on</strong>g>the</str<strong>on</strong>g> present <str<strong>on</strong>g>of</str<strong>on</strong>g> small<br />

quantities. It is known that most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cleaning<br />

processes take place at temperatures around<br />

60°C. Here, <str<strong>on</strong>g>the</str<strong>on</strong>g> pH value is shifted to more<br />

alkaline values compared to room temperature.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r, <str<strong>on</strong>g>the</str<strong>on</strong>g> solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> solids (e. g. surface<br />

<str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g>s, inorganic particles) as well<br />

as <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir dissoluti<strong>on</strong> is increased<br />

and intended for good cleaning results with-<br />

in short c<strong>on</strong>tact times [8]. It is not <str<strong>on</strong>g>the</str<strong>on</strong>g> purpose<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this paper to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanism during<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cleaning process itself. Especially <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

electrochemical measurements should be presented<br />

as tools to answer questi<strong>on</strong>s about <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

compatibility <str<strong>on</strong>g>of</str<strong>on</strong>g> cleaning bath and material to<br />

clean and to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> current ‘corrosiveness’<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a cleaning bath similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> chip/<br />

filter paper test according to DIN 51360 part<br />

2 finally with <str<strong>on</strong>g>the</str<strong>on</strong>g> aim to obtain c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> metal surface that <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> VCI<br />

is successful.<br />

2. Experimental<br />

Test panels (50 x 100 mm) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

alloys menti<strong>on</strong>ed in Table 1 were used for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

experiments. At first <str<strong>on</strong>g>the</str<strong>on</strong>g> panels were cleaned<br />

with methanol and acet<strong>on</strong>e assisted by an ultras<strong>on</strong>ic<br />

bath. After this <str<strong>on</strong>g>the</str<strong>on</strong>g>y have been stored<br />

in a desiccator for at least 12 h. So a reproducible<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a native <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> was assured.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> electrochemical measurements<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> panels were put in a cylindrical top cell<br />

realizing a circular electrode area <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.76 cm²<br />

acting as working electrode. As counter and<br />

reference electrode a platinum net and saturated<br />

calomel electrode (SCE) were used. All<br />

electrical measurements were performed using<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> impedance measurement system IM6<br />

(Zahner Instruments, Kr<strong>on</strong>ach, Germany) at<br />

room temperature (22°C). In a first set <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pH value <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

corrosi<strong>on</strong> were investigated. Therefore, aqueous<br />

soluti<strong>on</strong>s (de-i<strong>on</strong>ized water) including<br />

0.01M KNO 3 as supporting electrolyte <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Material Si Fe Cu Mn Mg Cr Zn Ti Zr<br />

1050 0.09 0.25 0.001 0.01 0.01 0 0.01 0.01 0<br />

2014 0.88 0.11 4.85 0.85 0.73 0.004 0.05 0.02 0.01<br />

Table 1: Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> investigated <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> alloys<br />

50 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


following pH values were prepared: pH 3, pH<br />

5, pH 8 and pH 10. The pH value was adjusted<br />

with HNO 3 and NaOH, respectively. After<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se experiments 1-3 wt% aqueous soluti<strong>on</strong>s<br />

(de-i<strong>on</strong>ized water) including 0.01M KNO 3 as<br />

supporting electrolyte <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commercial available<br />

cleaner c<strong>on</strong>centrates menti<strong>on</strong>ed in Table<br />

2 were prepared. In all aerated soluti<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

free corrosi<strong>on</strong> potential has been measured for<br />

30 min. After this electrochemical impedance<br />

spectra (EIS) were recorded at <str<strong>on</strong>g>the</str<strong>on</strong>g> respective<br />

open circuit potentials in a frequency range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

100 kHz to 50 MHz after 5, 10, 15 and 30min<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> immersi<strong>on</strong> time. Thereby, <str<strong>on</strong>g>the</str<strong>on</strong>g> impedance<br />

spectra were taken at o<str<strong>on</strong>g>the</str<strong>on</strong>g>r surface areas than<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se used for <str<strong>on</strong>g>the</str<strong>on</strong>g> recording <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> free corrosi<strong>on</strong><br />

potentials. The EIS curves were fitted using<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Thales s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware (Zahner Instruments,<br />

Kr<strong>on</strong>ach, Germany).<br />

The samples <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 2014 were investigated<br />

by SEM (Scanning Electr<strong>on</strong> Microscopy)<br />

No. kind <str<strong>on</strong>g>of</str<strong>on</strong>g> cleaner suitable for* pH value at 25°C*<br />

1 demulsifying Fe, (Al) 9.1 ± 0.3 (1%)<br />

2 demulsifying Fe, Al, Zn 8.0 ± 0.2 (2%)<br />

3 emulsifying Fe, Al, Zn 8.6 ± 0.3 (1%)<br />

* according to product data sheet<br />

Table 2: List <str<strong>on</strong>g>of</str<strong>on</strong>g> investigated cleaners<br />

coupled with EDX (Energy-dispersive X-ray<br />

spectroscopy). Here, surface regi<strong>on</strong>s affected<br />

and not affected by cleaning soluti<strong>on</strong> 2 were<br />

investigated and compared c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements Al, Cu and O. The SEM<br />

images were recorded with a LEO 440 (STS,<br />

North Billerica, USA) at activati<strong>on</strong> energies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 5 keV and 20 keV, respectively. The EDX<br />

spectra were recorded by <str<strong>on</strong>g>the</str<strong>on</strong>g> coupled SDD<br />

(Silic<strong>on</strong> Drift Detector) AXAS (Ketek GmbH,<br />

München, Germany).<br />

In ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r set <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments 0.01M benzotriazole<br />

and/or 0.01M sodium di-hydrogen<br />

phosphate was added to a 2 wt% soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cleaner 2. The free corrosi<strong>on</strong> potential as well<br />

as electrochemical impedance spectra were<br />

recorded as described above.<br />

3. Results and discussi<strong>on</strong><br />

At first <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pH value and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

chloride c<strong>on</strong>centrati<strong>on</strong> were investigated <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> alloy 1050, which c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> pure <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

by almost 99.5%. As expected from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Pourbaix-diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> [9] <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

free corrosi<strong>on</strong> potential E corr measured in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pH range between 3 and 5 remains in a regi<strong>on</strong>,<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> surface is in a passive<br />

state, while at pH 10 <str<strong>on</strong>g>the</str<strong>on</strong>g> free corrosi<strong>on</strong> potential<br />

corresp<strong>on</strong>ds to an active dissoluti<strong>on</strong> (see<br />

Fig. 1).<br />

APPLICATION-ORIENTED TECHNOLOGIES<br />

In alkaline soluti<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> dissolves<br />

under <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> [Al(OH) 4 ]- complexes.<br />

The impedance spectra recorded at pH10 (Fig.<br />

2) show an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> C ox combined with<br />

a decreasing resistance in <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lower<br />

frequencies. This behaviour is typical for a<br />

uniform dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> [10].<br />

Str<strong>on</strong>g deviati<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> Pourbaix-diagram<br />

menti<strong>on</strong>ed above can be observed at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> alloys. The inter-<br />

Fig. 1: Free corrosi<strong>on</strong> potential E corr <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 1050 in<br />

soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different pH value<br />

Fig.2: Impedance spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 1050 at several pH<br />

values after 30 min immersi<strong>on</strong> time<br />

pretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> free corrosi<strong>on</strong> potentials <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> alloys is ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r complicated,<br />

because <str<strong>on</strong>g>the</str<strong>on</strong>g>y are mixed potentials with porti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bulk and/or selective corrosi<strong>on</strong> processes.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> copper-rich Al2014<br />

(Fig. 3) <str<strong>on</strong>g>the</str<strong>on</strong>g> curve in <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning can be<br />

interpreted by a selective corrosi<strong>on</strong> around<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cathodic copper-rich inter-metallic phases<br />

followed by a stabilizati<strong>on</strong> / passivati<strong>on</strong> at pHvalues<br />

between 3 and 10. In more acid as well<br />

as more alkaline soluti<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g> free corrosi<strong>on</strong><br />

potentials are typical for <str<strong>on</strong>g>the</str<strong>on</strong>g> dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> bulk <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> [11,12]. More details are<br />

available from <str<strong>on</strong>g>the</str<strong>on</strong>g> impedance data. As already<br />

menti<strong>on</strong>ed <str<strong>on</strong>g>the</str<strong>on</strong>g> alloy Al2014 is characterized<br />

by a higher c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> copper, which forms inter-metallic<br />

phases. In <str<strong>on</strong>g>the</str<strong>on</strong>g> impedance spectra<br />

(Fig. 4) <strong>on</strong>e can observe lower resistances in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> low-frequency regi<strong>on</strong> compared to pure<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g>. Taking a look <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> transient behaviour<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se resistances keep c<strong>on</strong>stant <strong>on</strong> a<br />

low level at pH values below 3 and above 10.<br />

The capacities bel<strong>on</strong>ging to <str<strong>on</strong>g>the</str<strong>on</strong>g>m keep c<strong>on</strong>-<br />

stant, too. Such a behaviour can be explained<br />

by a selective corrosi<strong>on</strong> around <str<strong>on</strong>g>the</str<strong>on</strong>g> copper rich<br />

inter-metallic phases.<br />

Transferring <str<strong>on</strong>g>the</str<strong>on</strong>g> findings to industrial<br />

cleaning baths: Here, soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 commercial<br />

available cleaning c<strong>on</strong>centrates were pre-<br />

Fig. 3: Free corrosi<strong>on</strong> potential E corr <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 2014 in<br />

soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different pH value<br />

Fig. 4: Impedance spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 2014 at several pH<br />

values after 30min immersi<strong>on</strong> time<br />

pared. All cleaners should be suitable to clean<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> according to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir product data<br />

sheets (see Table 2), however, at higher temperatures<br />

as room temperature. A str<strong>on</strong>g uniform<br />

corrosi<strong>on</strong> was observed already at room<br />

temperature in <str<strong>on</strong>g>the</str<strong>on</strong>g> baths prepared <str<strong>on</strong>g>of</str<strong>on</strong>g> cleaner<br />

1 and 3. This is explainable by <str<strong>on</strong>g>the</str<strong>on</strong>g> pH-value<br />

situated in <str<strong>on</strong>g>the</str<strong>on</strong>g> active regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g>. In<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cleaner 2 with pH8 <strong>on</strong>ly a moderate attack<br />

was observed (Fig. 5). Maybe <str<strong>on</strong>g>the</str<strong>on</strong>g> bath ingredients<br />

accelerate <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> dissoluti<strong>on</strong><br />

at local defects by complexi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

[13]. For <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> alloy Al2014 <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

results found in <str<strong>on</strong>g>the</str<strong>on</strong>g> cleaning soluti<strong>on</strong>s were<br />

identical to this in <str<strong>on</strong>g>the</str<strong>on</strong>g> respective pH-model<br />

soluti<strong>on</strong>s. A black-colouring <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> immerged<br />

alloy surfaces as shown in Fig. 6 was observed<br />

every time.<br />

Surface areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 2014 affected (Fig. 6,<br />

black coloured area in <str<strong>on</strong>g>the</str<strong>on</strong>g> small picture) and<br />

not affected (Fig. 6, grey coloured area in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

small picture) by cleaner 2 were investigated<br />

by SEM and EDX. According to <str<strong>on</strong>g>the</str<strong>on</strong>g> measured<br />

element ratios (Table 3) <str<strong>on</strong>g>the</str<strong>on</strong>g> selective corrosi<strong>on</strong><br />

and dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> around <str<strong>on</strong>g>the</str<strong>on</strong>g> copper<br />

rich phases could be proved. The black<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 51


APPLICATION-ORIENTED TECHNOLOGIES<br />

Fig. 5: Impedance spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> Al1050 at pH8 and in<br />

soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cleaner 1-3 (Table 2)<br />

Fig. 6: SEM image (5 keV, 200x): Al2014 after immersi<strong>on</strong><br />

in a soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cleaner 2<br />

corrosi<strong>on</strong> product is most likely Al(OH) 3,<br />

which <strong>on</strong>ly appears black because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> small<br />

<str<strong>on</strong>g>layer</str<strong>on</strong>g> thickness.<br />

The next step was to find suitable inhibitors<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> cleaning soluti<strong>on</strong>, which are able to protect<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> materials, but <str<strong>on</strong>g>the</str<strong>on</strong>g>y should<br />

not lower <str<strong>on</strong>g>the</str<strong>on</strong>g> pH-value to uphold <str<strong>on</strong>g>the</str<strong>on</strong>g> cleaning<br />

effect. First experiments were d<strong>on</strong>e with sodium<br />

di-hydrogen phosphate and benzotriazole.<br />

The substances were added to a 2% soluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cleaner 2 toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r and each al<strong>on</strong>e. In Fig. 7<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> resistances R ox extracted from <str<strong>on</strong>g>the</str<strong>on</strong>g> impedance<br />

spectra at low frequency regi<strong>on</strong>s (around<br />

100 mHz) are presented. They corresp<strong>on</strong>d to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g> corrosi<strong>on</strong><br />

resistance, c<strong>on</strong>sequently. Here, <str<strong>on</strong>g>the</str<strong>on</strong>g> inhibiti<strong>on</strong><br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> both substances is obvious,<br />

whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each single substance is<br />

limited. The following mechanism is assumed:<br />

Phosphate is forming insoluble <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

phosphate, inhibiting <str<strong>on</strong>g>the</str<strong>on</strong>g> dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> bulk material. Benzotriazole is<br />

well known as inhibitor for copper. It forms<br />

c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>layer</str<strong>on</strong>g>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> copper rich phases,<br />

blocking <str<strong>on</strong>g>the</str<strong>on</strong>g> reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen. In comparis<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> bulk material<br />

dominates in <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cleaner 2.<br />

Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> single additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> benzotriazole<br />

Cu Al O<br />

N<strong>on</strong> affected area 5 80 5<br />

Affected area 78 7 10<br />

Table 3: Results <str<strong>on</strong>g>of</str<strong>on</strong>g> EDX measurements, amounts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> elements Cu, Al and O in wt%<br />

Fig. 7: R OX extracted from <str<strong>on</strong>g>the</str<strong>on</strong>g> impedance spectra<br />

recorded in soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cleaner 2 with and without<br />

benzotriazole and sodium di-hydrogen phosphate<br />

to inhibit <str<strong>on</strong>g>the</str<strong>on</strong>g> inter-crystalline corrosi<strong>on</strong> is insufficient<br />

to stop <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk corrosi<strong>on</strong>, whereas<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> single additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphate can inhibit<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> bulk corrosi<strong>on</strong>, but not <str<strong>on</strong>g>the</str<strong>on</strong>g> inter-crystalline<br />

corrosi<strong>on</strong>.<br />

Finally, Fig. 8 shows panels <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 2014<br />

completely cleaned (dip-cleaning assisted by<br />

ultrasound for 10 min) with cleaner 2 with and<br />

without <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong>ally added benzotriazole<br />

and sodium di-hydrogen phosphate. The effect<br />

is obvious [14].<br />

4. C<strong>on</strong>clusi<strong>on</strong>s<br />

Using <str<strong>on</strong>g>the</str<strong>on</strong>g> electrochemical methods <str<strong>on</strong>g>the</str<strong>on</strong>g> different<br />

corrosi<strong>on</strong> mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> pure <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

and Al 2014 could be detected. However, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> free corrosi<strong>on</strong> potentials is<br />

difficult to interpret especially for <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

alloys. Here, <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting potential is always<br />

a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> several inter<br />

metallic phases.<br />

Pure <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> behaved passively in a<br />

pH range between 5 and 8. In <str<strong>on</strong>g>the</str<strong>on</strong>g> recorded<br />

impedance spectra <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

electrolyte and <str<strong>on</strong>g>the</str<strong>on</strong>g> capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> barrier <str<strong>on</strong>g>layer</str<strong>on</strong>g><br />

were visible. At pH values above 10 a uniform<br />

dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> was observed<br />

characterized by a decreasing <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> resistance<br />

and an increasing surface capacity.<br />

The investigated <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> alloy Al 2014<br />

is an inhomogeneous alloy and has a relatively<br />

high copper c<strong>on</strong>tent. The surface <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> alloy is also inhomogeneous and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

bulk material c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> several phases. For<br />

this alloy a uniform and/or selective corro-<br />

si<strong>on</strong> was found depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pH value<br />

already at room temperature. Below pH 3<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> alloy showed a uniform corrosi<strong>on</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pH range between 3 and 8 an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

resistance in <str<strong>on</strong>g>the</str<strong>on</strong>g> lower frequency range combined<br />

with an unchanged capacity at medium<br />

frequencies were detected. This resp<strong>on</strong>se can<br />

be interpreted as selective corrosi<strong>on</strong> around<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cathodic copper rich phases. This (maybe)<br />

leads to a formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> corrosi<strong>on</strong> products with<br />

a black visual appearance. They precipitated<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> whole immersed surface. Additi<strong>on</strong>ally<br />

measurements by SEM/EDX proved <str<strong>on</strong>g>the</str<strong>on</strong>g> selective<br />

corrosi<strong>on</strong> and dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

around <str<strong>on</strong>g>the</str<strong>on</strong>g> copper rich phases. At pH values<br />

above 10 a uniform dissoluti<strong>on</strong> was observed<br />

for Al 2014.<br />

Transferred to <str<strong>on</strong>g>the</str<strong>on</strong>g> industrial cleaning <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

results reveal <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘right<br />

choice’ <str<strong>on</strong>g>of</str<strong>on</strong>g> method and cleaner c<strong>on</strong>centrate (pH<br />

value!) as well as an experienced bath m<strong>on</strong>itoring<br />

(at least pH value and chloride c<strong>on</strong>tent).<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> experiments showed that<br />

always <str<strong>on</strong>g>the</str<strong>on</strong>g> compatibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cleaner and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> material has to be tested before <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong>.<br />

Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> recording <str<strong>on</strong>g>of</str<strong>on</strong>g> electrochemical<br />

impedance spectra at <str<strong>on</strong>g>the</str<strong>on</strong>g> free corrosi<strong>on</strong><br />

potential is predestinated. A comparis<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> three commercial available cleaners (all<br />

should be suitable for <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> according<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir product data sheet) showed, that in<br />

cleaners with <str<strong>on</strong>g>the</str<strong>on</strong>g> pH value above 8.5 pure<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> corroded heavily. But also in cleaners<br />

with a suitable pH-value a moderate at-<br />

tack was observed, caused by a complexi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> by cleaner ingredients.<br />

The additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both, sodium di-hydrogen<br />

phosphate and benzotriazole, can prevent<br />

Al2014 in near neutral cleaning soluti<strong>on</strong>s. But<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> single additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> benzotriazole to inhibit<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> inter-crystalline corrosi<strong>on</strong> is insufficient to<br />

stop <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk corrosi<strong>on</strong>, whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> single additi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phosphate can inhibit <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk corrosi<strong>on</strong>,<br />

but not <str<strong>on</strong>g>the</str<strong>on</strong>g> inter-crystalline corrosi<strong>on</strong>.<br />

References<br />

[1] H. Zhan, J. M. C. Mol, F. Hannour, L. Zhuang,<br />

H. Terryn and J. H. W. de Wit; “The influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

copper c<strong>on</strong>tent <strong>on</strong> intergranular corrosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> model<br />

Fig. 8: Al 2014 test panels after dip cleaning in a 2 wt% soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cleaner 2; left: without benzotriazole<br />

and sodium di-hydrogen phosphate, right: with benzotriazole and sodium di-hydrogen phosphate<br />

52 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


AlMgSi(Cu) alloys”; Mat. Corr., 2008, 59, 670-675.<br />

[2] B. Zaid, D. Saidi, A. Benzaid, S. Hadji;“ Effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> pH and chloride c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> pitting<br />

corrosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> AA6061 aluminum alloy“; Corros.<br />

Sci., 2008, 50, 1841-1847.<br />

[3] www.aluinfo.de, 2011.<br />

[4] U. Rammelt, S. Koehler, G. Reinhard; “Use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vapour phase corrosi<strong>on</strong> inhibitors in packages for<br />

protecting mild steel against corrosi<strong>on</strong>”; Corros.<br />

Sci., 2009, 51, 921-925.<br />

[5] S. Koehler, G. Reinhard; “Temporärer Korrosi<strong>on</strong>sschutz”,<br />

