05.11.2012 Views

Navigation Functionalities for an Autonomous UAV Helicopter

Navigation Functionalities for an Autonomous UAV Helicopter

Navigation Functionalities for an Autonomous UAV Helicopter

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

80 APPENDIX A.<br />

θC = KpxδX + Kdx ˙<br />

δX + KpvxδVX +<br />

+KivxδVXsum + KfxAX<br />

∆φC = KpyδY + Kdy ˙<br />

δY + KpvyδVY +<br />

+KivyδVY sum + KfyAY<br />

VZC = KpzδZ + Kdz ˙<br />

δZ + KpvzδVZ +<br />

+KivzδVZsum + KfzAZ<br />

ωC = Kpwδψ (13)<br />

where the subscripted K’s are control gains, the<br />

δ ′ s are control errors, the pedices sum indicate<br />

the integral terms <strong>an</strong>d the A’s the components<br />

of the centripetal acceleration vector. θC is the<br />

target pitch <strong>an</strong>gle, ∆φC is the desired roll <strong>an</strong>gle<br />

relative to the hovering roll <strong>an</strong>gle, ωC is the target<br />

yaw rate <strong>an</strong>d VZC is the target vertical velocity.<br />

6. EXPERIMENTAL RESULTS<br />

The PF mode has been tested first in simulation<br />

<strong>an</strong>d then in flight. The flight dynamics mathematical<br />

model of the augmented RMAX has been<br />

developed within the WITAS project <strong>an</strong>d implemented<br />

in C. Simulations are done using hardware<br />

in the loop.<br />

Only results from the flights are reported in the<br />

following.<br />

Up [m]<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

B<br />

0<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

North [m]<br />

−100<br />

−10<br />

A<br />

0<br />

10<br />

East [m]<br />

20<br />

30<br />

40<br />

50<br />

Flight Test<br />

Target<br />

Fig. 5. Target <strong>an</strong>d actual 3D helicopter path<br />

Speed [m/s]<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

flight test<br />

target<br />

0<br />

490 495 500 505 510 515 520 525<br />

Time [sec]<br />

Fig. 6. Target <strong>an</strong>d actual speed of the helicopter<br />

Fig. 5 <strong>an</strong>d 6 show a 3D segment <strong>an</strong>d the velocity<br />

profile during one of the flight-tests. The helicopter<br />

hovers at point A at 40 meters altitude,<br />

starts the descending spiral, brakes <strong>an</strong>d hovers<br />

at point B at 10 meters altitude. The maximum<br />

speed <strong>for</strong> the flight was set to 10 m/s, <strong>an</strong>d the controller<br />

limited the target speed according to the<br />

local curvature <strong>an</strong>d the braking algorithm. The<br />

maximum vertical speed component was around<br />

3 m/s.<br />

North [m]<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

Wind 5m/s<br />

* *<br />

D<br />

A<br />

Flight Test<br />

Target<br />

−120<br />

B<br />

C<br />

−60 −40 −20 0 20<br />

East [m]<br />

40 60 80<br />

Fig. 7. Multisegment 2D path<br />

Speed [m/s]<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

*<br />

B * * C<br />

Flight Test<br />

Target<br />

A<br />

0<br />

10 20 30 40<br />

Time [sec]<br />

50 60 70 80<br />

Fig. 8. Speed profile of a multisegment path<br />

Fig. 7 <strong>an</strong>d 8 show a trajectory consisting of 3<br />

path segments at const<strong>an</strong>t altitude. The mission<br />

starts with autonomous hovering in point A, then<br />

the helicopter flies the first path segment with<br />

maximum speed of 8 m/s; at point B the first<br />

segment is finished <strong>an</strong>d a path switching leads the<br />

helicopter to the second segment with a maximum<br />

speed of 3 m/s; in point C the switch to the third<br />

path segment with maximum speed of 8 m/s takes<br />

place. Finally the helicopter brakes <strong>an</strong>d hovers in<br />

point D where the mission ends. The wind was<br />

blowing const<strong>an</strong>tly at 5 m/s. The tracking error<br />

depends on the <strong>an</strong>gle between the path <strong>an</strong>d the<br />

wind direction. In this case the maximum error is<br />

about 3 meters.<br />

Table 1 shows the results of several paths flown<br />

with different wind conditions <strong>an</strong>d different velocities.<br />

The table reports three flight sessions (separated<br />

by horizontal lines) flown on three different<br />

days so as to cover three different wind conditions.<br />

In order to give more generality to the results,<br />

D<br />

*

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!