Maschinenbau, 2008, 7, 34-37.<br />

[6] G. Reinhard, S. Lautner; “Temporärer Korro-<br />

si<strong>on</strong>sschutz v<strong>on</strong> Aluminiumwerkst<str<strong>on</strong>g>of</str<strong>on</strong>g>fen mit flüch-<br />

tigen Korrosi<strong>on</strong>sinhibitoren”; “GfKORR-Jahres-<br />

��������������<br />

���������<br />

�������<br />

���������������������<br />

�������������������������<br />

�������������������<br />

�������������������������������<br />

�������������������������������������<br />

������������������������������������<br />

�������������������������������������<br />

�������������������������������������������<br />

������������������������������������������<br />

����������������������������������������������<br />

��������������������������������������������<br />

����������������������������<br />

��������������������������������������<br />

������������<br />

������������������������������<br />

������������������������<br />

�������������������������������<br />

���������������������������������������<br />

�������������������������<br />

��������������������<br />

�����������������<br />

����������������������������<br />

�������������������������������<br />

����������������������<br />

��������������������������<br />

��������������������������������������<br />

����������������������������������<br />

���������������������������������<br />

���������������������<br />

�����������<br />

�������������������������������������<br />

�������������������������������������<br />

�������������������������������<br />

�������������������������������<br />

����������������������������������<br />

�����������������������������������<br />

���������������������������������������<br />

������������������������<br />

���������������������������������������<br />

������������������<br />

������������������<br />

���������������������������������������������<br />

��������� ������� ���� ������ ������ ���������������<br />

�������������������������������������������������<br />

������������ ��������� ������ ���� ������ �����������<br />

APPLICATION-ORIENTED TECHNOLOGIES<br />

tagung 1998”, 1998, 97-108.<br />

[7] H. Thompsen, F.H. Rögner; “Reinigen und Vorbehandeln<br />

– Keine triviale Angelegenheit”; Metalloberfläche,<br />

2007, 61, 44-47.<br />

[8] H. Kollek „Reinigen und Vorbehandeln“, Curt<br />

R. Vincentz Verlag, Hannover, 1996, 13-20.<br />

[9] A. Bart, M.Stratmann (ed.); “Encyclopedia <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Electrochemistry“ vol. 4 „Corrosi<strong>on</strong> and Oxide<br />

films“; Vol. Editors: M. Stratmann, G.S. Frankel;<br />

Wiley VCH Weinheim 2003; Chapter 2.<br />

[10] Kyung-Keun Lee, Kwang-Bum Kim; “Electrochemical<br />

impedance characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> pure Al<br />

and Al–Sn alloys in NaOH soluti<strong>on</strong>”; Corros. Sci.,<br />

2001, 43, 561-575.<br />

[11] Y. L. Cheng, Z. Zhang, F. H. Cao, J. F. Li, J. Q.<br />

���������������������������������������������������<br />

��������������������������������������������<br />

��������������������������������������������<br />

���������<br />

�������������������<br />

��������������������������������������������������<br />

��������������������������������������������������<br />

�������������������������������������������������<br />

���������������������������������������������������<br />

���� ������� ���������� ��� ���������� ��������<br />

�����������������������������������������������������<br />

������������������<br />

�����������������������������������������������������<br />

���� ������������ ����� ����������������� �����������<br />

����� ����������� ���������� ���� ������� ��������<br />

���� ���������������������� ���� ����� �����������<br />

���� ��������� ����������� ���� ���������� ���� ����� ����<br />

���������� ���� ��������������������� ���������������<br />

������������������������������������������������<br />

���������� ��� ��������������� ���������� ���� �������<br />

��������������������������������������������������<br />

��������������������������������������������������<br />

����������������������������������������������������<br />

����������������������������������������������<br />

��������������������������������������������������<br />

�������������������<br />

��������������������������������������������������������<br />

��������������������������������������������������������<br />

���������������������������������������������������������������<br />

�����������������������������������������������������������<br />

�����������������������������������������������������������<br />

����������������� ���������������� ���������������� ���� �����<br />

������������������������������������������������������<br />

����������������������������������������������������������<br />

����� �������� ��� ����������� ���� ��������� ��� ������������<br />

����������������������������������������������������������<br />

��������������������������������������������������������<br />

������������������������������������������������������<br />

���������������������������������������������������<br />

���������������<br />

�������������������� �������������������������������������<br />

������������������<br />

����������������<br />

�������������������������������������<br />

�����������<br />

�������������������������������������<br />

������������<br />

���������������������������������������<br />

���������������<br />

���������������������������������������<br />

������������������<br />

Zhang, J. M. Wang and C. N. Cao; “Study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

potential electrochemical noise during corrosi<strong>on</strong><br />

process <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum alloys 2024, 7075 and pure<br />

aluminum (pages 601–608)”; Mat. Corr., 2003, 54,<br />

601-608.<br />

[12] F.M. Queiroz, M. Magnani, I. Costa, H.G. de<br />

Melo; “Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> corrosi<strong>on</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

AA 2024-T3 in low c<strong>on</strong>centrated chloride media“;<br />

Corros. Sci., 2008, 50, 2646-2657.<br />

[13] D. Mercier, M.-G. Barthés-Labrousse; “The role<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> chelating agents <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> corrosi<strong>on</strong> mechanisms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> in alkaline aqueous soluti<strong>on</strong>s”; Corros.<br />

Sci., 2009, 51, 339-348.<br />

[14] C.M. v<strong>on</strong> Klingspor, Bachelor-Thesis, HTW-<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Science Dresden, 2011. �<br />

��������������������������������<br />

��������������������������������<br />

�������������������<br />

����������������<br />

�������������������������������������<br />

�����������<br />

�������������������������������������<br />

������������<br />

���������������������������������������<br />

���������������<br />

����������������������������������������<br />

������������������<br />

������������<br />

�����������������<br />

���������������������������������<br />

������������� ���������<br />

������������ ���������<br />

�����������������������������������������������<br />

������<br />

�������������������������������<br />

�������������������������������������������<br />

������������������������������������ ������������������������<br />

���������������������<br />

�������������������������������������������<br />

��������������������������������������<br />

�������������������<br />

�������������������������<br />

��������������������������<br />

������������������������������������<br />

�����������������������<br />

����������������������<br />

������������������������������<br />

�������<br />

��������������������<br />

�����������������<br />

�������������������������<br />

���������������<br />

������������������������������������������<br />

������������������������������<br />

�������������������������������������������<br />

�������������������������������������������<br />

�������������<br />

�����������������������<br />

�����������������������������������<br />

�����������������������������������������<br />

���������������������������������������<br />

������������������������<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 53


APPLICATION-ORIENTED TECHNOLOGIES<br />

Soldering and brazing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> and its alloys<br />

Christian Eisenbeis, SLV Duisburg<br />

The joining <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> always requires<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> special technologies. In particular,<br />

soldering and brazing techniques<br />

need special experience in order to obtain<br />

joints <str<strong>on</strong>g>of</str<strong>on</strong>g> good quality and sufficient<br />

strength. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten a<br />

good chance to use <str<strong>on</strong>g>the</str<strong>on</strong>g> brazing technologies<br />

for an efficient and highly mechanized<br />

fabricati<strong>on</strong> process. Compared with<br />

welding, soldering and brazing allow<br />

appropriate higher or lower process-temperatures,<br />

depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> base metal. The market <str<strong>on</strong>g>of</str<strong>on</strong>g>fers<br />

new and improved filler metals and fluxes,<br />

and – at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time – <str<strong>on</strong>g>the</str<strong>on</strong>g> demands<br />

<strong>on</strong> quality and strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> brazed <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

joints have increased. Traditi<strong>on</strong>al<br />

and highly developed procedures like<br />

flame brazing, resistant brazing, or c<strong>on</strong>trolled-arc-brazing<br />

are available ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

for simple or sophisticated brazed comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g>. In this presentati<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> basics and <str<strong>on</strong>g>the</str<strong>on</strong>g> technical soluti<strong>on</strong>s will<br />

be explained and illustrated by figures<br />

and practical examples.<br />

1. The brazing process<br />

For soldering and brazing unlike welding an<br />

additi<strong>on</strong>al brazing filler metal is used whose<br />

melting temperature (or melting range) is<br />

below <str<strong>on</strong>g>the</str<strong>on</strong>g> melting temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> parent<br />

metal. The joining surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> parent metals<br />

are wetted by <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid braze without being<br />

molten <str<strong>on</strong>g>the</str<strong>on</strong>g>mselves.<br />

As a result, <str<strong>on</strong>g>the</str<strong>on</strong>g> following aspects are <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

importance:<br />

• It is possible to join dissimilar metals and<br />

metal alloys, respectively<br />

• Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> relatively low process tempera-<br />

ture <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent is less <str<strong>on</strong>g>the</str<strong>on</strong>g>rmally<br />

influenced<br />

• The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> filler metal is relatively<br />

small<br />

• The rapid sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> brazing process<br />

• Low distorti<strong>on</strong> compared with welding<br />

• Brazing/soldering <str<strong>on</strong>g>of</str<strong>on</strong>g> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> areas to<br />

be joined at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time.<br />

The joint is built up by <str<strong>on</strong>g>the</str<strong>on</strong>g> exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> metals within a small z<strong>on</strong>e (Fig.<br />

1). To enable this diffusi<strong>on</strong>-mechanism, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> joining area must be free from<br />

<str<strong>on</strong>g>oxide</str<strong>on</strong>g>s and be protected against <str<strong>on</strong>g>the</str<strong>on</strong>g> renewed<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g>s during soldering/brazing.<br />

Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are two prec<strong>on</strong>diti<strong>on</strong>s to be<br />

fulfilled when brazing, using a flux:<br />

• The melting temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> braze<br />

must be below <str<strong>on</strong>g>the</str<strong>on</strong>g> melting temperature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> parent metal<br />

• The surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material must be<br />

completely free from <str<strong>on</strong>g>oxide</str<strong>on</strong>g>s<br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> flux must be intensive enough having<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> adequate effective temperature.<br />

2. The process ranges<br />

Brazing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> is classified into brazing<br />

and soldering. At brazing, filler metals with<br />

melting temperatures above 450°C are used.<br />

Solders, having a melting point below 450°C,<br />

are called solder filler metals and <str<strong>on</strong>g>the</str<strong>on</strong>g> process<br />

is called soldering or s<str<strong>on</strong>g>of</str<strong>on</strong>g>t-soldering.<br />

The process temperature can be freely<br />

chosen, but it must be within <str<strong>on</strong>g>the</str<strong>on</strong>g> solidus temperature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> filler metal and <str<strong>on</strong>g>the</str<strong>on</strong>g> melting<br />

temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> parent metal. The flux will<br />

be chosen matching <str<strong>on</strong>g>the</str<strong>on</strong>g> soldering or brazing<br />

temperature; <str<strong>on</strong>g>the</str<strong>on</strong>g> effective temperature and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> chemical intensity must be coordinated<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> soldering/brazing process.<br />

More generally, <str<strong>on</strong>g>the</str<strong>on</strong>g> higher <str<strong>on</strong>g>the</str<strong>on</strong>g> brazing<br />

temperature, <str<strong>on</strong>g>the</str<strong>on</strong>g> higher is <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical<br />

strength.<br />

3. Structural requirements <strong>on</strong> brazing<br />

During brazing usually a brazing gap is produced<br />

by a braze drawn into <str<strong>on</strong>g>the</str<strong>on</strong>g> gap due to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> capillary forces (capillary brazing). The<br />

braze displaces <str<strong>on</strong>g>the</str<strong>on</strong>g> flux as so<strong>on</strong> as <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g>s<br />

are dissolved <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> joining surface. A relatively<br />

large-surface joint is produced and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

braze <str<strong>on</strong>g>layer</str<strong>on</strong>g> located in <str<strong>on</strong>g>the</str<strong>on</strong>g> soldering gap will<br />

be mechanically streng<str<strong>on</strong>g>the</str<strong>on</strong>g>ned if a load is exerted<br />

<strong>on</strong> it. By this means c<strong>on</strong>siderable forces<br />

may be exerted that are able to exceed <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> parent metal.<br />

4. Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> brazed joints<br />

4.1 Brazed joints: The strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

brazed joint <str<strong>on</strong>g>of</str<strong>on</strong>g>ten is <str<strong>on</strong>g>the</str<strong>on</strong>g> same as a<br />

welded joint if <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘joint is suitable for brazing’.<br />

During brazing <str<strong>on</strong>g>of</str<strong>on</strong>g> Al-materials <str<strong>on</strong>g>of</str<strong>on</strong>g> higher<br />

strength as well as <str<strong>on</strong>g>of</str<strong>on</strong>g> Al-cast alloys <str<strong>on</strong>g>the</str<strong>on</strong>g>re is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> a melt down <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surfaces to be<br />

joined since <str<strong>on</strong>g>the</str<strong>on</strong>g> melting temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> such<br />

type <str<strong>on</strong>g>of</str<strong>on</strong>g> alloys can be near <str<strong>on</strong>g>the</str<strong>on</strong>g> melting point <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> brazing filler metal. The chemical resistance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a brazed joint <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong>ly used<br />

braze material Al88Si is not worse than that<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a welded joint. It is true that brazed joints<br />

can be anodized, but in <str<strong>on</strong>g>the</str<strong>on</strong>g> joining area (braze<br />

<str<strong>on</strong>g>layer</str<strong>on</strong>g>) <str<strong>on</strong>g>the</str<strong>on</strong>g>y will get a darker colour.<br />

4.2 Soldered joints: Both, strength and corrosi<strong>on</strong><br />

resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> soldered joints are much<br />

lower. A dry envir<strong>on</strong>ment or corrosi<strong>on</strong> protecti<strong>on</strong><br />

(lacquering, greasing) will <str<strong>on</strong>g>the</str<strong>on</strong>g>n become<br />

necessary. It is nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r possible to<br />

perform anodic oxidati<strong>on</strong> nor to have oper-<br />

ating temperatures c<strong>on</strong>siderably above<br />

100°C.<br />

Fig. 1: Built-up <str<strong>on</strong>g>of</str<strong>on</strong>g> a brazed joint by diffusi<strong>on</strong> (Source: Hydro Aluminium)<br />

54 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


Fig. 2: Al-base metal-alloys and AlSi3-brazing filler metal<br />

5. Aluminium brazes and solders<br />

5.1 Brazes: Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidic protective <str<strong>on</strong>g>layer</str<strong>on</strong>g><br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fers good corrosi<strong>on</strong> resistance.<br />

Therefore Al-brazes with 5 to 12% silic<strong>on</strong><br />

have proven successful; hence <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong>ly<br />

used braze is Al 112 (B-Al88Si) ISO 17672<br />

(former AL 104 – EN1044) with a melting<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> 575 to 585°C. Hence, at a working<br />

temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 585°C both, pure <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

and all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> alloys can be brazed<br />

that have a melting interval over 640°C (Fig.<br />

2). In practical terms this means that <strong>on</strong>ly pure<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> and AlMn-alloys can be brazed<br />

well.<br />

5.2 Solders: Comm<strong>on</strong> solders are tin-zinc<br />

solders such as SnZn40 or ZnAl5. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r sol-<br />

ders such as Sn96Ag can be used for <str<strong>on</strong>g>aluminium</str<strong>on</strong>g>,<br />

too. In general, <str<strong>on</strong>g>the</str<strong>on</strong>g> relatively poor suit-<br />

ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> to be soldered (stable <str<strong>on</strong>g>oxide</str<strong>on</strong>g><br />

skin, poor corrosi<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soldered<br />

joint) prevent from a more widespread<br />

soldering <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g>. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re is an increased demand <strong>on</strong> soldering using<br />

a process temperature as low as possible<br />

due to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> alloys applied.<br />

6. Fluxes for brazing/soldering <str<strong>on</strong>g>of</str<strong>on</strong>g> Al alloys<br />

Fluxes serve for dissolving <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> and<br />

to avoid a renewed c<strong>on</strong>taminati<strong>on</strong> by oxygen<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> fresh metal surface.<br />

6.1 Fluxes for brazing: Fluxes for light metals<br />

(FL) are stated in DIN EN 1045. The fluxes<br />

actuate above 500°C. A distincti<strong>on</strong> is made<br />

between corrosive and n<strong>on</strong>-corrosive fluxes.<br />

APPLICATION-ORIENTED TECHNOLOGIES<br />

6.2 Fluxes for soldering: These are included<br />

in DIN EN ISO 9453 and <str<strong>on</strong>g>of</str<strong>on</strong>g>ten are based <strong>on</strong><br />

zinc or tin chloride, possibly added by alkaline<br />

chlorides or organic substances.<br />

Destroying <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> and a sufficient<br />

wetting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solder is not always successful<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> flux. New fluxes such<br />

as those alloyed with caesium under certain<br />

c<strong>on</strong>diti<strong>on</strong>s may enhance wetting with solder<br />

(like with a slightly higher Mg c<strong>on</strong>tent, too),<br />

which may be very important.<br />

7. Processes for soldering /<br />

brazing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

The possibilities <str<strong>on</strong>g>of</str<strong>on</strong>g> soldering or brazing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

(alloys) are c<strong>on</strong>siderably determined<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> special properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> (problem<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g>, low melting<br />

temperature, very different wetting properties,<br />

high affinity <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen, susceptibility to<br />

corrosi<strong>on</strong> if heavy metals are present).<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> frequently used processes are:<br />

7.1 Flame brazing: During flame brazing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

parts are heated to <str<strong>on</strong>g>the</str<strong>on</strong>g> soldering or brazing<br />

temperature using a torch (Fig. 4); depending<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature required propane, <str<strong>on</strong>g>natural</str<strong>on</strong>g><br />

gas or acetylene are used (toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with air<br />

or oxygen). When heating up it must be observed<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> flame is not always permitted<br />

to have c<strong>on</strong>tact with <str<strong>on</strong>g>the</str<strong>on</strong>g> soldering point, depending<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> solder/braze.<br />

After reaching <str<strong>on</strong>g>the</str<strong>on</strong>g> working temperature <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

flux is already chemically active. The solder<br />

will become liquid thus wetting <str<strong>on</strong>g>the</str<strong>on</strong>g> surfaces<br />

and being drawn into <str<strong>on</strong>g>the</str<strong>on</strong>g> soldering gap, respec-<br />

tively. At <str<strong>on</strong>g>the</str<strong>on</strong>g> same time <str<strong>on</strong>g>the</str<strong>on</strong>g> flux will<br />

be displaced by <str<strong>on</strong>g>the</str<strong>on</strong>g> solder.<br />

7.2 Inducti<strong>on</strong> brazing: For <str<strong>on</strong>g>the</str<strong>on</strong>g> inductive<br />

heating <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> c<strong>on</strong>siderable<br />

inducti<strong>on</strong> power is required<br />

(<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> is not ferromagnetic<br />

and has a high electric c<strong>on</strong>ductivity).<br />

Therefore, <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> is inducti<strong>on</strong><br />

brazed using a deep frequency and a<br />

high power. The main problem is still<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> power, in order to<br />

avoid melting up <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material.<br />

7.3 Salt bath brazing: Here, <str<strong>on</strong>g>the</str<strong>on</strong>g> assembled<br />

parts applied with solder/<br />

braze are immersed into a bath <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

molten flux which serves as a medium<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> heat transfer at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time.<br />

This process has several advantages<br />

(no applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flux, good <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

transfer, no air c<strong>on</strong>tact, tighter<br />

tolerances can be kept and brazing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> several spots at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time is<br />

possible). Parts that are particularly<br />

thin and <str<strong>on</strong>g>of</str<strong>on</strong>g> a complicated shape can<br />

be securely brazed using this process.<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, a large c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fluxes is needed that adhere to <str<strong>on</strong>g>the</str<strong>on</strong>g> part and<br />

have to be removed, and disposed <str<strong>on</strong>g>of</str<strong>on</strong>g> using<br />

large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> rinsing water. Due to this<br />

reas<strong>on</strong> salt bath brazing is used less and less.<br />

7.4 Furnace brazing:<br />

C<strong>on</strong>trolled atmosphere brazing (CAB): brazing<br />

is performed in a c<strong>on</strong>tinuous furnace<br />

using a shielding gas (nitrogen, sometimes<br />

nitrogen/hydrogen). Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>-corrosive and thus milder flux<br />

is sufficient. Porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrogen are used<br />

if <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> is brazed with CrNi. The flux<br />

can be applied ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r as a suspensi<strong>on</strong>, paste<br />

or dust (electrostatically), whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> braze<br />

is increasingly directly applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacturer (Fig. 3). Advantages:<br />

little c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flux, <strong>on</strong>ly slight residuals<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> part, cleaning not necessary.<br />

Fluxes from potassium and <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> fluorides<br />

(KAlF4) have proven worldwide that<br />

have a melting range in <str<strong>on</strong>g>the</str<strong>on</strong>g> defined compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 565 to 572°C. Complex parts such as<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> radiators are manufactured by this.<br />

Vacuum brazing (VB): due to heating up in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> furnace <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> material expands<br />

more than <str<strong>on</strong>g>the</str<strong>on</strong>g> adhering <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g>; by this <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>oxide</str<strong>on</strong>g> will be separated or solved, respectively.<br />

As this is performed under a vacuum, <str<strong>on</strong>g>the</str<strong>on</strong>g> surface<br />

laid bare remains metallically blank; <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

braze can wet <str<strong>on</strong>g>the</str<strong>on</strong>g> parent metal without <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a flux. Previously, <str<strong>on</strong>g>the</str<strong>on</strong>g> residual oxygen<br />

has been bound in <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace by glowing<br />

magnesium chips (‘getter material’). Requirements<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> braze gap: <strong>on</strong>ly 0.05 to 1.0 mm.<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 55


APPLICATION-ORIENTED TECHNOLOGIES<br />

Fig. 3: C<strong>on</strong>trolled atmosphere brazing (CAB) <str<strong>on</strong>g>of</str<strong>on</strong>g> an <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> radiator (Source: Solvay)<br />

7.5 Arc and laser beam brazing (braze weld-<br />

ing)<br />

Gas-metal arc brazing: <str<strong>on</strong>g>the</str<strong>on</strong>g> arc is used to break<br />

up <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g>s due to local heating. The braze<br />

melting in <str<strong>on</strong>g>the</str<strong>on</strong>g> arc will flow under <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g>s<br />

thus wetting <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> surface. Newly<br />

developed brazes with a slightly reduced melting<br />

temperature, partly <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> Zn, acting<br />

with arcs-very-poor-<str<strong>on</strong>g>of</str<strong>on</strong>g>-energy are used.<br />

Laser beam brazing: (e. g. Al- plates in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> car bodies) also makes use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a tool (e. g. a separate sec<strong>on</strong>d laser beam or<br />

arc), in order to separate <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g>s. During<br />

laser beam brazing it is intended to use as little<br />

energy as possible and a defocused beam.<br />

There is <str<strong>on</strong>g>the</str<strong>on</strong>g> problem, however, to separate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>oxide</str<strong>on</strong>g>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e hand and to securely avoid<br />

melting up <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Advantage: a flux free<br />

brazing process <str<strong>on</strong>g>of</str<strong>on</strong>g> high process speed.<br />

7.6 Resistance brazing<br />

Resistance spot brazing: <str<strong>on</strong>g>the</str<strong>on</strong>g> high electric c<strong>on</strong>ductivity,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> highly melting <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> as<br />

well as <str<strong>on</strong>g>the</str<strong>on</strong>g> good diffusi<strong>on</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> Al-Cu<br />

makes this process c<strong>on</strong>siderably more complicated.<br />

Good results, however, can be obtained<br />

with braze cladded surfaces (e. g. Al88Si, <str<strong>on</strong>g>layer</str<strong>on</strong>g><br />

thickness approx. 60 to 100 μm, plate thicknesses<br />

0.7 to 2 mm) using c<strong>on</strong>venti<strong>on</strong>al spot<br />

welding units (alternating current, without<br />

current and power program).<br />

The advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> this process: almost no deformati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface, short welding times,<br />

high process stability, applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> simple<br />

welding units.<br />

8. Processes for soldering <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

alloys with reduced melting points<br />

The solders used for soldering <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> (alloys)<br />

were menti<strong>on</strong>ed before. The comm<strong>on</strong>ly<br />

used processes are aimed at a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal energy<br />

as low as possible, or at joining temperatures<br />

as low as possible. This is necessary with <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

alloys with melting temperatures that<br />

do not permit <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> brazes (e. g.<br />

Al88Si) any more<br />

if too much process<br />

heat could lead<br />

to s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

material. In general,<br />

1xxx (Al-alloyed),<br />

2xxx (Cualloyed),<br />

3xxx<br />

(Mn-alloyed),<br />

4xxx (Si-alloyed)<br />

and 7xxx (Zn-alloyed)<br />

are more<br />

suitable for soldering,<br />

whereas<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> 5xxx (Mg-alloyed)<br />

and 6xxx<br />

(Si-/Mg-alloyed)<br />

are less suitable for soldering. It is ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

latter <strong>on</strong>es, however, that are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

automotive industry.<br />

9. Brazed <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> dissimilar joints<br />

During brazing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> brazing temperatures<br />

are limited to approx. 600°C. For<br />

brazing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> to titanium soldering<br />

using special zinc based solders is suitable.<br />

For joining <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> to magnesium solders<br />

based <strong>on</strong> zinc and magnesium are available<br />

with good experience made in ultrasound<br />

based flux free soldering. Aluminium is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

brazed with Cr-Steel or CrNi steel in a c<strong>on</strong>tinuous<br />

furnace under c<strong>on</strong>trolled atmosphere.<br />

10. Summary<br />

In general, <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> is suitable for soldering<br />

and brazing. There are, however limits due to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> relatively low melting point and <str<strong>on</strong>g>the</str<strong>on</strong>g> influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wettability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface depending<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> alloy. A variety <str<strong>on</strong>g>of</str<strong>on</strong>g> systems<br />

for soldering and brazing as well as types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fluxes is available. The most important process<br />

today is c<strong>on</strong>trolled atmosphere furnace<br />

brazing (CAB) with braze-cladded materials<br />

enhancing this very effective processing.<br />

Soldering processes are supported by metal<br />

alloyed fluxes with improved wettability. The<br />

applicati<strong>on</strong> by ultrasound partly enables brazing<br />

without using a flux. Current developments<br />

in soldering and brazing and <strong>on</strong> processes<br />

in particular in <str<strong>on</strong>g>the</str<strong>on</strong>g> field <str<strong>on</strong>g>of</str<strong>on</strong>g> soldering will develop<br />

new technical possibilities <str<strong>on</strong>g>of</str<strong>on</strong>g> processing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> and <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> alloys and secure<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>m by new fields <str<strong>on</strong>g>of</str<strong>on</strong>g> manufacture.<br />

11. Standards and regulati<strong>on</strong><br />

DIN EN ISO 9453 (2006) • S<str<strong>on</strong>g>of</str<strong>on</strong>g>t solder alloys –<br />

Chemical compositi<strong>on</strong>s and forms; supersedes<br />

DIN EN 29454 (1994)<br />

DIN EN ISO 17672 (2010) • Brazing – Filler<br />

metals; supersedes DIN EN 1044 (2006)<br />

DIN 1707-100 (2011) • S<str<strong>on</strong>g>of</str<strong>on</strong>g>t solder alloys –<br />

Chemical compositi<strong>on</strong> and forms<br />

DIN EN ISO 3677 (1995) • Filler metals for soldering,<br />

brazing and braze welding – designati<strong>on</strong>s<br />

DIN EN 1045 (1997) • Fluxes for brazing<br />

DIN EN 13133 (2000) • Brazing / Brazer approval<br />

DIN EN 13134 (2000) • Brazing / Procedure<br />

approval<br />

DIN EN 12799 (2000) • Brazing / N<strong>on</strong>-destructive<br />

examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> brazed joints<br />

DIN EN 12797 (2000) • Brazing / Destructive<br />

examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> brazed joints<br />

DIN EN ISO 18279 (2004) • Imperfecti<strong>on</strong>s<br />

in brazed joints<br />

Fig. 4: Flame brazing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g>: dissimilar metals (Source: Everwand & Fell) �<br />

56 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


APPLICATION-ORIENTED TECHNOLOGIES<br />

<str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>natural</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> <strong>on</strong> brazeability<br />

J. Zähr 1 , S. Oswald 2 , M. Türpe 3 , H.-J. Ullrich 1 , U. Füssel 1<br />

1 TU Dresden, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Surface and Manufacturing Technology, Joining Technology and Assembly,<br />

Germany • 2 IFW Dresden, Germany • 3 Behr GmbH & Co. KG, Stuttgart, Germany<br />

For brazing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>natural</str<strong>on</strong>g><br />

<str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> has a significant influence.<br />

However, <str<strong>on</strong>g>the</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g><br />

<str<strong>on</strong>g>layer</str<strong>on</strong>g> before brazing, e. g. due to changing<br />

climate c<strong>on</strong>diti<strong>on</strong>s during <str<strong>on</strong>g>the</str<strong>on</strong>g> storage or<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> transport and during <str<strong>on</strong>g>the</str<strong>on</strong>g> heating process,<br />

are not analysed comprehensively<br />

yet. In this paper, two analysing methods<br />

are explained, which enable <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> increased humidities<br />

and temperatures <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> and<br />

thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>natural</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g><br />

<str<strong>on</strong>g>layer</str<strong>on</strong>g>. Additi<strong>on</strong>ally, brazing tests are d<strong>on</strong>e<br />

to get a correlati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g><br />

before <str<strong>on</strong>g>the</str<strong>on</strong>g> brazing process and <str<strong>on</strong>g>the</str<strong>on</strong>g> brazeability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material. The brazing tests<br />

are d<strong>on</strong>e in a shielding gas lab furnace<br />

without using flux. The tests have shown<br />

that especially c<strong>on</strong>densati<strong>on</strong> leads to a<br />

growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidic <str<strong>on</strong>g>layer</str<strong>on</strong>g> and to a significant<br />

decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> brazeability. So<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> understanding about <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidic<br />

<str<strong>on</strong>g>layer</str<strong>on</strong>g> and also <str<strong>on</strong>g>the</str<strong>on</strong>g> brazeability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material<br />

is enhanced.<br />

Aluminium is a material widely used in industry,<br />

due to its good relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weight to<br />

strength, good corrosi<strong>on</strong> resistance and formability<br />

[1]. For assembly <str<strong>on</strong>g>of</str<strong>on</strong>g> several parts, a material<br />

joining is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten necessary. For material<br />

joints between <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> materials, a removal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> is necessary,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> so called <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> surface activati<strong>on</strong>.<br />

The surface activati<strong>on</strong> method used depends<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> brazing technique. For flame brazing<br />

as well as brazing in a shielding gas furnace,<br />

flux is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used for <str<strong>on</strong>g>the</str<strong>on</strong>g> surface activati<strong>on</strong> [2-<br />

[5]. The task <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> flux is widely discussed in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> literature. On <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e hand side, <str<strong>on</strong>g>the</str<strong>on</strong>g> flux<br />

shall chemically dissolve <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> [5-<br />

7]. Thereby, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> is cracked by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

flux, so <str<strong>on</strong>g>the</str<strong>on</strong>g> flux can flow under <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> particles<br />

and blast <str<strong>on</strong>g>the</str<strong>on</strong>g>m. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> flux<br />

decreases <str<strong>on</strong>g>the</str<strong>on</strong>g> surface tensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solder.<br />

Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> flow ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solder is increased<br />

[6].<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r comm<strong>on</strong> brazing technique is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

brazing inside a vacuum chamber. The surface<br />

activati<strong>on</strong> is realized due to <str<strong>on</strong>g>the</str<strong>on</strong>g> Mg-gettering<br />

effect as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> different <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal expansi<strong>on</strong><br />

coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> base ma-<br />

terial and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>natural</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g><br />

[8-9]. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong> research analyses<br />

for <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> brazing are discussing <str<strong>on</strong>g>the</str<strong>on</strong>g> fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> brazing techniques [10-<br />

11], solder systems [12-13] or <str<strong>on</strong>g>the</str<strong>on</strong>g> corrosi<strong>on</strong><br />

behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> brazed parts [14]. However,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> before brazing<br />

is not characterized yet. There is <strong>on</strong>ly few<br />

informati<strong>on</strong> available in literature c<strong>on</strong>cerning<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> correlati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s<br />

before brazing and <str<strong>on</strong>g>the</str<strong>on</strong>g> brazeability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

material. Gray et. al. [15] menti<strong>on</strong>s, that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>oxide</str<strong>on</strong>g> thickness influences <str<strong>on</strong>g>the</str<strong>on</strong>g> flow ability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> solder. Swiderksy [16] specifies this correlati<strong>on</strong>:<br />

with increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> thickness<br />

from 4 to 22 nm an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> flux from 2 to 5 g/m 2 is necessary. But<br />

it is not clear, how this change <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g><br />

<str<strong>on</strong>g>layer</str<strong>on</strong>g> can occur. This paper explains <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>natural</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> as well as<br />

two possibilities for <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> this nm<br />

thick <str<strong>on</strong>g>layer</str<strong>on</strong>g>. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> typical<br />

envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s during storage<br />

and brazing are described. Afterwards, brazing<br />

tests are d<strong>on</strong>e to get a correlati<strong>on</strong> between<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> oxidic <str<strong>on</strong>g>layer</str<strong>on</strong>g> thickness and compositi<strong>on</strong> to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> brazeability.<br />

Natural <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> –<br />

structure, analyzing methods<br />

The <str<strong>on</strong>g>natural</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> exactly two<br />

sheets: an <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> directly <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> material<br />

(= barrier <str<strong>on</strong>g>layer</str<strong>on</strong>g>) and a hydroxidic <str<strong>on</strong>g>layer</str<strong>on</strong>g><br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere (= surface<br />

<str<strong>on</strong>g>layer</str<strong>on</strong>g>) [17]. In normal climate c<strong>on</strong>diti<strong>on</strong>s (NC,<br />

20°C, 50% rel. humidity), <str<strong>on</strong>g>the</str<strong>on</strong>g> barrier <str<strong>on</strong>g>layer</str<strong>on</strong>g><br />

has a thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> ca. 2 nm and c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

amorphous Al 2 O 3 . The electrical c<strong>on</strong>ductivity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this compact <str<strong>on</strong>g>layer</str<strong>on</strong>g> is very low [17]. Therefore,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> i<strong>on</strong> diffusi<strong>on</strong> is minimized at room<br />

temperature, so this <str<strong>on</strong>g>layer</str<strong>on</strong>g> acts as corrosi<strong>on</strong><br />

protecti<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> material. Rising<br />

temperatures cause an increased i<strong>on</strong> diffusi<strong>on</strong>,<br />

which leads to a growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g>.<br />

Additi<strong>on</strong>ally, crystalline Al 2 O 3 -structures are<br />

formed at temperatures above 400°C.<br />

The surface <str<strong>on</strong>g>layer</str<strong>on</strong>g> also has a thickness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2-3 nm under normal climate c<strong>on</strong>diti<strong>on</strong>s (NC).<br />

This <str<strong>on</strong>g>layer</str<strong>on</strong>g> c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> hydr<str<strong>on</strong>g>oxide</str<strong>on</strong>g><br />

(Al(OH) 3 ) as well as pores and crystalline parts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> heterogeneous phases <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> base material.<br />

This <str<strong>on</strong>g>layer</str<strong>on</strong>g> is formed by <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> barrier<br />

<str<strong>on</strong>g>layer</str<strong>on</strong>g> (Al 2 O 3 ) or metallic <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> with<br />

water. Therefore, this <str<strong>on</strong>g>layer</str<strong>on</strong>g> can grow significantly<br />

due to an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> relative humidity<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere or if c<strong>on</strong>densed water is<br />

available at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface.<br />

During transport or storage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

materials before brazing, relative humidities<br />

above 90% or even c<strong>on</strong>densati<strong>on</strong> can occur at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> base materials. These c<strong>on</strong>diti<strong>on</strong>s<br />

influence <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface<br />

<str<strong>on</strong>g>layer</str<strong>on</strong>g>. In c<strong>on</strong>trast to this, <str<strong>on</strong>g>the</str<strong>on</strong>g> heating process<br />

during brazing leads to a change <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong><br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> barrier <str<strong>on</strong>g>layer</str<strong>on</strong>g>.<br />

In literature, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> studies available<br />

c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> different ambient<br />

c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> and<br />

hydr<str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g>. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g>se analyses<br />

do not correlate with <str<strong>on</strong>g>the</str<strong>on</strong>g> real c<strong>on</strong>diti<strong>on</strong>s for<br />

brazing materials and processes regarding <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> materials, <str<strong>on</strong>g>the</str<strong>on</strong>g> temperatures,<br />

humidities, durati<strong>on</strong>s and ambient at-<br />

Fig. 1: XPS-spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> Al-material (EN AW-Al Mn1Cu with solder EN AW-Al Si10)<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 57


SESSION APPLICATION-ORIENTED TECHNOLOGIES<br />

Fig. 2: FTIR-Spectra while heating from room temperature to 605°C (left), summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> peak area<br />

depending <strong>on</strong> heating temperature for <str<strong>on</strong>g>the</str<strong>on</strong>g> three phases existing at <str<strong>on</strong>g>the</str<strong>on</strong>g> material surface (right)<br />

mospheres. In <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequently described<br />

analyses <str<strong>on</strong>g>the</str<strong>on</strong>g> following materials and atmospheric<br />

c<strong>on</strong>diti<strong>on</strong>s were used:<br />

1. Material: Solder plated (both sides) Alsheets<br />

a. Base material: EN AW-Al Mn1Cu,<br />

thickness: 0.32 mm<br />

b. Solder: EN AW-Al Si10, thickness:<br />

0.04 mm (<strong>on</strong> both sides)<br />

2. Atmospheric c<strong>on</strong>diti<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> storage and transport<br />

c<strong>on</strong>diti<strong>on</strong>s<br />

a. Normal climate (NC) – 23°C/ 50%<br />

rel. humidity<br />

b. Humid climate (HC) – 40°C/ 92%<br />

rel. humidity<br />

c. C<strong>on</strong>densati<strong>on</strong> (C) – 23°C/ > 100%<br />

rel. humidity<br />

3. Heating tests for <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> increased temperatures<br />

a. Heating temperature: 605°C<br />

b. Ambient atmosphere: Nitrogen<br />

The challenge for <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> real c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> brazing materials is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

choice <str<strong>on</strong>g>of</str<strong>on</strong>g> suitable methods which are able to<br />

analyse nm-thick <str<strong>on</strong>g>layer</str<strong>on</strong>g>s and to distinguish between<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> and hydr<str<strong>on</strong>g>oxide</str<strong>on</strong>g> phases.<br />

With XPS-measurements, <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface can be measured. The spectra<br />

shows <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> binding<br />

energy, see Fig. 1. For <str<strong>on</strong>g>natural</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> surfaces<br />

oxygen, carb<strong>on</strong>, magnesium as well as<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> can be measured.<br />

The important phases and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir binding energies<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> present analyses are [18]:<br />

Metallic Al 72,5 – 73 eV<br />

γ-Al 2O 3 73,7 – 74,5 eV<br />

Al(OH) 3 73,4 eV.<br />

Obviously it is not possible to distinguish between<br />

oxidic and hydroxidic phases <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

base <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> binding energy. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r possibility<br />

to distinguish between <str<strong>on</strong>g>the</str<strong>on</strong>g>se two phases is<br />

described by Wittenberg et. al. [19]. In this<br />

study, <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidic and hydroxidic phases are<br />

classified by <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> atomic c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

peak to <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen peak (Al/O). However,<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> industrial material used in <str<strong>on</strong>g>the</str<strong>on</strong>g> present<br />

analysis, <str<strong>on</strong>g>the</str<strong>on</strong>g> measured <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> intensity<br />

c<strong>on</strong>sists always <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidic bound <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> metallic <str<strong>on</strong>g>aluminium</str<strong>on</strong>g>. The signal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> metallic bound <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> originates from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> metallic <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> base material directly<br />

under <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g>. Therefore,<br />

this metallic <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> signal cannot be<br />

taken into account for <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> surface phases. Hence, <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

oxidic bound <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> is set into relati<strong>on</strong> to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen intensity in <str<strong>on</strong>g>the</str<strong>on</strong>g> present analysis.<br />

For Al 2O 3 <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> Al <str<strong>on</strong>g>oxide</str<strong>on</strong>g> to O is about 2/3,<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> hydroxidic bound <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> Al(OH) 3<br />

this ratio is about 1/3. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g><br />

<str<strong>on</strong>g>layer</str<strong>on</strong>g> thickness can be estimated using <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidic to metallic<br />

bound <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> [20].<br />

The XPS-measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>natural</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

surfaces as well as <str<strong>on</strong>g>of</str<strong>on</strong>g> materials stored<br />

under normal climate, humid climate and c<strong>on</strong>densati<strong>on</strong><br />

show, that <str<strong>on</strong>g>the</str<strong>on</strong>g> hydroxidic <str<strong>on</strong>g>layer</str<strong>on</strong>g> is<br />

existent <strong>on</strong> all surfaces, even <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>natural</str<strong>on</strong>g> (not stored) <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> materials. In<br />

c<strong>on</strong>trast to this, <str<strong>on</strong>g>the</str<strong>on</strong>g> storage c<strong>on</strong>diti<strong>on</strong>s have a<br />

measurable influence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> thickness.<br />

Especially, <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>densed water<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface causes a significant increase <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g>, see Fig. 4.<br />

The temperature increase during <str<strong>on</strong>g>the</str<strong>on</strong>g> brazing<br />

process has ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r significant influence<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness and compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g>s<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> materials. The<br />

behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se <str<strong>on</strong>g>layer</str<strong>on</strong>g>s during heating from<br />

room temperature till 605°C (= brazing temperature)<br />

can be analyzed with <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

FTIR measurements under a N 2-atmosphere<br />

(= brazing atmosphere). All tests were d<strong>on</strong>e<br />

at Innoval Technology Ltd. Banbury, where a<br />

FTIR-spectrometer with an additi<strong>on</strong>al heating<br />

device is available.. A spectrum is taken <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> surface every minute during <str<strong>on</strong>g>the</str<strong>on</strong>g> heating<br />

process. All spectra for <strong>on</strong>e heating cycle are<br />

displayed in Fig. 2.<br />

It is obvious, that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are three phases<br />

existing at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface during <str<strong>on</strong>g>the</str<strong>on</strong>g> heating<br />

process. At room temperature <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

amorphous Al 2O 3-phase dominates<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> surface. With rising temperatures,<br />

especially at temperatures above<br />

400°C, <str<strong>on</strong>g>the</str<strong>on</strong>g> Al/O-signal moves to<br />

lower wave numbers. Unfortunately,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> phase could not be defined until<br />

now. This phase can c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

crystalline Al 2O 3 or MgAl 2O 4. For a<br />

precise determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this phase,<br />

TEM analyses are planned. At temperatures<br />

above 577°C, <str<strong>on</strong>g>the</str<strong>on</strong>g> solidus<br />

temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solder, MgO is<br />

growing at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. With <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

analyzing method, <str<strong>on</strong>g>the</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> materials,<br />

which were stored under c<strong>on</strong>densed water,<br />

was also analyzed. These materials have<br />

a major growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> during <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

heating process.<br />

Correlati<strong>on</strong> between surface<br />

c<strong>on</strong>diti<strong>on</strong> and brazeability<br />

Brazing method for analyzing influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> <strong>on</strong> brazeability: The brazing tests<br />

were d<strong>on</strong>e in a laboratory shielding gas furnace.<br />

To see <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g><br />

<str<strong>on</strong>g>layer</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> brazeability, a mechanical surface<br />

activati<strong>on</strong> method, see Fig. 3, was used instead<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a chemical surface activati<strong>on</strong>. To realize <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cracking <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> upper joining<br />

partner is pressed inside <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid solder by<br />

applying a weight. Therefore, tensi<strong>on</strong>s are induced<br />

inside <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g>, which cause <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cracking <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>layer</str<strong>on</strong>g>. Afterwards <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid<br />

solder can flow to <str<strong>on</strong>g>the</str<strong>on</strong>g> upper joining partner<br />

and wet it.<br />

Brazing results for different surface c<strong>on</strong>diti<strong>on</strong>s:<br />

A storage under humid climate as well<br />

as under c<strong>on</strong>densati<strong>on</strong> for a short period<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> time (3 days) causes a growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g><br />

<str<strong>on</strong>g>layer</str<strong>on</strong>g>, but does not influence <str<strong>on</strong>g>the</str<strong>on</strong>g> brazing<br />

Fig. 3: Mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical surface<br />

activati<strong>on</strong><br />

58 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


level significantly, see Fig. 4. A l<strong>on</strong>ger storage<br />

under c<strong>on</strong>densati<strong>on</strong> suppresses <str<strong>on</strong>g>the</str<strong>on</strong>g> brazing<br />

process completely. However, storage in a normal<br />

climate after <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>densati<strong>on</strong> leads to a<br />

significant improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> brazeability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> material.<br />

It has to be followed, that <str<strong>on</strong>g>the</str<strong>on</strong>g> water, which<br />

is stored inside <str<strong>on</strong>g>the</str<strong>on</strong>g> pores <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g><br />

due to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>densati<strong>on</strong>, influences <str<strong>on</strong>g>the</str<strong>on</strong>g> brazing<br />

level. This water leads to an increased<br />

growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> during <str<strong>on</strong>g>the</str<strong>on</strong>g> heating.<br />

This thickened <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> cannot be cracked<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper joining partner.<br />

Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solder is suppressed<br />

completely. In c<strong>on</strong>trast to this, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g><br />

thickness has a minor influence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> brazeability.<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

The present analysis characterizes <str<strong>on</strong>g>the</str<strong>on</strong>g> influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> humidity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere as<br />

well as <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>densed water at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> materials <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>natural</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

<str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g>. With <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> XPS-measurements,<br />

it has been shown, that storage under<br />

normal or humid climate does not influence<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> thickness significantly. In c<strong>on</strong>trast<br />

to this, <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>densed water<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface causes an intense growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g>. FTIR measurements with an<br />

heating device have also shown that materials,<br />

which were stored under <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>densed<br />

water, have a significant thicker <str<strong>on</strong>g>oxide</str<strong>on</strong>g><br />

<str<strong>on</strong>g>layer</str<strong>on</strong>g> at brazing temperature.<br />

Subsequent brazing tests have been d<strong>on</strong>e<br />

in a shielding gas furnace with a mechanical<br />

surface activati<strong>on</strong> to see <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> brazeability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material.<br />

These tests have shown that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g><br />

thickness before brazing is not <str<strong>on</strong>g>the</str<strong>on</strong>g> critical<br />

parameter for <str<strong>on</strong>g>the</str<strong>on</strong>g> brazing result. In fact, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

water inside <str<strong>on</strong>g>the</str<strong>on</strong>g> pores <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydroxidic <str<strong>on</strong>g>layer</str<strong>on</strong>g><br />

causes an increased growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g><br />

during <str<strong>on</strong>g>the</str<strong>on</strong>g> heating process. This effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>densed water can be avoided, if <str<strong>on</strong>g>the</str<strong>on</strong>g> materials<br />

are stored under normal climate after having<br />

water present at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

materials.<br />

The analyses showed that not <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> solder<br />

or <str<strong>on</strong>g>the</str<strong>on</strong>g> brazing c<strong>on</strong>diti<strong>on</strong>s are important for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> brazing result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> materials, but<br />

also <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>natural</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g>. The<br />

<str<strong>on</strong>g>natural</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g> can be influenced significantly<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric c<strong>on</strong>diti<strong>on</strong>s during<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> transport and <str<strong>on</strong>g>the</str<strong>on</strong>g> storage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> materials.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, it has to be assumed that also<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> different brazing partners, e. g.<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> or stainless steels, can influence<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> brazeability.<br />

References<br />

APPLICATION-ORIENTED TECHNOLOGIES<br />

[1] Ostermann, F.: Anwendungstechnologie Aluminium<br />

– ein Werkst<str<strong>on</strong>g>of</str<strong>on</strong>g>fhandbuch. Springer Berlin<br />

Heidelberg; Auflage: 2., 2007.<br />

[2] Kohlweiler, A.: Hartlöten v<strong>on</strong> Aluminium – so<br />

geht es auch. In: Der Praktiker.(1996) Heft 2, S.<br />

40-45.<br />

[3] Meurer, C.; Belt, H.-J.; König, H.: Das Nocolok-<br />

Flux-Hartlötverfahren. In: Die Kälte und Klima-<br />

technik. (1997) Heft 10, S. 802-808.<br />

[4] Neitz, G.; Wielage, B.; Trommer; F.: Schutzgas-<br />

löten v<strong>on</strong> Al-Wärmetauschern. In: Hart- und<br />

Hochtemperaturlöten und Diffusi<strong>on</strong>sschweißen<br />

DVS-Berichte Band 212. Düsseldorf: DVS-Verlag,<br />

2001, S. 240-244.<br />

[5] Senaneuch, J.; Nylén, M.; Hutchins<strong>on</strong>, B.: Metallurgy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> brazed <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> heat-exchangers, Part I.<br />

In: Aluminium. 77 (2001) Heft 11, S. 896-899.<br />

[6] Müller, W.; Müller, J.-U.: Löttechnik – Leitfaden<br />

für die Praxis. Düsseldorf: Deutscher Verlag für<br />

Schweißtechnik DVS-Verlag GmbH, 1995.<br />

[7] Terrill, J. R.; Cochran, C. N.; Stokes, J. J.; Haupin;<br />

W. E.: Understanding <str<strong>on</strong>g>the</str<strong>on</strong>g> Mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> Aluminium<br />

Brazing. In: Welding Journal. (1971) S. 833-839.<br />

[8] Ashburn, L. L.: Fluxless Vacuum Furnace Brazing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Aluminum particularly Advantageous for<br />

more critical Applicati<strong>on</strong>s: I. In: Industrial Heating.<br />

(1994) S. 47-51.<br />

[9] Byrnes, E. R.: Vacuum Fluxless Brazing <str<strong>on</strong>g>of</str<strong>on</strong>g> Aluminium.<br />

In: Welding Journal. (1971) S. 712-716.<br />

[10] Füssel, U.; Six, S.: Entwicklung eines NIR-<br />

Lötverfahrens für die Fertigung v<strong>on</strong> Solarabsorbern<br />

aus Aluminium. LÖT, 9. Internati<strong>on</strong>al C<strong>on</strong>ference<br />

Brazing, High Temperature Brazing and Diffusi<strong>on</strong><br />

Welding. In: DVS-Berichte: Band 263 (2010) S.<br />

358-360<br />

[11] Möller, F.; Thomy, C.; Vollertsen, F.: Flussmittelfreies<br />

Hartlöten v<strong>on</strong> Aluminiumlegierungen mit<br />

einem koaxialen Laser-Plasma-Hybridlötprozess.<br />

In: Schweißen und Schneiden 62/5 (2010) 294.<br />

[12] Bach, F.W.; Möhwald, K.; Holländer, U.; Langohr,<br />

A.: Niedrig schmelzende Aluminiumhartlote<br />

aus dem System Al-Si-Zn. 9. Internati<strong>on</strong>al C<strong>on</strong>ference<br />

Brazing, High Temperature Brazing and<br />

Diffusi<strong>on</strong> Welding. In: DVS-Berichte. Düsseldorf:<br />

DVS-Verlag. Band 263 (2010) Seite 117-121.<br />

[13] Tillmann, W.; LIU, C.; Wojarski, L.: Dotierung<br />

v<strong>on</strong> Aluminiumbasisloten zum flussmittelfreien<br />

Hartlöten v<strong>on</strong> Aluminiumlegierungen. 9. Internati<strong>on</strong>al<br />

C<strong>on</strong>ference Brazing, High Temperature<br />

Brazing and Diffusi<strong>on</strong> Welding. In: DVS-Berichte.<br />

Düsseldorf: DVS-Verlag.: Band 263 (2010) Seite<br />

106-112.<br />

[14] Melander, M.; Woods, R.: A corrosi<strong>on</strong> study <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

brazed <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> heat exchangers after field service.<br />

In: Internati<strong>on</strong>al Aluminium Journal. Band 86<br />

(2010) Heft 7/8, Seite 56-61.<br />

[15] Gray, A.; Flemming, A. J. E.; Evans, J. M.: Optimising<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>on</strong>g-life Brazing Sheet<br />

Alloys for Vacuum and Nocolok Brazed Comp<strong>on</strong>ents.<br />

VTMS 4 C<strong>on</strong>ference Proceedings, L<strong>on</strong>d<strong>on</strong>,<br />

May 1999.<br />

[16] Swidersky, H.-W.: Aluminium brazing with<br />

n<strong>on</strong>-corrosive fluxes – state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> art and trends in<br />

Nocolok flux technology. In: Hart- und Hochtem-<br />

peraturlöten und Diffusi<strong>on</strong>sschweißen DVS-Berichte<br />

Band 212. Düsseldorf: DVS-Verlag, DVS-Berichte<br />

Band 212 (2001), S. 164-169.<br />

[17] Altenpohl, D.: Aluminium und Aluminium-<br />

legierungen. Berlin: Springer Verlag, 1965.<br />

[18] Moulder, J. F.; Stickle, W. F.; Sobol, P. E.;<br />

Bomben, K. D.: Handbook <str<strong>on</strong>g>of</str<strong>on</strong>g> X-Ray Photoelectr<strong>on</strong><br />

Spectroscopy: A Reference Book <str<strong>on</strong>g>of</str<strong>on</strong>g> Standard<br />

Spectra for Identificati<strong>on</strong> and Interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

XPS-Data. Physical Electr<strong>on</strong>ics, 1995. – ISBN-10:<br />

096481241X<br />

[19] Wittenberg, T. N.; Douglas, W. J.; Wang, P. S.:<br />

Aluminium hydr<str<strong>on</strong>g>oxide</str<strong>on</strong>g> growth <strong>on</strong> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> surfaces<br />

exposed to an air/1% NO 2 mixture. In: Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science, 23 (1988), S. 1745-1747.<br />

[20] Kozlowska, M.; Reiche, R.; Oswald, S.; Vinzelberg,<br />

H.; Hübner, R.; Wetzig, K.: Quantitative<br />

ARXPS investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> systems at ultrathin <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

<str<strong>on</strong>g>oxide</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g>s. Surface Interface Anal. 36<br />

(2004) 1600.<br />

�<br />

Fig. 4: <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> storage c<strong>on</strong>diti<strong>on</strong>s and durati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>oxide</str<strong>on</strong>g> thickness and brazing level<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 59


MELTING, RECYCLING & HEAT TREATMENT<br />

The new generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

heat treatment plants – a vanguard c<strong>on</strong>cept<br />

Markus Belte and Dan Dragulin, Belte AG<br />

The vigorous discussi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g><br />

heat treatment community about <str<strong>on</strong>g>the</str<strong>on</strong>g> development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriate technique<br />

becomes within <str<strong>on</strong>g>the</str<strong>on</strong>g> framework <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

present work a genuine c<strong>on</strong>crete answer.<br />

This paper is completely dedicated to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a new generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heat<br />

treatment plants; it first introduces <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

fundamentals <str<strong>on</strong>g>of</str<strong>on</strong>g> high speed heat transfer<br />

processes and presents practical results<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>irs <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamical analysis and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>of</str<strong>on</strong>g>fers a detailed perspective <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

vanguard c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> new generati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> heat treatment plants. The<br />

present work is based <strong>on</strong> original experiments<br />

and investigati<strong>on</strong>s obtained by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

authors and will present techniques never<br />

used before in <str<strong>on</strong>g>the</str<strong>on</strong>g> industrial heat treatment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g>.<br />

Infrared radiati<strong>on</strong> – <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical aspects<br />

The radiati<strong>on</strong> heat transfer process is described<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> law <str<strong>on</strong>g>of</str<strong>on</strong>g> Stefan-Boltzmann:<br />

• ∂Q<br />

Q = ⎯⎯ = εσST 4<br />

∂t (1)<br />

• 4 4<br />

Q = εσS [T O - T U ] (2)<br />

•<br />

Where: Q = heat flow rate; ε = emissivity 1 ;<br />

σ = 5.67 x 10 -8 W/m 2 K 4 Stefan-Boltzmannc<strong>on</strong>stant;<br />

S = surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> emitting body;<br />

T = temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> emitting body (Kelvin);<br />

T O = surface temperature; T U = envir<strong>on</strong>ment<br />

temperature 2 .<br />

The heating rate can be calculated using <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following formula:<br />

mc 100 TWB Ta<br />

τ = ⎯ ⎯⎯ [ ξ´(⎯⎯)- ξ´´ (⎯⎯)]<br />

α T 3<br />

U<br />

TU TU (⎯⎯)<br />

100<br />

(3) 3<br />

Where: m = mass/surface unity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> product<br />

to be heated; c =specific heat; TWB = heat<br />

treatment temperature; TU = envir<strong>on</strong>ment temperature;<br />

ξ = f(TWB/TU) A special case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> heat transfer process<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> infrared heat transfer process.<br />

“Infrared radiati<strong>on</strong>, that porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

electromagnetic spectrum that extends from<br />

1 ε Є (0,1] ; for <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal black body: ε = 1<br />

2 The envir<strong>on</strong>ment could be <str<strong>on</strong>g>the</str<strong>on</strong>g> interior <str<strong>on</strong>g>of</str<strong>on</strong>g> a furnace.<br />

3 According to [3]<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g wavelength, or red, end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> visiblelight<br />

range to <str<strong>on</strong>g>the</str<strong>on</strong>g> microwave range. Invisible<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> eye, it can be detected as a sensati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> warmth <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> skin. The infrared range<br />

is usually divided into three regi<strong>on</strong>s: near<br />

infrared (nearest <str<strong>on</strong>g>the</str<strong>on</strong>g> visible spectrum), with<br />

wavelengths 0.78 to about 2.5 micrometres (a<br />

micrometre, or micr<strong>on</strong>, is 10 -6 metre); middle<br />

infrared, with wavelengths 2.5 to about 50 micrometres;<br />

and far infrared, with wavelengths<br />

50 to 1,000 micrometres. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> radiati<strong>on</strong><br />

emitted by a moderately heated surface is infrared;<br />

it forms a c<strong>on</strong>tinuous spectrum. Molecular<br />

excitati<strong>on</strong> also produces copious infrared<br />

radiati<strong>on</strong> but in a discrete spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> lines or<br />

bands.” [Encyclopaedia Britannica [1]]<br />

“Radiant heating has been used in <str<strong>on</strong>g>the</str<strong>on</strong>g> industry<br />

since <str<strong>on</strong>g>the</str<strong>on</strong>g> 1930s, where it was introduced to<br />

bake finishes <strong>on</strong> cars. It took time for <str<strong>on</strong>g>the</str<strong>on</strong>g> new<br />

technology to gain acceptance but today <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

technology is used in most industrialised countries<br />

especially for drying and curing <str<strong>on</strong>g>of</str<strong>on</strong>g> paints<br />

and drying <str<strong>on</strong>g>of</str<strong>on</strong>g> textile, pulp and paper. Infrared<br />

energy is unique because it can heat materials<br />

or objects without heating <str<strong>on</strong>g>the</str<strong>on</strong>g> air around <str<strong>on</strong>g>the</str<strong>on</strong>g>m.<br />

That allows infrared heat to be c<strong>on</strong>centrated<br />

exactly where it is wanted without much loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> energy.” [2]<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> an infrared heating <str<strong>on</strong>g>the</str<strong>on</strong>g> maxi-<br />

mum temperature which can be reached depends<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment temperature:<br />

T - T U = (T max - T U)(1-e -B . τ ) (4) [3]<br />

Where: T = body temperature; τ = durati<strong>on</strong>;<br />

T U = envir<strong>on</strong>ment temperature; T max = maximum<br />

temperature; B = coefficient which takes<br />

into account <str<strong>on</strong>g>the</str<strong>on</strong>g> process c<strong>on</strong>diti<strong>on</strong>s<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> a classic heat transfer process<br />

performed exclusively through air c<strong>on</strong>vecti<strong>on</strong>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> body temperature can not exceed <str<strong>on</strong>g>the</str<strong>on</strong>g> air<br />

temperature.<br />

Gas radiati<strong>on</strong><br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> flame radiati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re are two<br />

types radiati<strong>on</strong>: visible and invisible/infrared<br />

radiati<strong>on</strong>. The last <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g> invisible infrared<br />

radiati<strong>on</strong> emitted by carb<strong>on</strong> di<str<strong>on</strong>g>oxide</str<strong>on</strong>g> and<br />

steam 4 .<br />

The quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> heat transferred through<br />

radiati<strong>on</strong> from a <str<strong>on</strong>g>layer</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 respectively H 2O<br />

to a grey surface are:<br />

3.2 3.2<br />

Tg Tw<br />

qCO2 = ε . 10.35(p .<br />

CO2 s) 0.4 [(⎯⎯) - (⎯⎯)<br />

100 100<br />

Tg<br />

0.65<br />

. (⎯) ] Tw 4 After J. H. Brunklaus<br />

Fig. 1: Bilateral (green) and unilateral (red) exposure to radiati<strong>on</strong> (not coated, h = 10 cm)<br />

(5)[[7]→[6]]<br />

60 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011<br />

Abbildungen: Belte


q H2O = ε(46.52 - 94.9p H2Os)(p2 . s) 0.6<br />

3 ⎯⎯<br />

3 ⎯⎯<br />

2.32 + 1.37 √p 2 s 2.32 + 1.37 √p 2 s<br />

Tg Tw [(⎯⎯) -(⎯⎯)<br />

100 100 ]<br />

(6)[[7]→[6]]<br />

Where: q = quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> heat [W/m²]; p = partial<br />

pressure [daN/cm²]; s = <str<strong>on</strong>g>layer</str<strong>on</strong>g> thickness [m];<br />

T g = gas temperature [K]; T w = temperature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> grey surface [K]; ε = emissivity rapport:<br />

A λ = absorbed radiati<strong>on</strong> and A λs = total radiated<br />

energy<br />

Aλ<br />

ε = ⎯<br />

A λs<br />

Infrared heating <str<strong>on</strong>g>of</str<strong>on</strong>g> massive<br />

<str<strong>on</strong>g>aluminium</str<strong>on</strong>g> castings<br />

Electric radiant burners<br />

(7)[[7]→[6]<br />

Experiment purpose – determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>:<br />

• heating rate<br />

• maximal reached temperature<br />

• influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

surface quality<br />

������������������������������������������������������<br />

MELTING, RECYCLING & HEAT TREATMENT<br />

coated or not<br />

as cast<br />

100% graphite coated<br />

• distance between <str<strong>on</strong>g>the</str<strong>on</strong>g> infrared source and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> irradiated surface (h);<br />

Experimental c<strong>on</strong>diti<strong>on</strong>s:<br />

• experimental infrared facility<br />

industrial IR installati<strong>on</strong><br />

power : 108 KW/m²<br />

nominal power: 37.8 kW<br />

(active surface <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.35 m²)<br />

air cooling system<br />

• test specimen<br />

die casting: cylinder head<br />

Al-Si-Mg-Cu alloy<br />

weight: 26 kg<br />

wall thickness: 120 mm<br />

• exposure to radiati<strong>on</strong><br />

bilateral and unilateral<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> a unilateral exposure to radiati<strong>on</strong><br />

(<strong>on</strong>e part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> infrared module is switched<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f) we obtain a heating rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.11 °C/s (between<br />

50 and 425°C 5 ). In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> a bilateral<br />

exposure to radiati<strong>on</strong> we obtain a heating<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.43 °C/s. Enhancing <str<strong>on</strong>g>the</str<strong>on</strong>g> installati<strong>on</strong><br />

���������������<br />

����������������<br />

�����������������������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������������������������<br />

�����������������������������������������������������������������������������������������������������<br />

�����������������������������������������������<br />

�������������������������������������������������������������������������������������<br />

�������������������������������������<br />

��������������������������������������������<br />

����������@�������������������������������������������<br />

power by 100% (in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> a bilateral exposure<br />

to radiati<strong>on</strong>) quadruped <str<strong>on</strong>g>the</str<strong>on</strong>g> heating<br />

rate by a coeval reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy c<strong>on</strong>sumpti<strong>on</strong>.<br />

The unequal temperature maximum<br />

is c<strong>on</strong>spicuous (fig.1).<br />

Energy c<strong>on</strong>sumpti<strong>on</strong>:<br />

• unilateral exposure to radiati<strong>on</strong>: ~ 55 min<br />

55<br />

• E = ⎯ . 18.31 = 16.78kWh<br />

60<br />

• bilateral exposure to radiati<strong>on</strong>: ~ 15 min<br />

15<br />

• E = ⎯ . 18.31 = 4.58kWh<br />

60<br />

Where: 0.35 m²………………………37.8 kW<br />

0.169 m² 6 ………….……………x kW<br />

X = 18.31 kW/side → X = 36.63 kW for a<br />

bilateral exposure<br />

The coating leads to a c<strong>on</strong>siderable enhancement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface heating rate and simultaneously<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature<br />

difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> surface and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

5 One has to pay maximum attenti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> solidus temperature<br />

(especially for Al alloys c<strong>on</strong>taining Cu).<br />

6 casting surface exposed to radiati<strong>on</strong>


MELTING, RECYCLING & HEAT TREATMENT<br />

center <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> casting.<br />

Energy c<strong>on</strong>sumpti<strong>on</strong> and process efficiency<br />

between 55°C and 535°C<br />

• not coated: heating time = 0.27 h<br />

• E = 36.63 x 0.27 = 9.89 kWh<br />

• η = 3.579 7 /9.89 = 0.361<br />

• coated: heating time = 0.2 h<br />

• E = 36.63 x 0.2 = 7.3 kWh<br />

• η = 3.579 8 /7.3 = 0.49<br />

surface heating rate [°C/s]<br />

coated 0.59<br />

not coated 0.68<br />

Tab. 1: <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface<br />

Gas fired burners<br />

The following experiment was str<strong>on</strong>gly supported<br />

by LOI Italimpianti and performed by<br />

Elster Kromschröder.<br />

Experiment purpose – determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>:<br />

• heating rate (furnace preheated<br />

at ~ 500°C)<br />

Experimental c<strong>on</strong>diti<strong>on</strong>s:<br />

• experimental heat treatment furnace<br />

using a ceramic flat flame burner as<br />

infrared radiati<strong>on</strong> source<br />

power : 450 kW<br />

• test specimen<br />

die casting: cylinder head<br />

Al-Si-Mg-Cu alloy<br />

weight: 26 kg<br />

wall thickness: 120 mm<br />

• exposure to radiati<strong>on</strong><br />

unilateral<br />

Fig. 2: Flat flame burner: 450 kW<br />

C<strong>on</strong>clusi<strong>on</strong> and prospects<br />

The industrial use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> infrared radiati<strong>on</strong> for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> heat treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum castings in Europe<br />

is <strong>on</strong>ly a questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time.<br />

808<br />

7 Q = ⎯⎯<br />

26<br />

x ∫(4.8 + 3.2 . 10-3T)dT = 3075.44kcal = 3.579kWh<br />

26.9 328<br />

808<br />

8 Q = ⎯⎯<br />

26<br />

x ∫(4.8 + 3.2 . 10-3T)dT = 3075.44kcal = 3.579kWh<br />

26.9 328<br />

Fig. 3: Heating rate: 450 kW<br />

Belte’s industrial c<strong>on</strong>cept is illustrated in Fig.<br />

4.<br />

Our c<strong>on</strong>cept proves that <str<strong>on</strong>g>the</str<strong>on</strong>g> next generati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> heat treatment plants will<br />

be:<br />

• extreme mobile<br />

commissi<strong>on</strong>ing/decommissi<strong>on</strong>ing<br />

durati<strong>on</strong>: ~ three weeks<br />

• extreme flexible<br />

without base and ancillary frames<br />

• extreme short processing time<br />

• extreme envir<strong>on</strong>mentally friendly<br />

without gas emissi<strong>on</strong> (in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> electric radiant burners)<br />

References<br />

[1] http://www.britannica.com/<br />

[2] M. Wagner, P. Buchet, W. Kesteleyn, A. Molin –<br />

Radiant heating in industrial processes, 22nd World<br />

Gas C<strong>on</strong>ference June 1-5, 2003 Tokyo, Japan<br />

Fig. 4: Industrial infrared heating facility for <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> alloys<br />

[3] C. Samoila, L. Druga, L.Stan – Cuptoare si Instalatii<br />

de Incalzire, EDP, Bukarest, 1983<br />

[4] D. Dragulin, M. Belte, M. Dragulin – Thermodynamische<br />

Aspekte der Wärmebehandlung v<strong>on</strong><br />

Metallen, pro Business Verlag, Berlin, 2010<br />

[5] M. Orfeuil – Electric Process Heating, Battelle<br />

Press, 1987<br />

[6] J. H. Brunklaus – Cuptoare Industriale, Editura<br />

Technica, Bukarest, 1977<br />

[7] A. Schack – der industrielle Wärmeübergang, 5.<br />

Auflage, Stahl-Eisen Verlag, 1957<br />

Authors<br />

Markus Belte is CEO <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Belte AG, located in<br />

Delbrück, Germany.<br />

Dr. Dan Dragulin is head <str<strong>on</strong>g>of</str<strong>on</strong>g> research and development<br />

at Belte AG.<br />

62 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


Abbildungen: promeos<br />

Resource efficiency at increased process quality<br />

becomes <str<strong>on</strong>g>the</str<strong>on</strong>g> dominating driver for investments<br />

in industry, and so in <str<strong>on</strong>g>the</str<strong>on</strong>g> world <str<strong>on</strong>g>of</str<strong>on</strong>g> casting.<br />

An optimized melting and material logis-<br />

tics process requires optimum temperature<br />

c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> material and casting equipment, including<br />

melting furnace, transportati<strong>on</strong> ladles<br />

or launders and casting moulds.<br />

MELTING, RECYCLING & HEAT TREATMENT<br />

New standards in gas-fired heating <str<strong>on</strong>g>of</str<strong>on</strong>g> moulds, ladles, launders<br />

and melting furnaces through flameless burner technology<br />

Jochen Volkert, promeos GmbH<br />

Fig.1: Porous burner<br />

Fig. 2: Different designs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> porous burner<br />

Based <strong>on</strong> its flameless high performance industry<br />

burner portfolio, promeos <str<strong>on</strong>g>of</str<strong>on</strong>g>fers new<br />

preheating and tempering soluti<strong>on</strong>s all al<strong>on</strong>g<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> process line. Energy savings <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 75%<br />

and increased process stability due to enhanced<br />

c<strong>on</strong>trol measures have been approved<br />

at numerous foundries all across <str<strong>on</strong>g>the</str<strong>on</strong>g> metal<br />

processing market.<br />

The clou is as easy as impressing: <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

absence <str<strong>on</strong>g>of</str<strong>on</strong>g> a free flame as spot-type heating<br />

source and <str<strong>on</strong>g>the</str<strong>on</strong>g> infinitely adjustable heat flux<br />

(similar to a dimming lamp) are core features<br />

to avoid inhomogeneity and inefficiency in<br />

heating ladles, launders or moulds.<br />

Porous burner technology<br />

In a porous burner (Fig. 1) <str<strong>on</strong>g>the</str<strong>on</strong>g> combusti<strong>on</strong> takes<br />

place in a porous high temperature ceramic,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> combusti<strong>on</strong> reactor, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> in an open<br />

flame. This results in a flameless, volumetric<br />

combusti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> glowing ceramic<br />

foam which can be used as a radiating surface<br />

as well as a homogenous source <str<strong>on</strong>g>of</str<strong>on</strong>g> heat. Any<br />

shapes are possible such as round or square<br />

burners, lines, cylinders, rings, rhombuses and<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r specially tailored shapes (Fig. 2).<br />

Special applicati<strong>on</strong>s require special soluti<strong>on</strong>s,<br />

for example line shaped burner heads<br />

Table 1: Heating systems for casting moulds: benefits / value propositi<strong>on</strong><br />

which c<strong>on</strong>centrate <str<strong>on</strong>g>the</str<strong>on</strong>g> heat from c<strong>on</strong>vecti<strong>on</strong><br />

and radiati<strong>on</strong> exactly where it is needed.<br />

The length <str<strong>on</strong>g>of</str<strong>on</strong>g> a reactor can thus be extended<br />

if desired. Dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> several meters in<br />

length with a reactor width from 15 to 200 mm<br />

allow specific burning performances from 2<br />

to 600 kW/m in length.<br />

Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> unique features <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> flameless<br />

porous burner combusti<strong>on</strong> technology,<br />

promeos develops and manufactures tailored<br />

heating systems for process applicati<strong>on</strong>s.<br />

Furnace engineering is required for both<br />

process technology and manufacturing to ensure<br />

optimum product quality. The outstanding<br />

design features <str<strong>on</strong>g>of</str<strong>on</strong>g> promeos burners and its<br />

ease <str<strong>on</strong>g>of</str<strong>on</strong>g> integrati<strong>on</strong> into any kind <str<strong>on</strong>g>of</str<strong>on</strong>g> apparatus<br />

allow <str<strong>on</strong>g>the</str<strong>on</strong>g> heat to be distributed over / into <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

required area / volume and applied where <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

process needs it, as opposed to being directed<br />

to <strong>on</strong>ly <strong>on</strong>e spot. promeos supplies ‘tailor<br />

made suits’ for your individual needs, powerful<br />

and efficient.<br />

The unique combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> features like <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

power density, a rapid and precise power adjustment<br />

(similar to electric heating devices),<br />

a homogeneous heat flux and its compact and<br />

modular design result in <str<strong>on</strong>g>the</str<strong>on</strong>g> following benefits:<br />

• enhanced quality <str<strong>on</strong>g>of</str<strong>on</strong>g> your products<br />

+ reduced preheating times The high energy density and heat transfer via<br />

infrared radiati<strong>on</strong> and c<strong>on</strong>trolled c<strong>on</strong>venti<strong>on</strong> allow<br />

an unmatched quick heating <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> moulds.<br />

Generally <str<strong>on</strong>g>the</str<strong>on</strong>g> preheating times are cut down<br />

50% and more.<br />

+ homogeneous temperature distributi<strong>on</strong> So called ‘hot spots’ that are due to local fire or<br />

flames are completely eliminated because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> heat input. In combinati<strong>on</strong><br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuously variable power c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> burners <str<strong>on</strong>g>the</str<strong>on</strong>g> preheating <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mould can be<br />

c<strong>on</strong>trolled optimally.<br />

+ producti<strong>on</strong> time Producti<strong>on</strong> time is gained due to <str<strong>on</strong>g>the</str<strong>on</strong>g> shortened<br />

heating-up time and corresp<strong>on</strong>ding process c<strong>on</strong>trol.<br />

+ less scrap producti<strong>on</strong> The ideal preheating <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mould reduces <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> required ‘warm castings’ – waste reducti<strong>on</strong><br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sequence.<br />

+ durability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tools The homogeneous temperature distributi<strong>on</strong> reduces<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal stress and <str<strong>on</strong>g>the</str<strong>on</strong>g>reby automatically<br />

increases <str<strong>on</strong>g>the</str<strong>on</strong>g> lifetime <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tools.<br />

Σ ROI < 24 m<strong>on</strong>ths, guaranteed<br />

< 12 m<strong>on</strong>ths, mostly<br />

Usually your investment is recovered within a<br />

period <str<strong>on</strong>g>of</str<strong>on</strong>g> max. 12 m<strong>on</strong>ths. We will compile you<br />

with a detailed amortizati<strong>on</strong> calculati<strong>on</strong> with<br />

every <str<strong>on</strong>g>of</str<strong>on</strong>g>fer you receive from us.<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 63


MELTING, RECYCLING & HEAT TREATMENT<br />

• increased performance<br />

• reduced warm-up time or start-up time <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

your equipment<br />

• energy saving potential <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 70% for<br />

your processes<br />

• operati<strong>on</strong>al cost saving <str<strong>on</strong>g>of</str<strong>on</strong>g> 50% by<br />

substituting electrical heating systems.<br />

Heating systems for casting moulds:<br />

higher producti<strong>on</strong> rates, quicker<br />

and more precise preheating<br />

The final step in <str<strong>on</strong>g>the</str<strong>on</strong>g> casting process is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

most sensible – <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

casting tools is essential for <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

products. Since every individual mould requires<br />

its optimum heating device, promeos<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fers customized heating tools, individually<br />

adapted to shape and process (Fig. 3).<br />

The modular ‘Lego-like’ design <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> flamefree<br />

porous burner units enables promeos in<br />

a unique way to design ‘custom-made suits’<br />

for different tools at reas<strong>on</strong>able cost. Opti-<br />

mum mould preheating, leading to significantly<br />

reduced scrap producti<strong>on</strong> (‘initial cast-<br />

Fig. 3: Drying curve refractory c<strong>on</strong>crete<br />

+ reduced preheating time The homogeneously distributed heat input at a<br />

high energy density allows an unmatched quick<br />

heating <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ladle. Generally <str<strong>on</strong>g>the</str<strong>on</strong>g> heating-up<br />

times are cut down 50% and more.<br />

+ increased durability(exact heat-up curves,<br />

homogeneous temperature distributi<strong>on</strong> with<br />

functi<strong>on</strong>s for drying, sintering and warming)<br />

So called ‘hot spots’ that are due to local fire or<br />

flames as well as cold areas (‘temperature holes’)<br />

are completely eliminated. A minimal loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

material and an increased durability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ladle<br />

lining are <str<strong>on</strong>g>the</str<strong>on</strong>g> positive c<strong>on</strong>sequences. The temperature<br />

c<strong>on</strong>trol device allows c<strong>on</strong>tinuously variable<br />

temperature regulati<strong>on</strong> and even a precise<br />

realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> given temperature curves.<br />

+ 65% reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> operating costs* Energy savings <str<strong>on</strong>g>of</str<strong>on</strong>g> 65% are not unusual. This is<br />

due to <str<strong>on</strong>g>the</str<strong>on</strong>g> extremely improved heat transfer and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuously variable power c<strong>on</strong>trol, required<br />

for temperature holding during stand-by time.<br />

+ 80% CO 2 emissi<strong>on</strong> savings* 70% less CO 2 emissi<strong>on</strong>s and significantly lower<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> pollutants (CxHy and NOx) mean > 80%<br />

reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 equivalents.<br />

Σ ROI < 24 m<strong>on</strong>ths, guaranteed<br />

< 12 m<strong>on</strong>ths, mostly<br />

* Maximum value proven by customer data<br />

Table 2: Ladle heating systems: benefits / value propositi<strong>on</strong><br />

Fig. 4: Heating system for casting moulds<br />

ing’) is not l<strong>on</strong>ger a miracle. The required investments<br />

pay back in less than 24 m<strong>on</strong>ths –<br />

a must in times <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing resource efficiency<br />

c<strong>on</strong>straints (see Table 1).<br />

Ladle heating systems: preheating<br />

allows energy savings <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 65%<br />

The transport ladles lined with refractory material<br />

are heated to a target temperature in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> empty state. A well-adapted insulated cap,<br />

which includes <str<strong>on</strong>g>the</str<strong>on</strong>g> burner, is placed <strong>on</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Usually your investment is recovered within a<br />

period <str<strong>on</strong>g>of</str<strong>on</strong>g> max. 12 m<strong>on</strong>ths. We will compile you<br />

with a detailed amortizati<strong>on</strong> calculati<strong>on</strong> with<br />

every <str<strong>on</strong>g>of</str<strong>on</strong>g>fer you receive from us.<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ladle. The burner transmits <str<strong>on</strong>g>the</str<strong>on</strong>g> heat <strong>on</strong>to<br />

a radiating body which transfers <str<strong>on</strong>g>the</str<strong>on</strong>g> combusti<strong>on</strong><br />

energy as infrared radiati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> lining<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ladle.<br />

The heat is homogeneously and effectively<br />

transmitted all over <str<strong>on</strong>g>the</str<strong>on</strong>g> ladle wall. The hot<br />

gas flow is directed to <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ladle<br />

and afterwards through a slit between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

radiating body and <str<strong>on</strong>g>the</str<strong>on</strong>g> lining <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ladle to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> hot gas outlet, whereby <str<strong>on</strong>g>the</str<strong>on</strong>g> heat transfer<br />

is additi<strong>on</strong>ally improved. The promeos ladle<br />

heating substitutes existing ‘fires’ to closed<br />

systems with energy savings <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 65%. It<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>refore combines maximum energy efficiency<br />

with ideal industrial safety and maximum<br />

process reliability.<br />

Reliable Drying and Sintering: The variable<br />

power c<strong>on</strong>trol enables <str<strong>on</strong>g>the</str<strong>on</strong>g> realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ex-<br />

Fig. 5:<br />

Ladle heating<br />

system<br />

act given drying and sintering pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles and in<br />

additi<strong>on</strong> an optimum stand-by functi<strong>on</strong>ality<br />

with minimum energy c<strong>on</strong>sumpti<strong>on</strong>. promeos’<br />

ladle heating systems is a reliable soluti<strong>on</strong> for<br />

an optimum casting process (see Fig. 3 and<br />

Table 2).<br />

Heating <str<strong>on</strong>g>of</str<strong>on</strong>g> launders and filter<br />

boxes: for a better process c<strong>on</strong>trol<br />

The above explained advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> homogeneously<br />

and efficiently heated ladles are also<br />

valid for launders and filter boxes – <str<strong>on</strong>g>the</str<strong>on</strong>g> better<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> material transportati<strong>on</strong> systems, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

better <str<strong>on</strong>g>the</str<strong>on</strong>g> casting quality.<br />

promeos burner systems, integrated into<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> lid <str<strong>on</strong>g>of</str<strong>on</strong>g> filter or into <str<strong>on</strong>g>the</str<strong>on</strong>g> covers <str<strong>on</strong>g>of</str<strong>on</strong>g> launders<br />

provide a homogeneous heating <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> filter<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> refractory lining. While hot spots are<br />

avoided and <str<strong>on</strong>g>the</str<strong>on</strong>g> lifetime <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> refractory is<br />

enhanced, <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid<br />

metal can be reduced tremendously. Increased<br />

energy efficiency by reduced melting temperatures<br />

and improved material quality are evident<br />

(see Fig. 6 and 7 and Table 3 next page).<br />

64 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


New: Hot air heating system<br />

for industrial applicati<strong>on</strong>s<br />

promeos <str<strong>on</strong>g>of</str<strong>on</strong>g>fers a compact and mobile, robust<br />

and modular hot air heating system for industrial<br />

applicati<strong>on</strong>s – to be used for drying, preheating,<br />

tempering or whatsoever.<br />

Fig. 6: Heating system for filterboxes<br />

Operating mode: The exhaust gases <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

central burner are mixed with sec<strong>on</strong>dary air in<br />

a compact mixing chamber inside <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> heating<br />

system. While <str<strong>on</strong>g>the</str<strong>on</strong>g> burner c<strong>on</strong>trol defines<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> heat capacity, <str<strong>on</strong>g>the</str<strong>on</strong>g> air (heating) temperaure<br />

can be c<strong>on</strong>trolled by <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> exhaust<br />

gas and sec<strong>on</strong>dary air mass flow (see Fig. 8).<br />

The hot air is <str<strong>on</strong>g>of</str<strong>on</strong>g>fered as point source, line<br />

source, area source or 3D source using different<br />

nozzles, almost unlimited applicati<strong>on</strong>s<br />

flexibility, which was <strong>on</strong>ly known from electrically<br />

heated blowers up to now.<br />

Fig. 7: Heating system for launders<br />

MELTING, RECYCLING & HEAT TREATMENT<br />

promeos <str<strong>on</strong>g>of</str<strong>on</strong>g>fers ‘gas heat in electric quality’<br />

without <str<strong>on</strong>g>the</str<strong>on</strong>g> existing shortcomings <str<strong>on</strong>g>of</str<strong>on</strong>g> electrical<br />

hot air guns such as limited temperature,<br />

limited power density or limited lifetime due<br />

to unsatisfying robustness.<br />

The hot air heating system from promeos<br />

is designed even for rough boundary c<strong>on</strong>diti<strong>on</strong>s,<br />

such as steel plants and foundries etc..<br />

It is both robust and compact and can be used<br />

stati<strong>on</strong>ary and as mobile heat source. A crane<br />

Fig. 8: Operating range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hot air heating system for industrial applicati<strong>on</strong>s<br />

hook and transportati<strong>on</strong> wheels enables <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

user to move it quickly where it is needed.<br />

Benefits: While <str<strong>on</strong>g>the</str<strong>on</strong>g> cost saving potential<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 50% through substituting electrical energy<br />

by gas is self-arguing, a CO 2-reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more<br />

+ no loss <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature / no freezing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

melt<br />

The extremely uniform heating <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> refractory<br />

surface and <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> filters prevents an unc<strong>on</strong>trol-<br />

led cooling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> melt.<br />

+ no overheating <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> furnaces The heat loss from <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace to <str<strong>on</strong>g>the</str<strong>on</strong>g> casting stati<strong>on</strong><br />

can be reduced / prevented so far, that an<br />

unwanted overheating <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> furnaces can be<br />

avoided.<br />

+ increased durability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> refractory materials So called ‘hot spots’ that are due to local fire<br />

or flames as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-uniform heating <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> launders and filters are completely avoided.<br />

Thereby <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmo-mechanical loading is significantly<br />

reduced and <str<strong>on</strong>g>the</str<strong>on</strong>g> lifetime <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material<br />

is increased.<br />

+ reduced energy c<strong>on</strong>sumpti<strong>on</strong> An overheating <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> furnaces is not necessary.<br />

+ increased product quality The material is melted, prepared, transported and<br />

casted at an optimum metallurgical temperature.<br />

+ lower costs The saving <str<strong>on</strong>g>of</str<strong>on</strong>g> energy costs and <str<strong>on</strong>g>the</str<strong>on</strong>g> avoidance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

‘warm casting / tapping’ lead to lower operating<br />

costs without plant down-times and thus to higher<br />

productivity.<br />

Σ ROI < 24 m<strong>on</strong>ths, guaranteed<br />

< 12 m<strong>on</strong>ths, mostly<br />

Table 3: Heating <str<strong>on</strong>g>of</str<strong>on</strong>g> launders and filterboxes: benefits / value propositi<strong>on</strong><br />

than 60% in Germany and most world markets<br />

is worth to be menti<strong>on</strong>ed.<br />

promeos has set new standards in pre-<br />

heating soluti<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> casting industry.<br />

Based <strong>on</strong> its unique combusti<strong>on</strong> technology,<br />

promeos developed from a technology supplier<br />

to a reliable system manufacturer and<br />

service supplier. Energy efficiency, product<br />

quality and process reliability were and are<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> driving force. Future subjects in product<br />

development focus <strong>on</strong> a new type <str<strong>on</strong>g>of</str<strong>on</strong>g> melting<br />

and tempering furnace and fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r energy<br />

efficiency improvements including internal<br />

energy recovery by combusti<strong>on</strong> air preheating.<br />

�<br />

Usually your investment is recovered within a<br />

period <str<strong>on</strong>g>of</str<strong>on</strong>g> max. 12 m<strong>on</strong>ths. We will compile you<br />

with a detailed amortizati<strong>on</strong> calculati<strong>on</strong> with<br />

every <str<strong>on</strong>g>of</str<strong>on</strong>g>fer you receive from us.<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 65


MELTING, RECYCLING & HEAT TREATMENT<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> gaseous pyrolysis<br />

products <strong>on</strong> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> recycling yield<br />

1 Jar<strong>on</strong>i, B.; 1 Gisbertz, K.; 2 Rombach, G.; 1 Friedrich, B.<br />

1 RWTH Aachen University, IME Process Metallurgy and Metals Recycling, Germany<br />

2 Hydro Aluminium Rolled Products GmbH, Germany<br />

After a coated aluminum product has<br />

reached <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> life cycle it needs to<br />

be recycled in an ec<strong>on</strong>omical, effective<br />

and ecological way. State-<str<strong>on</strong>g>of</str<strong>on</strong>g>-<str<strong>on</strong>g>the</str<strong>on</strong>g>-art is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal removal <str<strong>on</strong>g>of</str<strong>on</strong>g> coatings and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r organic<br />

fracti<strong>on</strong>s via treatment by pyrolysis<br />

prior to melting. In modern twin chamber<br />

furnaces this step takes place inside <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

scrap melting chamber. Through different<br />

c<strong>on</strong>structi<strong>on</strong> methods, it is possible<br />

to use <str<strong>on</strong>g>the</str<strong>on</strong>g> gaseous pyrolysis products for<br />

an internal combusti<strong>on</strong> in order to safe<br />

<str<strong>on</strong>g>natural</str<strong>on</strong>g> gas. Lab-scale experiments have<br />

shown that <str<strong>on</strong>g>the</str<strong>on</strong>g> average residence time is<br />

too short to complete <str<strong>on</strong>g>the</str<strong>on</strong>g> pyrolysis. It has<br />

to be c<strong>on</strong>sidered that <str<strong>on</strong>g>the</str<strong>on</strong>g> pyrolysis c<strong>on</strong>tinuous<br />

while <str<strong>on</strong>g>the</str<strong>on</strong>g> scrap block is pushed<br />

under <str<strong>on</strong>g>the</str<strong>on</strong>g> aluminum melt. By reas<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this producti<strong>on</strong> procedure, gaseous reacti<strong>on</strong><br />

products, e. g. CO, CO 2 and C xH y,<br />

have a l<strong>on</strong>g c<strong>on</strong>tact time inside <str<strong>on</strong>g>the</str<strong>on</strong>g> melt.<br />

It is assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g> dross formati<strong>on</strong><br />

increases rapidly as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> various<br />

gas-melt reacti<strong>on</strong>s. Based <strong>on</strong> this assumpti<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this work is <str<strong>on</strong>g>the</str<strong>on</strong>g> evaluati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> gaseous pyrolysis<br />

reacti<strong>on</strong> products <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> dross formati<strong>on</strong><br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> in lab-scale experiments.<br />

Therefore, typical pyrolysis gases<br />

are injected into <str<strong>on</strong>g>the</str<strong>on</strong>g> melt via a gas purging<br />

device. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> magnesium<br />

c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> aluminum melt is varied to<br />

show its impact in additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> gases.<br />

1 Introducti<strong>on</strong><br />

The pyrolytic process in chamber furnaces is<br />

located <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> bridge inside <str<strong>on</strong>g>the</str<strong>on</strong>g> scrap melting<br />

chamber. In modern twin chamber furnaces<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> average charging time is 25 minutes. The<br />

time interval depends <strong>on</strong> bath temperature,<br />

bath level, atmosphere compositi<strong>on</strong> and security<br />

door lock time. This time interval simultaneously<br />

limits <str<strong>on</strong>g>the</str<strong>on</strong>g> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scrap heating,<br />

organic scissi<strong>on</strong> and combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> released<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> scrap surface. With <str<strong>on</strong>g>the</str<strong>on</strong>g> next<br />

scrap charge <str<strong>on</strong>g>the</str<strong>on</strong>g> de-coated scrap is pushed into<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> aluminum melt which means that charging<br />

time is equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

pretreatment. The industrial de-coating time<br />

Fig. 1: Balance <str<strong>on</strong>g>of</str<strong>on</strong>g> forces<br />

seems to be too short for a complete pyrolysis<br />

step especially inside compacted scrap, e.g.<br />

coil-leftovers and packages. The de-coating<br />

grade is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time, temperature, heat<br />

transfer and package density. In comparis<strong>on</strong><br />

with aluminum blocks <str<strong>on</strong>g>the</str<strong>on</strong>g> heat transfer <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

scrap packages is reduced. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

package structure <str<strong>on</strong>g>the</str<strong>on</strong>g> pyrolysis products cannot<br />

leave <str<strong>on</strong>g>the</str<strong>on</strong>g> compacted material with a typical<br />

density is well below 2 g/cm 3 .<br />

2 Gas-liquid reacti<strong>on</strong>s<br />

The reacti<strong>on</strong> between gaseous reacti<strong>on</strong> products<br />

and liquid aluminum follows a certain<br />

pattern. The bubble formati<strong>on</strong> depends <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> medium. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

scrap package <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a high variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

hole diameter. Generally speaking, <str<strong>on</strong>g>the</str<strong>on</strong>g> bubble<br />

diameter is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface tensi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pore diameter and <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> formed gas.<br />

With a porous medium as gas distributor <strong>on</strong>ly<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> larges pores are outgassing at low gas flow<br />

rates. An increasing gas flow rate also enables<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> gas evoluti<strong>on</strong> <strong>on</strong> / at / <str<strong>on</strong>g>of</str<strong>on</strong>g> smaller openings,<br />

so that <str<strong>on</strong>g>the</str<strong>on</strong>g> gas flow is distributed more <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

entire surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> porous medium. The most<br />

comm<strong>on</strong> example <str<strong>on</strong>g>of</str<strong>on</strong>g> viewing bubble formati<strong>on</strong><br />

as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bubble size goes back to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

balancing forces <str<strong>on</strong>g>of</str<strong>on</strong>g> a single bubble (Fig. 1).<br />

Depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> predominant /prevailing<br />

bubble formati<strong>on</strong> mechanism, some forces are<br />

negligible. The directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resistance force<br />

is a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid stream. In quiescent<br />

fluids <str<strong>on</strong>g>the</str<strong>on</strong>g> breakaway point <str<strong>on</strong>g>of</str<strong>on</strong>g> bubbles is later<br />

than in turbulent fluids. The bubble size can be<br />

calculated with equati<strong>on</strong> 1. [1] (1)<br />

d[(p] gV Bv)<br />

⎯⎯⎯⎯⎯ = F inertia = F Resistance = F Flotati<strong>on</strong><br />

dt<br />

= F Pressure = F σ = F virtual Mass<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> scrap melting chamber <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s<br />

are turbulent because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electromagnetic<br />

pumps (EMP) which are used to homogenize<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> melt temperature as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> alloying<br />

element pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile in <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace and c<strong>on</strong>sequently<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> melting rate. In this<br />

paper we will focus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmochemical<br />

modelling and <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> our<br />

results.<br />

3 Thermochemical modelling<br />

‘FactSage’ is used for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmochemical<br />

modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> melting experiments to provide<br />

an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> possible reacti<strong>on</strong>s<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir reacti<strong>on</strong> products. It is taken into<br />

account in all <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong>s shown in<br />

this chapter that <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s are always<br />

based <strong>on</strong> reacti<strong>on</strong> equilibrium. The modelling<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware FactSage can access various materials<br />

databases (here Fact53, SGPS and SGTE).<br />

The equilibrium phases, which represent <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

system with <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest total free enthalpy as<br />

a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> predetermined variables is based<br />

<strong>on</strong> Steady state c<strong>on</strong>diti<strong>on</strong>s. The temperature<br />

is set to 750°C while <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> melt<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> added gas are set to 1 bar. The high<br />

metal volume used in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s has<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sequence that <str<strong>on</strong>g>the</str<strong>on</strong>g> gases CO 2, CH 4 and<br />

CO are completely c<strong>on</strong>verted into solid reac-<br />

66 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


Fig. 2: Equilibrium phases for <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 2350 g AlMg3 + CO 2 with <br />

up to 15 mol and under c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxycarbide phases<br />

Fig. 3: Al and Mg losses in relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg c<strong>on</strong>tent and injected gas<br />

Fig. 4: Experimental setup with used gas analyzing system<br />

MELTING, RECYCLING & HEAT TREATMENT<br />

ti<strong>on</strong> products except for H 2.<br />

In industrial scale <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace atmosphere including <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

injected gas is c<strong>on</strong>stantly replaced and <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining gaseous<br />

products are c<strong>on</strong>tinuously removed from <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> chamber.<br />

Accordingly <str<strong>on</strong>g>the</str<strong>on</strong>g> real system is an open <strong>on</strong>e.<br />

An example for a typical calculati<strong>on</strong> d<strong>on</strong>e in this project<br />

can be seen in Fig. 2. In this calculati<strong>on</strong> <strong>on</strong>e liter <str<strong>on</strong>g>of</str<strong>on</strong>g> AlMg3 alloy<br />

melt reacts with a variable amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2. The main products<br />

are MgO, Al 2O 3, Al 4C 3, MgAl 2O 4 and Al 2CO.<br />

It is easy to recognize that in <str<strong>on</strong>g>the</str<strong>on</strong>g> range up to 1.5 mol CO 2<br />

magnesium is preferably oxidized from <str<strong>on</strong>g>the</str<strong>on</strong>g> alloy melt, while<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gas is fully c<strong>on</strong>verted into Al 4C 3.<br />

Magnesium is no l<strong>on</strong>ger present in <str<strong>on</strong>g>the</str<strong>on</strong>g> melt at at an additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1.5 mol CO 2. At that point aluminum c<strong>on</strong>sumpti<strong>on</strong> increases.<br />

When <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 reaches three mol, <str<strong>on</strong>g>the</str<strong>on</strong>g> balance<br />

shifts increasingly to <str<strong>on</strong>g>the</str<strong>on</strong>g> oxycarbide phase Al 2CO, while <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> MgO phase remains c<strong>on</strong>stant. Above three moles<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no more aluminum carbide in <str<strong>on</strong>g>the</str<strong>on</strong>g> system. At<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same point magnesium <str<strong>on</strong>g>oxide</str<strong>on</strong>g> is transformed into <str<strong>on</strong>g>the</str<strong>on</strong>g> spinel<br />

MgAl 2O 4, so that <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> this equilibrium phase starts<br />

to increase. The magnesium <str<strong>on</strong>g>oxide</str<strong>on</strong>g> is completely transformed<br />

into <str<strong>on</strong>g>the</str<strong>on</strong>g> spinel at a CO 2 c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 11.5 mol. Alumina<br />

appears as an additi<strong>on</strong>al oxidati<strong>on</strong> product <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> between<br />

aluminum and carb<strong>on</strong> di<str<strong>on</strong>g>oxide</str<strong>on</strong>g> as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> complete<br />

c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> MgO.<br />

In Fig. 3 <str<strong>on</strong>g>the</str<strong>on</strong>g> specific metal losses are presented in a bar<br />

chart diagram. The diagram shows <str<strong>on</strong>g>the</str<strong>on</strong>g> simulated aluminum and<br />

magnesium losses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> three investigated alloys. The results<br />

are grouped by <str<strong>on</strong>g>the</str<strong>on</strong>g> intended alloy and <str<strong>on</strong>g>the</str<strong>on</strong>g> gas species in different<br />

colours. The aluminum losses are shown in <str<strong>on</strong>g>the</str<strong>on</strong>g> lower<br />

bar part, while <str<strong>on</strong>g>the</str<strong>on</strong>g> magnesium losses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> AlMg alloys are<br />

added above in a weaker colour. The calculati<strong>on</strong>s revealed<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> metal losses for circa 87 mol aluminum or aluminum alloy<br />

(2,350 g) by additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 mol <str<strong>on</strong>g>of</str<strong>on</strong>g> gas. The parameters have<br />

been pre-estimated to provide <str<strong>on</strong>g>the</str<strong>on</strong>g> opportunity to compare <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental results. As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this <strong>on</strong>e mol <str<strong>on</strong>g>of</str<strong>on</strong>g> injected gas is used in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s, leading<br />

to a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen in <str<strong>on</strong>g>the</str<strong>on</strong>g> system for full magnesium oxida-<br />

ti<strong>on</strong>. As a result <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no observable difference between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

AlMg3 and <str<strong>on</strong>g>the</str<strong>on</strong>g> AlMg5 alloy in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>.<br />

4 Experiment<br />

4.1 Experimental setup: For <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental campaign <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

work three different aluminum alloys AlMg3, AlMg5 and pure<br />

Al were used. The feeding material <str<strong>on</strong>g>of</str<strong>on</strong>g> all experiments has always<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same size and surface in order to minimize a failure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> different aluminum <str<strong>on</strong>g>oxide</str<strong>on</strong>g> amounts inherent to <str<strong>on</strong>g>the</str<strong>on</strong>g> charge<br />

materials. CO, CO 2 and CH 4 as typical de-coating products<br />

are injected into <str<strong>on</strong>g>the</str<strong>on</strong>g> melt. The following sketch (Fig. 4) shows<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> experimental setup.<br />

All experiments are realized in an inducti<strong>on</strong> furnace. The<br />

used Al 2O 3 crucible has a volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.3 litres. The inducti<strong>on</strong><br />

coil is installed into a vacuum chamber which allows c<strong>on</strong>trolling<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere inside <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace. In all experiments <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

furnace atmosphere is 100% N 2. To realize a c<strong>on</strong>stant N 2 flow<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> gas is injected at <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace bottom while <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure is<br />

kept at 1 bar by an over pressure valve at <str<strong>on</strong>g>the</str<strong>on</strong>g> upper furnace. For<br />

injecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different gasses into <str<strong>on</strong>g>the</str<strong>on</strong>g> melt a glass lance is used.<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 67


MELTING, RECYCLING & HEAT TREATMENT<br />

Fig. 5: a) Gas injecti<strong>on</strong> system; b) Inducti<strong>on</strong> coil with hood<br />

An exhaust hood above <str<strong>on</strong>g>the</str<strong>on</strong>g> crucible is used to<br />

collect <str<strong>on</strong>g>the</str<strong>on</strong>g> gaseous reacti<strong>on</strong> products and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

unc<strong>on</strong>sumed gasses. An exhaust fan supplies<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>line quality gas measurement with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

collected gasses. To make sure that no furnace<br />

atmosphere is sucked into <str<strong>on</strong>g>the</str<strong>on</strong>g> hood during <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

experiment more gas is injected than removed<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> fan. Due to that <str<strong>on</strong>g>the</str<strong>on</strong>g> system has a slight<br />

over pressure under <str<strong>on</strong>g>the</str<strong>on</strong>g> hood, too.<br />

Fig. 5a) shows a drawing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gas injecti<strong>on</strong><br />

system. The inducti<strong>on</strong> coil and <str<strong>on</strong>g>the</str<strong>on</strong>g> used hood<br />

to collect <str<strong>on</strong>g>the</str<strong>on</strong>g> gaseous products are shown in<br />

Fig. 5b).<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> first experimental campaign 12 tests<br />

are performed (Table 1). The gas injecti<strong>on</strong> time<br />

is limited by <str<strong>on</strong>g>the</str<strong>on</strong>g> crucible volume. The injecti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gas was stopped when <str<strong>on</strong>g>the</str<strong>on</strong>g> crucible is<br />

fully filled by dross. The gas compositi<strong>on</strong> is<br />

limited by <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> installed gas analyzing<br />

system and also for security reas<strong>on</strong>s.<br />

4.2 Results<br />

a) b)<br />

In Fig. 6 <str<strong>on</strong>g>the</str<strong>on</strong>g> metal losses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tests are presented.<br />

They are grouped according to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

used feedstock materials. The chart shows <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

gross-remelting losses, which are calculated<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> final weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cast to initial<br />

weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> feedstock, see equati<strong>on</strong> 2.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> gross-remelting losses <str<strong>on</strong>g>the</str<strong>on</strong>g> metal c<strong>on</strong>tent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dross is not c<strong>on</strong>sidered. The column<br />

chart compares <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> different gases<br />

as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main alloying<br />

element (magnesium) <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> gross-remelting<br />

losses.<br />

The metal losses decrease for all three materials<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 , CO and CH4 . The<br />

c<strong>on</strong>trol experiments already indicated significant<br />

losses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> melt phase. In presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

magnesium <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> di<str<strong>on</strong>g>oxide</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

metal losses are doubled. The maximum loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> more than 45% is represent by <str<strong>on</strong>g>the</str<strong>on</strong>g> combinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> alloy AlMg3 and CO2 as injected<br />

gas. A linear dependence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> magnesium<br />

c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> alloy to <str<strong>on</strong>g>the</str<strong>on</strong>g> gross metal loss is<br />

not evident.<br />

To divide <str<strong>on</strong>g>the</str<strong>on</strong>g> metallic part from <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>metallic<br />

dross comp<strong>on</strong>ents a subsequent salt<br />

melt step is c<strong>on</strong>ducted. A typical salt flux (55%<br />

Experiment No. Injected gas compositi<strong>on</strong> Mg-C<strong>on</strong>tentin Mass.-% Treatment in min<br />

NV1 N2 (Chamber atmosphere) 0 120<br />

NV2 N2 (Chamber atmosphere) 2.82 20<br />

NV3 N2 (Chamber atmosphere) 4.86 20<br />

HV1KD Ar + 15 Vol.-% CO 2 0 32<br />

HV2KD Ar + 15 Vol.-% CO 2 2.82 21<br />

HV3KD Ar + 15 Vol.-% CO 2 4.86 14<br />

HV4KM Ar + 7 Vol.-% CO 0 32<br />

HV5KM Ar + 7 Vol.-% CO 2.82 20<br />

HV6KM Ar + 7 Vol.-% CO 4.86 20<br />

HV7KW Ar + 5 Vol.-% CH 4 0 19<br />

HV8KW Ar + 5 Vol.-% CH 4 2.82 19<br />

HV9KW Ar + 5 Vol.-% CH 4 4.86 19<br />

Table 1: Experimental plan<br />

Fig. 6: Gross-remelting losses<br />

mcast<br />

remelting loss gross in % = ⎯⎯⎯⎯ (2)<br />

m feedstock<br />

NaCl, 45% KCl and ≤ 1% CaF 2 ) is used. To<br />

guarantee a complete separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metal and<br />

dross a high salt factor is adjusted.<br />

The net-remelting losses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> melting experiments<br />

can be determined from <str<strong>on</strong>g>the</str<strong>on</strong>g> measured<br />

metal yields <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> salt experiments, see<br />

equati<strong>on</strong> 3: (3)<br />

mcast + m recovered from dross<br />

remelting loss net in % = ⎯⎯⎯⎯⎯⎯⎯⎯⎯<br />

m feedstock<br />

The results are shown in Fig. 7. The metal<br />

c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dross vary between 30 and<br />

97% (average 70%). The net metal losses decrease<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> same way like <str<strong>on</strong>g>the</str<strong>on</strong>g> gross metal<br />

losses according to <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

treatment gas, in <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 , CO and<br />

CH 4 . The net-remelting losses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol<br />

experiments increase from 0.1% via 0.4%<br />

through to 1.3% with rising magnesium c<strong>on</strong>tent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> melt. In c<strong>on</strong>trast to <str<strong>on</strong>g>the</str<strong>on</strong>g> gross metal<br />

losses <str<strong>on</strong>g>the</str<strong>on</strong>g> losses after metal separati<strong>on</strong> by<br />

salt treatment rise for all three injected gases<br />

with increasing magnesium c<strong>on</strong>tent. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

metal loss values for CO and CH 4 treatment<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> three points show a linear dependence<br />

<strong>on</strong> magnesium c<strong>on</strong>centrati<strong>on</strong>.<br />

Comparing <str<strong>on</strong>g>the</str<strong>on</strong>g> gross and net metal losses it<br />

is good to see that <str<strong>on</strong>g>the</str<strong>on</strong>g> dross has a high metal<br />

c<strong>on</strong>tent. This can be a result <str<strong>on</strong>g>of</str<strong>on</strong>g> dross handling<br />

and manual stripping but it can also be a result<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dross structure. It could be observed<br />

that especially in experiments with CO 2 injecti<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> dross structure had a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>layer</str<strong>on</strong>g>s each<br />

with metal film.<br />

Before <str<strong>on</strong>g>the</str<strong>on</strong>g> dross is remelted under salt<br />

some samples are taken to analyze parts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> dross. The sampling is accomplished by<br />

optical criteria. XRD analyses have proven<br />

nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r carbide nor oxycarbide phase while<br />

EDX analyses have shown <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriate<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Al, O and C, so that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is<br />

68 <strong>ALU</strong>MINIUM · EAC CONGRESS 2011


Fig. 7: Net-remelting losses<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> an existing Aluminum-oxycarbide<br />

phase. Fig. 8 illustrates a typical SEM<br />

picture <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e sample which is taken from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

red marked area (see macroscopic photography<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper right).<br />

The average element level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two red<br />

marked areas c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> 17,10 At.-% C, 18,70<br />

At.-% O, 8,63 At.-% Mg and 55,58 At.-% Al<br />

(Fig. 8). The atomic comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum<br />

and carb<strong>on</strong> are str<strong>on</strong>gly represented. In c<strong>on</strong>trast<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> XRD analysis includes <str<strong>on</strong>g>the</str<strong>on</strong>g> EDX<br />

analysis <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

carbide phase (Al 4 C 3 ) and <str<strong>on</strong>g>the</str<strong>on</strong>g> oxycarbid phase<br />

(Al 2 OC).<br />

Fig. 8: SEM picture <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> analyzed area (Experiment HV6KM)<br />

5 C<strong>on</strong>clusi<strong>on</strong>s<br />

MELTING, RECYCLING & HEAT TREATMENT<br />

It should be underlined that all identified dependencies<br />

are related to <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental<br />

scale <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e litre <str<strong>on</strong>g>of</str<strong>on</strong>g> melt. The behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> dynamics in a multiple chamber<br />

furnace can <strong>on</strong>ly carried out partially based<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> performed experiments. The interacti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> pyrolysis product gases and <str<strong>on</strong>g>the</str<strong>on</strong>g> aluminum<br />

melt and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> produced dross<br />

amount can diversify significantly through<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> increased scale and should <str<strong>on</strong>g>the</str<strong>on</strong>g>refore be<br />

tested in scale up trials.<br />

The definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> direct reacti<strong>on</strong> prod-<br />

ucts (mechanism) in accordance with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

structural analysis is difficult, because <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>e hand, a subsequent oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> possibly<br />

formed carbides and oxycarbides seems to<br />

be likely, and <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, due to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

high aluminum c<strong>on</strong>tent in <str<strong>on</strong>g>the</str<strong>on</strong>g> taken samples<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> limit for minor comp<strong>on</strong>ents is<br />

quickly reached. Since carbide or oxycarbides<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sidered regi<strong>on</strong> were not detected, it<br />

is unclear whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> result from FactSage<br />

issued for equilibrium phases are correct at<br />

all or if <str<strong>on</strong>g>the</str<strong>on</strong>g> phases are not present because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir post-oxidati<strong>on</strong> under normal atmosphere.<br />

Since <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmochemical modelling<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> melting experiments refers to <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong><br />

equilibrium also a kinetic inhibiti<strong>on</strong> cannot<br />

be excluded.<br />

The remelting losses decrease with decreasing<br />

oxygen c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment gases, in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> order from CO 2 , CO, CH 4 . By varying <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

feed material it has to be noted that <str<strong>on</strong>g>the</str<strong>on</strong>g> influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> each gas increases with increasing<br />

magnesium c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> melt. This trend is<br />

c<strong>on</strong>firmed by <str<strong>on</strong>g>the</str<strong>on</strong>g> net metal losses, additi<strong>on</strong>ally<br />

approved by <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>line gas measurement.<br />

Acknowledgement<br />

The authors would like to thank <str<strong>on</strong>g>the</str<strong>on</strong>g> Hydro<br />

Aluminium Rolled Products GmbH for funding<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> studies, providing scrap materials for<br />

trails and also for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir analytical support.<br />

References<br />

[1] Jar<strong>on</strong>i, B., Lucht, A., et al.: C<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Pyrolythic<br />

Processes in Multi Chamber Furnaces for<br />

Aluminium Recycling, Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> European<br />

Metallurgical C<strong>on</strong>ference EMC 2011<br />

[2] Gnotke, O.: Experimentelle und <str<strong>on</strong>g>the</str<strong>on</strong>g>oretische<br />

Untersuchungen zur Bestimmung v<strong>on</strong> veränderlichen<br />

Blasengrößen und Blasengrößenverteilungen<br />

in turbulenten Gas-Flüssgkeitsströmungen,<br />

Dissertati<strong>on</strong>, Fachbereich Maschinenbau, TU Darmstadt,<br />

2004<br />

[3] v<strong>on</strong> Röpenack, I.: Minimierung v<strong>on</strong> Chlorgasemissi<strong>on</strong>en<br />

bei der Spülgasraffinati<strong>on</strong> v<strong>on</strong> Aluminiumschmelze,<br />

Dissertati<strong>on</strong>, IME Aachen – Institut für<br />

Metallhüttenkunde und Elektrometallurgie, 1997<br />

[4]Antrekowitsch, H. et al.: Spülgastechnik in der<br />

Kupferindustrie, in Berg- und Hüttenmännische<br />

M<strong>on</strong>atshefte, 149. Jahrgang, Heft Nr. 3, S.186-192,<br />

2004<br />

�<br />

Latest News<br />

www.alu-web.de<br />

<strong>ALU</strong>MINIUM · EAC CONGRESS 2011 69


SESSION SOFTWARE & SIMULATION<br />

Optimizing <str<strong>on</strong>g>the</str<strong>on</strong>g> energy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coil annealing<br />

furnaces by ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> annealing process<br />

Günter Valder and Bernd Deimann, Otto Junker GmbH<br />

Multi-coil annealing furnaces <str<strong>on</strong>g>of</str<strong>on</strong>g> Otto Junker design<br />

The coils <str<strong>on</strong>g>of</str<strong>on</strong>g> strip made in <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> mills by<br />

hot and cold rolling are subjected to a variety<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> intermediate and finish annealing treat-<br />

ments for metallurgical reas<strong>on</strong>s. It is comm<strong>on</strong><br />

practice that coils <str<strong>on</strong>g>of</str<strong>on</strong>g> different alloy compositi<strong>on</strong>,<br />

geometry and residual heat c<strong>on</strong>tent<br />

are placed in shop floor buffer storage and<br />

allowed to cool down before undergoing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

actual heat treatment in so-called chamber<br />

furnaces.<br />

Chamber furnaces may be <str<strong>on</strong>g>of</str<strong>on</strong>g> single or<br />

multi-coil design. A major benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> single-coil<br />

units, as <str<strong>on</strong>g>the</str<strong>on</strong>g> name implies, is that <str<strong>on</strong>g>the</str<strong>on</strong>g>y allow<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> operator to anneal each coil individually.<br />

As a result, a change <str<strong>on</strong>g>of</str<strong>on</strong>g> alloy, product geometry<br />

or start temperature is easily possible between<br />

batches.<br />

Drawbacks <str<strong>on</strong>g>of</str<strong>on</strong>g> this equipment type include<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> large space requirement, relatively high<br />

investment cost and somewhat higher specific<br />

energy needs, all <str<strong>on</strong>g>of</str<strong>on</strong>g> which must be taken into<br />

account. In view <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se factors, multi-coil<br />

furnaces still have <str<strong>on</strong>g>the</str<strong>on</strong>g>ir justificati<strong>on</strong>. Let’s<br />

briefly review <str<strong>on</strong>g>the</str<strong>on</strong>g> status <str<strong>on</strong>g>of</str<strong>on</strong>g> some recent Otto<br />

Junker developments here, which are expected<br />

to implement <str<strong>on</strong>g>the</str<strong>on</strong>g> aforementi<strong>on</strong>ed advantages<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> single-coil furnace in <str<strong>on</strong>g>the</str<strong>on</strong>g> multi-coil unit<br />

to a very broad extent.<br />

One requirement in multi-coil furnace operati<strong>on</strong><br />

is that <str<strong>on</strong>g>the</str<strong>on</strong>g> coils placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace<br />

should have <str<strong>on</strong>g>the</str<strong>on</strong>g> same geometry and start<br />

temperature so that <str<strong>on</strong>g>the</str<strong>on</strong>g> desired metallurgical<br />

properties can be obtained in a reproducible<br />

manner by <str<strong>on</strong>g>the</str<strong>on</strong>g> recipe-based heat treatment.<br />

Major deviati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se two parameters<br />

can be allowed if <str<strong>on</strong>g>the</str<strong>on</strong>g> coil temperatures are<br />

measured throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> heat treatment cycle<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>se temperature readings are fed to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

furnace c<strong>on</strong>trol system. For c<strong>on</strong>trol purposes<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> multi-coil furnace is divided into several<br />

individually c<strong>on</strong>trolled<br />

heating<br />

z<strong>on</strong>es with a view<br />

to heating each coil<br />

separately by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

jet heating principle<br />

using specially<br />

designed nozzle<br />

fields.<br />

Coil temperature<br />

measurements<br />

can be taken via<br />

c<strong>on</strong>tact <str<strong>on</strong>g>the</str<strong>on</strong>g>rmocouples<br />

or by<br />

means <str<strong>on</strong>g>of</str<strong>on</strong>g> shea<str<strong>on</strong>g>the</str<strong>on</strong>g>d<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmocouples em-<br />

bedded in <str<strong>on</strong>g>the</str<strong>on</strong>g> coil.<br />

A disadvantage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se methods is<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> strip sur-<br />

face quality may become locally impaired,<br />

e. g., by imprint marks. Moreover, it is necessary<br />

to allow set-up time for embedding <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

shea<str<strong>on</strong>g>the</str<strong>on</strong>g>d <str<strong>on</strong>g>the</str<strong>on</strong>g>rmocouples into <str<strong>on</strong>g>the</str<strong>on</strong>g> coil, and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

maintenance cost for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact <str<strong>on</strong>g>the</str<strong>on</strong>g>rmocouples<br />

needs to be c<strong>on</strong>sidered as well.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> past few years, Otto Junker has been<br />

able to accumulate initial experience with<br />

ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> heat treatment<br />

processes <strong>on</strong> copper strip treatment lines and<br />

copper billet heaters. It was c<strong>on</strong>firmed that<br />

integrated ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical models can enhance<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> process while also helping<br />

to save energy [1].<br />

The objective defined for <str<strong>on</strong>g>the</str<strong>on</strong>g> heat treatment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> strip coils in multi-coil furnaces was<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each coil<br />

should be calculated in real time, and that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> that calculati<strong>on</strong> should be used as furnace<br />

c<strong>on</strong>trol input. For metallurgical reas<strong>on</strong>s,<br />

a calculati<strong>on</strong> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> better than ± 5 K must<br />

be repeatably achieved in this applicati<strong>on</strong>.<br />

As a general rule, ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical models are<br />

intended to describe a system’s resp<strong>on</strong>se to a<br />

change in exterior relati<strong>on</strong>s.<br />

One critically important task in <str<strong>on</strong>g>the</str<strong>on</strong>g> present<br />

c<strong>on</strong>text lies in computing <str<strong>on</strong>g>the</str<strong>on</strong>g> energy transfer<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid to <str<strong>on</strong>g>the</str<strong>on</strong>g> coil – a step which calls<br />

for an accurate understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying<br />

energy transfer mechanisms. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> heating process is clearly<br />

dominated by <str<strong>on</strong>g>the</str<strong>on</strong>g> forced c<strong>on</strong>vective porti<strong>on</strong>,<br />

although for <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy required, <str<strong>on</strong>g>the</str<strong>on</strong>g> radi-<br />

Diagram 1: Temperature curves obtained for a multi-coil heat treatment furnace.<br />

The diagram shows <str<strong>on</strong>g>the</str<strong>on</strong>g> supply air and return air temperatures (GasInlet, GasOutlet),<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> measured coil temperatures (MeasCoil), and <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between<br />

calculated and measured temperature values (DevCalc Coil3) plotted by way <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

example for Coil 3.<br />

70 <strong>ALU</strong>MINIUM · EAC C<strong>on</strong>gress 2011<br />

Images: Otto Junker


ant heat transfer between <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coil must not be neglected, ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r. To this end,<br />

basic research was undertaken in cooperati<strong>on</strong><br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Aachen<br />

(RWTH) to gain a physically correct grasp<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> key correlati<strong>on</strong>s and to ensure that <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

would be duly represented in <str<strong>on</strong>g>the</str<strong>on</strong>g> ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical<br />

model.<br />

The aim in <str<strong>on</strong>g>the</str<strong>on</strong>g>se investigati<strong>on</strong>s was to<br />

minimize <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters requiring<br />

adaptati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> actual situati<strong>on</strong> during startup<br />

and in subsequent producti<strong>on</strong> operati<strong>on</strong>s,<br />

and to ensure that <str<strong>on</strong>g>the</str<strong>on</strong>g> programmed modules<br />

would be transferable to similar applicati<strong>on</strong>s<br />

elsewhere.<br />

The temperature distributi<strong>on</strong> over space<br />

and time within <str<strong>on</strong>g>the</str<strong>on</strong>g> coil can be described with<br />

sufficient accuracy by a partial differential<br />

equati<strong>on</strong>, assuming c<strong>on</strong>sistent metal characteristics.<br />

Although in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> coils it is necessary<br />

to note significant differences between<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> radial and axial <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal c<strong>on</strong>ductance.<br />

The differential equati<strong>on</strong> is solved by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

finite differences (FD) method, dividing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coil into <str<strong>on</strong>g>layer</str<strong>on</strong>g>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> time into intervals. For<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> FD process to become stable, <str<strong>on</strong>g>the</str<strong>on</strong>g> time<br />

resoluti<strong>on</strong> and spatial resoluti<strong>on</strong> must at all<br />

times be mutually matched <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coil‘s <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal c<strong>on</strong>ductivity.<br />

Once <str<strong>on</strong>g>the</str<strong>on</strong>g> ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical model is calibrated<br />

and stabilized, <str<strong>on</strong>g>the</str<strong>on</strong>g> following benefits are to<br />

be anticipated:<br />

1. Given <str<strong>on</strong>g>the</str<strong>on</strong>g> ability to support greater geometrical<br />

and temperature differences between<br />

coils, <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace can be filled to 100% capacity<br />

more frequently, i. e. furnace capacity<br />

utilizati<strong>on</strong> will be improved while <str<strong>on</strong>g>the</str<strong>on</strong>g> energy<br />

c<strong>on</strong>sumpti<strong>on</strong> is reduced.<br />

2. Since greater temperature differences between<br />

coils are allowed, it will be possible,<br />

ideally, to charge coils in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir ‘as rolled’ temperature<br />

state. As a result, <str<strong>on</strong>g>the</str<strong>on</strong>g> mean temperature<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> heat treatment cycle<br />

will be clearly increased. The energy requirement<br />

will diminish accordingly.<br />

3. Unlike <str<strong>on</strong>g>the</str<strong>on</strong>g> physical temperature measuring<br />

methods menti<strong>on</strong>ed earlier, a ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical<br />

model will need no set-up time or maintenance<br />

in this respect.<br />

The first results obtained with a ma<str<strong>on</strong>g>the</str<strong>on</strong>g>-<br />

Spouts and Stoppers Ceramic Foam Filters<br />

www.drache-gmbh.de · mail@drache-gmbh.de<br />

SESSION SOFTWARE & SIMULATION<br />

matical model developed al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> principles<br />

described above are shown in diagram 1. The<br />

illustrati<strong>on</strong> shows <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

three coils as measured during <str<strong>on</strong>g>the</str<strong>on</strong>g> heat-up<br />

phase. The coils were placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace<br />

with starting temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> 25 to 75°C, and<br />

were heated to <str<strong>on</strong>g>the</str<strong>on</strong>g> same target temperature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 320°C ± 3 K from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir respective state.<br />

For testing purposes, <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace was c<strong>on</strong>trolled<br />

using data from a ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical model<br />

which has been in use since mid-2010. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> Coil 3, <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

measured temperatures (MeasCoil 3) and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculated <strong>on</strong>es are not greater than -1 K and<br />

+ 8 K, respectively, at any time (DevCalcCoil<br />

3). During <str<strong>on</strong>g>the</str<strong>on</strong>g> last third <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> heat-up cycle,<br />

this difference was even better than -1 K and<br />

+ 2 K throughout.<br />

The rise in mean coil temperature prevailing<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> heat treatment will save<br />

energy while also reducing CO 2 emissi<strong>on</strong>s.<br />

Diagram 2 illustrates <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 savings achievable<br />

at different annual annealing capacities<br />

by increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> mean coil temperature at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

start <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> heat treatment cycle. The compar-<br />

For Aluminium DC Casting<br />

<strong>ALU</strong>MINIUM · EAC C<strong>on</strong>gress 2011 71


SESSION SOFTWARE & SIMULATION<br />

Diagram 2: CO 2 savings as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mean coil temperature at <str<strong>on</strong>g>the</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g> heat treatment<br />

is<strong>on</strong> was made between two state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-<str<strong>on</strong>g>the</str<strong>on</strong>g>-art<br />

annealing furnaces <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> multi-coil type. The<br />

reducti<strong>on</strong> in CO 2 output has been calculated<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> specific CO 2 emissi<strong>on</strong> figures<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> current mix <str<strong>on</strong>g>of</str<strong>on</strong>g> electricity sources in<br />

Germany. Around two-thirds <str<strong>on</strong>g>of</str<strong>on</strong>g> this reducti<strong>on</strong><br />

are attributable to fuel savings (assuming<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace is running <strong>on</strong> <str<strong>on</strong>g>natural</str<strong>on</strong>g> gas), <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

remaining <strong>on</strong>e-third reflects electrical power<br />

savings (assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g> increased coil temperature<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> heat treatment will<br />

shorten <str<strong>on</strong>g>the</str<strong>on</strong>g> heat-up cycle and hence, reduce<br />

fan operating times).<br />

In mid-2011, Otto Junker supplied five<br />

multi-coil furnaces – al<strong>on</strong>g with <str<strong>on</strong>g>the</str<strong>on</strong>g> charging<br />

machine and a complete automati<strong>on</strong><br />

system – to Aluminium Norf GmbH. At <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

automati<strong>on</strong> level, a computer cluster linking<br />

Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> seam welds <str<strong>on</strong>g>of</str<strong>on</strong>g> industrial extrusi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles<br />

T. Kloppenborg 1 , M. Schwane 1 , M. Fiderer 2 , A. Reeb 3 ,<br />

N. Ben Khalifa 1 , K. A. Weidenmann 3 , A. Brosius 1 , A. Erman Tekkaya 1<br />

1 Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Forming Technology and Lightweight C<strong>on</strong>structi<strong>on</strong>, Technische Universität Dortmund,<br />

Germany; 2 Kistler-IGeL GmbH, Schönaich, Germany; 3 Institute for Applied Materials – Materials<br />

Science and Engineering (IAM–WK), Karlsruher Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology (KIT), Karlsruhe, Germany<br />

The increasing number <str<strong>on</strong>g>of</str<strong>on</strong>g> regulatory requirements<br />

as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> rising expectati<strong>on</strong>s in comfort<br />

result in a c<strong>on</strong>tinuous weight increase <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

automobiles. The weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vehicles influences<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> fuel c<strong>on</strong>sumpti<strong>on</strong> and increases air<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> PLC, HMI and modelling computers is<br />

created and tied in with <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacturing<br />

requirements planning (MRP) system. An <str<strong>on</strong>g>of</str<strong>on</strong>g>fline<br />

versi<strong>on</strong> can be used to load data <str<strong>on</strong>g>of</str<strong>on</strong>g> coils<br />

currently in shop floor buffer storage; <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

coils can <str<strong>on</strong>g>the</str<strong>on</strong>g>n be arranged into energy-optimized<br />

or time-optimized furnace batches<br />

comprising four coils in each case. The batches<br />

determined by means <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizing calculati<strong>on</strong>s<br />

are <str<strong>on</strong>g>the</str<strong>on</strong>g>n returned to <str<strong>on</strong>g>the</str<strong>on</strong>g> MRP system<br />

and cleared for heat treatment. The heat<br />

treatment process is <str<strong>on</strong>g>the</str<strong>on</strong>g>n c<strong>on</strong>trolled with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>line versi<strong>on</strong>, which relies <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> same computing<br />

core.<br />

This innovati<strong>on</strong> project is subsidized by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Federal Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>ment because <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical model is expected<br />

to yield a significant reducti<strong>on</strong> in energy<br />

polluti<strong>on</strong>. The automobile industry has pursued<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> strategy to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

vehicles by an intelligent car body for a l<strong>on</strong>g<br />

time. Therefore, an increasing number <str<strong>on</strong>g>of</str<strong>on</strong>g> extrusi<strong>on</strong><br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles made <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum have been<br />

c<strong>on</strong>sumpti<strong>on</strong> and hence, CO 2 emissi<strong>on</strong>s. Since<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> comparis<strong>on</strong> was carried out against ‘earlier<br />

generati<strong>on</strong>’ multi-coil furnaces, <str<strong>on</strong>g>the</str<strong>on</strong>g> anticipated<br />

savings <str<strong>on</strong>g>of</str<strong>on</strong>g> approx. 8,300 t<strong>on</strong>nes <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 at<br />

an annual producti<strong>on</strong> output <str<strong>on</strong>g>of</str<strong>on</strong>g> 180,000<br />

t<strong>on</strong>nes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> still exceed <str<strong>on</strong>g>the</str<strong>on</strong>g> results illustrated<br />

in diagram 2 [3]. The project is slated<br />

to be completed by <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2011, so that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> first reports <strong>on</strong> operating experience are to<br />

be anticipated for 2012.<br />

References<br />

[1] Cüppers, J.: Betriebserfahrungen mit verschiedenen<br />

prozeßrechnerunterstützten Erwärmungsstrategien<br />

an Hubbalkenöfen in der Buntmetallindustrie<br />

[Operating experience gained with diverse process<br />

computer-assisted heating strategies <strong>on</strong> walking<br />

beam furnaces in <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-ferrous metals industry],<br />

Blech Rohre Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile 28, 1991, pp. 882-890<br />

[2] Bölling, R.: Allgemeine Systemtechnik – Einführung<br />

in die Finite-Volumen-Methode, Lösung strömungs-<br />

und wärmetechnischer Probleme des Industrie<str<strong>on</strong>g>of</str<strong>on</strong>g>enbaus<br />

mittels numerischer Methoden [General<br />

systems engineering – Introducti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> finite<br />

volume method, soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal engineering<br />

problems in industrial furnace c<strong>on</strong>structi<strong>on</strong><br />

using numerical methods], Lecture Notes, Technical<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Aachen (RWTH), Winter Term 2010<br />

[3] Federal Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>ment, www.bmu.de.<br />

Press release dated February 8, 2011: Innovative<br />

Glühöfen für die Aluminium-Industrie [Innovative<br />

annealing furnaces for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> industry]<br />

Authors<br />

Dr.Ing. Günter Valder, Technology Business Unit<br />

Manager, Thermoprocess Equipment Divisi<strong>on</strong>, Otto<br />

Junker GmbH, Simmerath, Germany<br />

Dipl.Ing. Bernd Deimann, Senior Sales Manager,<br />

Thermoprocess Equipment Divisi<strong>on</strong>, Otto Junker<br />

GmbH, Simmerath, Germany<br />

used as semi-finished products. The complexity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile cross secti<strong>on</strong>s varies depending<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> automobile manufacturer and <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> produced vehicles.<br />

Currently, <str<strong>on</strong>g>the</str<strong>on</strong>g> estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> produc-<br />

72 <strong>ALU</strong>MINIUM · EAC C<strong>on</strong>gress 2011


Fig. 1: Tool c<strong>on</strong>cept for <str<strong>on</strong>g>the</str<strong>on</strong>g> visioplastic analyses in a porthole die<br />

ibility <str<strong>on</strong>g>of</str<strong>on</strong>g> complex cross secti<strong>on</strong>s is based <strong>on</strong><br />

expert’s knowledge and cost-intensive prototyping.<br />

A more efficient method to predict <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

producibility and to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong><br />

failure in advance is presently not available.<br />

Hence, during <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ceptual designing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> new automobiles not all possibilities can be<br />

c<strong>on</strong>sidered. One factor is <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal seam welds. Insufficient<br />

seam welds can influence <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles.<br />

In this paper, <str<strong>on</strong>g>the</str<strong>on</strong>g> recent results <str<strong>on</strong>g>of</str<strong>on</strong>g> a transfer<br />

project within <str<strong>on</strong>g>the</str<strong>on</strong>g> scope <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Transregi<strong>on</strong>al<br />

Collaborative Research Center / TR10, which<br />

is kindly supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> German Research<br />

Foundati<strong>on</strong> (DFG), are presented. In this<br />

project, extrusi<strong>on</strong> companies, die makers,<br />

automobile companies, extrusi<strong>on</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware<br />

companies, and <str<strong>on</strong>g>the</str<strong>on</strong>g> Gesamtverband der Aluminiumindustrie<br />

e.V. work toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r to evaluate<br />

how present simulati<strong>on</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware based<br />

<strong>on</strong> finite element methods is able to simulate<br />

complex industrial extrusi<strong>on</strong> processes.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> numerical results<br />

in porthole die extrusi<strong>on</strong> by visioplastic plastic<br />

analysis a new modular die c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> a porthole<br />

die was developed. This tooling c<strong>on</strong>cept<br />

allows preparing <str<strong>on</strong>g>the</str<strong>on</strong>g> material out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> die<br />

without post plastificati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> material<br />

surface. Especially <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tribological<br />

effects near <str<strong>on</strong>g>the</str<strong>on</strong>g> die walls can be d<strong>on</strong>e<br />

[1,2]. The die is used for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Fig. 2: Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> process in Deform and HyperXrude<br />

a rectangular pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile with a cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

40 mm x 10 mm. It c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> twelve single<br />

parts. The fundamental part is a divided c<strong>on</strong>ical<br />

part, which is necessary to extract <str<strong>on</strong>g>the</str<strong>on</strong>g> material<br />

out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> die. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> material<br />

which is prepared for <str<strong>on</strong>g>the</str<strong>on</strong>g> visioplastic analysis<br />

can be inserted into <str<strong>on</strong>g>the</str<strong>on</strong>g> die again (Fig. 1).<br />

Only a billet preparati<strong>on</strong> would result in<br />

high deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trast material inside<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> feeders. In this case a determinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material flow and <str<strong>on</strong>g>the</str<strong>on</strong>g> tribological effects<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> die wall would be inaccurate. Due to<br />

this, to analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> material flow inside <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

billet, <str<strong>on</strong>g>the</str<strong>on</strong>g> feeders and <str<strong>on</strong>g>the</str<strong>on</strong>g> welding chamber <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> die were filled by extruding an EN AW-<br />

6063 alloy. The material was <str<strong>on</strong>g>the</str<strong>on</strong>g>n extracted<br />

and prepared with <str<strong>on</strong>g>the</str<strong>on</strong>g> grid pattern technique<br />

[1, 3]. In <str<strong>on</strong>g>the</str<strong>on</strong>g> vertical symmetry plane cylindrical<br />

pins with a diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 mm were used as<br />

c<strong>on</strong>trast material. To visualize <str<strong>on</strong>g>the</str<strong>on</strong>g> horiz<strong>on</strong>tal<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> vertical material flow in <strong>on</strong>e experiment,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pins were inserted vertically and<br />

horiz<strong>on</strong>tally in <str<strong>on</strong>g>the</str<strong>on</strong>g> symmetrical upper and<br />

lower part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> die. An EN AW-4043A alloy<br />

was used as c<strong>on</strong>trast material. The distance<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> pins was 15 mm. But in <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transiti<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> billet to <str<strong>on</strong>g>the</str<strong>on</strong>g> feeder as well<br />

as in <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> welding chamber, different<br />

distances were necessary. After preparati<strong>on</strong>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> material was reinserted in <str<strong>on</strong>g>the</str<strong>on</strong>g> modular die<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment. After <str<strong>on</strong>g>the</str<strong>on</strong>g> preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> billet <str<strong>on</strong>g>the</str<strong>on</strong>g> extrusi<strong>on</strong> process was performed<br />

SESSION SOFTWARE & SIMULATION<br />

<strong>on</strong> a 10 MN extrusi<strong>on</strong> press at <str<strong>on</strong>g>the</str<strong>on</strong>g> IUL to visualize<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> material flow inside <str<strong>on</strong>g>the</str<strong>on</strong>g> die.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material<br />

flow, <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element method was used. The<br />

simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> process was d<strong>on</strong>e with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

commercial s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware HyperXtrude and Deform3D.<br />

As initial data for <str<strong>on</strong>g>the</str<strong>on</strong>g> threedimensi<strong>on</strong>al<br />

finite element models <str<strong>on</strong>g>the</str<strong>on</strong>g> geometrical<br />

data <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental investigati<strong>on</strong>s was<br />

used. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that each s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware uses<br />

varying formulati<strong>on</strong>s a different modeling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> process becomes necessary.<br />

The implicit finite element code from Altair<br />

Engineering uses <str<strong>on</strong>g>the</str<strong>on</strong>g> Euler formulati<strong>on</strong><br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> material is meshed with a fixed<br />

mesh. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> overall material flow in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

process has to be modeled. It includes <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

70 mm l<strong>on</strong>g billet (diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 105 mm), <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

material inside <str<strong>on</strong>g>the</str<strong>on</strong>g> die, and <str<strong>on</strong>g>the</str<strong>on</strong>g> exiting pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile.<br />

Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tainer and <str<strong>on</strong>g>the</str<strong>on</strong>g> die were<br />

c<strong>on</strong>sidered as rigid bodies to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

heat transfer. Only a symmetrical part was<br />

modeled to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> time for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

quasi stati<strong>on</strong>ary simulati<strong>on</strong>. The inflow velocity<br />

was set to 10 mm/s.<br />

In Deform3D, <str<strong>on</strong>g>the</str<strong>on</strong>g> Lagrange formulati<strong>on</strong> is<br />

used. Here, <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element mesh is linked<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> material flow. Particularly in <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> extrusi<strong>on</strong> processes, where high deformati<strong>on</strong><br />

occurs, frequent remeshing is required<br />

in order to maintain a good mesh quality. In<br />

this model comp<strong>on</strong>ents were discretized with<br />

linear tetrahedral elements. The block with a<br />

length <str<strong>on</strong>g>of</str<strong>on</strong>g> 80 mm and <str<strong>on</strong>g>the</str<strong>on</strong>g> material in <str<strong>on</strong>g>the</str<strong>on</strong>g> filled<br />

die were modeled as <strong>on</strong>e part, which has been<br />

assigned a homogeneous initial temperature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

430°C. Both <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tainer and <str<strong>on</strong>g>the</str<strong>on</strong>g> die were<br />

assumed to be rigid. They were also discretized<br />

in order to incorporate <str<strong>on</strong>g>the</str<strong>on</strong>g> heat exchange between<br />

material and tools during <str<strong>on</strong>g>the</str<strong>on</strong>g> process.<br />

The diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> block was chosen to be<br />

equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> inner diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tainer<br />

to increase <str<strong>on</strong>g>the</str<strong>on</strong>g> comparability to <str<strong>on</strong>g>the</str<strong>on</strong>g> HyperXtrude<br />

model. Due to this, <str<strong>on</strong>g>the</str<strong>on</strong>g> upsetting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>ALU</strong>MINIUM · EAC C<strong>on</strong>gress 2011 73


SESSION SOFTWARE & SIMULATION<br />

Fig. 3: Visualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flow lines from <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment and <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong><br />

block was also not c<strong>on</strong>sidered in <str<strong>on</strong>g>the</str<strong>on</strong>g> Deform<br />

model. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <strong>on</strong>ly a quarter model was<br />

setup and a c<strong>on</strong>stant punch speed <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 mm/s<br />

was chosen.<br />

Flow lines were calculated based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

velocity field out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> HyperXtrude simulati<strong>on</strong>.<br />

The integrati<strong>on</strong> time was set to <str<strong>on</strong>g>the</str<strong>on</strong>g> press<br />

time to make a qualitative validati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

experimental directly visible. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> results,<br />

a high strain distributi<strong>on</strong> occurs in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> welding chamber which is shown<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> plastificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trast material<br />

(Fig. 3). The calculated vertical flow is in accurate<br />

agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> visioplastic result.<br />

Additi<strong>on</strong>ally, it can be seen that <str<strong>on</strong>g>the</str<strong>on</strong>g> material<br />

sticks <strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> die wall. This effect is also<br />

shown by <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element model. It can be<br />

seen that <str<strong>on</strong>g>the</str<strong>on</strong>g> material shears near <str<strong>on</strong>g>the</str<strong>on</strong>g> die wall.<br />

Outside this area, <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity is mainly c<strong>on</strong>stant<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> feeders. Errors occur due to <str<strong>on</strong>g>the</str<strong>on</strong>g> fact<br />

that HyperXtrude is not able to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

billet upsetting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> block at <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> process. The error can be established by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

decreasing error in press directi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> billet<br />

as well as in <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing error radial from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> billet center to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tainer.<br />

Additi<strong>on</strong>ally <str<strong>on</strong>g>the</str<strong>on</strong>g> fricti<strong>on</strong> modeling in Deform<br />

was analyzed. The shear fricti<strong>on</strong> model<br />

according to Tresca with m = 1 was used in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s. Physically, this corresp<strong>on</strong>ds<br />

Fig. 4: Qualitative comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HyperXtrude and Deform3D results<br />

to sticking between material and tool surface,<br />

since <str<strong>on</strong>g>the</str<strong>on</strong>g> fricti<strong>on</strong> stress equals <str<strong>on</strong>g>the</str<strong>on</strong>g> shear yield<br />

stress <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material. In order to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fricti<strong>on</strong> boundary c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> material flow and <str<strong>on</strong>g>the</str<strong>on</strong>g> flow grid pattern,<br />

respectively, fricti<strong>on</strong> was also modeled using<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sticking c<strong>on</strong>diti<strong>on</strong> solely as well as with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sticking c<strong>on</strong>diti<strong>on</strong> in c<strong>on</strong>juncti<strong>on</strong> with m = 1.<br />

The movement <str<strong>on</strong>g>of</str<strong>on</strong>g> nodes <strong>on</strong> a c<strong>on</strong>tact surface<br />

is prevented when <str<strong>on</strong>g>the</str<strong>on</strong>g> sticking c<strong>on</strong>diti<strong>on</strong> is applied.<br />

The results revealed that <str<strong>on</strong>g>the</str<strong>on</strong>g> flow lines<br />

partially deb<strong>on</strong>d in case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> shear fricti<strong>on</strong><br />

model. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> material slides al<strong>on</strong>g<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> die wall in <str<strong>on</strong>g>the</str<strong>on</strong>g> feeder, which is also clearly<br />

shown by <str<strong>on</strong>g>the</str<strong>on</strong>g> depicted velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. These<br />

effects do not match <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental results.<br />

Here, full sticking between material and die<br />

can be observed, so that shearing in <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface<br />

<str<strong>on</strong>g>layer</str<strong>on</strong>g>s occurs. This flow characteristic<br />

is qualitatively achieved by an activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sticking opti<strong>on</strong>. The difference between<br />

sticking and sticking in c<strong>on</strong>juncti<strong>on</strong> with shear<br />

fricti<strong>on</strong> turned out to be insignificant. Due to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> presented results, <str<strong>on</strong>g>the</str<strong>on</strong>g> model incorporating<br />

volume compensati<strong>on</strong> as well as sticking c<strong>on</strong>diti<strong>on</strong><br />

was determined to give best results.<br />

The Deform results were validated using<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> HyperXtrude results, which already had<br />

turned out to be reliable. Hence, a flow net<br />

with equally spaced lines was computed with<br />

both Deform3D and<br />

HyperXtrude. It can be<br />

shown that <str<strong>on</strong>g>the</str<strong>on</strong>g> results<br />

computed by HyperXtrude<br />

and Deform3D<br />

are in good accordance<br />

in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> flow<br />

line pattern as well as<br />

flow velocity predicti<strong>on</strong><br />

(Fig. 4).<br />

The hints regarding an<br />

appropriate modeling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> material flow in port-<br />

hole dies, which where gained by <str<strong>on</strong>g>the</str<strong>on</strong>g> visioplastic<br />

analysis will also be incorporated into <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>DE</strong>FORM models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> industrial extrusi<strong>on</strong><br />

tests, which were c<strong>on</strong>ducted by <str<strong>on</strong>g>the</str<strong>on</strong>g> collaborating<br />

companies <str<strong>on</strong>g>of</str<strong>on</strong>g> this project. First results <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> numerical process simulati<strong>on</strong> are already<br />

in good correlati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental results.<br />

In particular <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

exhibiting different wall thicknesses shows<br />

some significant characteristics. The different<br />

wall thicknesses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile generate an inhomogeneous<br />

velocity distributi<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> die<br />

orifice which, in turn, causes a curved shape<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exiting pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. A higher flow velocity<br />

is predicted at <str<strong>on</strong>g>the</str<strong>on</strong>g> thicker walls. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extruded pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles showed slight underfillings<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> outer face. The process simulati<strong>on</strong><br />

is also capable <str<strong>on</strong>g>of</str<strong>on</strong>g> representing <str<strong>on</strong>g>the</str<strong>on</strong>g>se failures.<br />

It should be menti<strong>on</strong>ed here that <str<strong>on</strong>g>the</str<strong>on</strong>g> numerical<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> this process still requires some<br />

effort since <str<strong>on</strong>g>the</str<strong>on</strong>g> material flow is not symmetric.<br />

Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> material and <str<strong>on</strong>g>the</str<strong>on</strong>g> mesh, respectively,<br />

has to be merged manually at <str<strong>on</strong>g>the</str<strong>on</strong>g> welding<br />

lines when Deform s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware is used.<br />

Acknowledgement<br />

This paper is based <strong>on</strong> investigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

subprojects B1 – ‘Integral design, simulati<strong>on</strong><br />

and optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extrusi<strong>on</strong> dies’ and T6 –<br />

‘Efficient industrial extrusi<strong>on</strong> simulati<strong>on</strong>’ <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Transregi<strong>on</strong>al Collaborative Research<br />

Center / Transregio 10, which is kindly supported<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> German Research Foundati<strong>on</strong><br />

(DFG).<br />

Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> support <str<strong>on</strong>g>of</str<strong>on</strong>g> our industrial<br />

partners Audi AG, Altair Engineering GmbH,<br />

F.W. Brökelmann Aluminiumwerk GmbH &<br />

Co. KG, Daimler AG, Gesamtverband der<br />

Aluminiumindustrie e.V., H<strong>on</strong>sel AG, Kistler-<br />

IGel GmbH, and S+C ETS GmbH is greatly<br />

acknowledged. Particularly, we want to thank<br />

Wilke Werkzeugbau GmbH for <str<strong>on</strong>g>the</str<strong>on</strong>g> die manufacture.<br />

We also want to thank <str<strong>on</strong>g>the</str<strong>on</strong>g> Institute for Innovative<br />

Mechanics and Management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Padova in Italy for <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental<br />

tests for <str<strong>on</strong>g>the</str<strong>on</strong>g> flow curve evaluati<strong>on</strong>.<br />

Literature<br />

[1] L. D<strong>on</strong>ati, L. Tomesani, M. Schikkora, N. Ben<br />

Khalifa and A.E. Tekkaya: Fricti<strong>on</strong> model selecti<strong>on</strong><br />

in FEM simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum extrusi<strong>on</strong>, Int. j.<br />

Surface Science and Engineering, Vol. 4, No. 1 (2010)<br />

[2] H. S. Valberg: Applied metal forming: including<br />

FEM analysis, Cambridge University Press (2010)<br />

[3] H. S. Valberg: Experimental techniques to characterize<br />

large plastic deformati<strong>on</strong>s in unlubricated<br />

hot aluminum extrusi<strong>on</strong>, Key Engineering Materials<br />

Vol. 367, pp. 17-24 (2008)<br />

74 <strong>ALU</strong>MINIUM · EAC C<strong>on</strong>gress 2011


EFFICIENT<br />

Yes, I/we would<br />

like to subscribe to<br />

<strong>ALU</strong>MINIUM+AluminiumePaper<br />

straight away for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> period specified below.<br />

<strong>ALU</strong>MINIUM appears 10 x a year;<br />

I/we will be notified by e-mail as so<strong>on</strong> as<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> current ePaper editi<strong>on</strong> is available <strong>on</strong>line<br />

for downloading.<br />

� 1-year subscripti<strong>on</strong>:<br />

in Europe EUR 289.00/ overseas USD 382.00<br />

� 2-year subscripti<strong>on</strong>:<br />

in Europe EUR 471.00/ overseas USD 671.00<br />

� 3-year subscripti<strong>on</strong><br />

in Europe EUR 635.00/ overseas USD 913.00<br />

Hans-Böckler-Allee 9<br />

30173 Hannover · Germany<br />

Tel. +49 511 8550-2638<br />

Fax +49 511 7304-233<br />

www.giesel.de<br />

vertrieb@giesel.de<br />

Company<br />

First name, last name<br />

Department<br />

Address<br />

Postcode, city<br />

Country<br />

Teleph<strong>on</strong>e Fax<br />

E-mail (for <str<strong>on</strong>g>the</str<strong>on</strong>g> notificati<strong>on</strong>)<br />

VAT ID number<br />

The subscripti<strong>on</strong> fee is to be paid by credit card:<br />

Number<br />

VISA American Express Euro-/Mastercard<br />

Cardholder<br />

Valid until<br />

The fee is to be debited from our account (<strong>on</strong>ly possible within<br />

Germany).<br />

Bank<br />

Bank code<br />

Account no.<br />

www.<br />

alu-web.de<br />

Knowledge makes<br />

an impact!<br />

<strong>ALU</strong>MINIUM now<br />

provides you with<br />

effective informati<strong>on</strong><br />

in no less than<br />

three ways!<br />

What’s more, if you take out your subscripti<strong>on</strong> straight away<br />

for 2 or 3 years, you’ll also be saving up to 25 %!<br />

The fee will be remitted <strong>on</strong> receipt <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invoice.<br />

Date Signed<br />

Anz.Efficient.BWH


800 mm<br />

150 MN<br />

Smoothly supplying, erecting and commissi<strong>on</strong>ing<br />

complex plants is our business.<br />

But as a fl exible partner we can also<br />

satisfy unusual wishes. For our customer<br />

Shand<strong>on</strong>g Yankuang Light Alloy Company<br />

in China, we erected <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s<br />

most powerful <str<strong>on</strong>g>aluminium</str<strong>on</strong>g> extrusi<strong>on</strong> presses<br />

in our works because <str<strong>on</strong>g>the</str<strong>on</strong>g>y wanted to<br />

see for <str<strong>on</strong>g>the</str<strong>on</strong>g>mselves <str<strong>on</strong>g>the</str<strong>on</strong>g> capabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

gigantic machine in advance. That is what<br />

we mean by customer orientati<strong>on</strong>.<br />

1<br />

BILLET<br />

DIAMETER<br />

PRESS<br />

FORCE<br />

Competence and experience, reliability and<br />

fl exibility – <str<strong>on</strong>g>the</str<strong>on</strong>g> hallmarks <str<strong>on</strong>g>of</str<strong>on</strong>g> SMS Meer.<br />

We give our customers worldwide a<br />

lead over <str<strong>on</strong>g>the</str<strong>on</strong>g> competiti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir markets.<br />

SMS Meer <str<strong>on</strong>g>of</str<strong>on</strong>g>fers high-performance machines<br />

and plants for steelmaking and<br />

c<strong>on</strong>tinuous casting, tubes, l<strong>on</strong>g products,<br />

forging, NF metals and heat treatment.<br />

Our soluti<strong>on</strong>s – a good reas<strong>on</strong> to be proud!<br />

SATISFIED<br />

CUSTOMER<br />

www.sms-meer.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!