05.11.2012 Views

Model Organisms in Drug Discovery

Model Organisms in Drug Discovery

Model Organisms in Drug Discovery

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

220 LIPID METABOLISM AND SIGNALING IN ZEBRAFISH<br />

Haffter, P., Granato, M., Brand, M., Mull<strong>in</strong>s, M. C., Hammerschmidt, M., Kane, D. A.,<br />

Odenthal, J., et al. (1996). The identification of genes with unique and essential functions<br />

<strong>in</strong> the development of the zebrafish, Danio rerio. Development 123, 1–36.<br />

Hendrickson, H. S., Hendrickson, E. K., Johnson, I. D. and Farber, S. A. (1999).<br />

Intramolecularly quenched BODIPY-labeled phospholipid analogs <strong>in</strong> phospholipase<br />

A(2) and platelet-activat<strong>in</strong>g factor acetylhydrolase assays and <strong>in</strong> vivo fluorescence<br />

imag<strong>in</strong>g. Anal. Biochem. 276, 27–35.<br />

Hennekens, C. H. (2001). Current perspectives on lipid lower<strong>in</strong>g with stat<strong>in</strong>s to decrease<br />

risk of cardiovascular disease. Cl<strong>in</strong>. Cardiol. 24(7 Suppl), II-2–5.<br />

Jagadeeswaran, P. and Sheehan, J. P. (1999). Analysis of blood coagulation <strong>in</strong> the<br />

zebrafish. Blood Cells Mol. Dis. 25, 239–249.<br />

Jiang, C., T<strong>in</strong>g, A. T. and Seed, B. (1998). PPAR-gamma agonists <strong>in</strong>hibit production of<br />

monocyte <strong>in</strong>flammatory cytok<strong>in</strong>es. Nature 391, 82–86.<br />

Joffe, B. I., Panz, V. R. and Raal, F. J. (2001). From lipodystrophy syndromes to diabetes<br />

mellitus. Lancet 357, 1379–1381.<br />

Kliewer, S. A., Lenhard, J. M., Willson, T. M., Patel, I., Morris, D. C. and Lehmann, J. M.<br />

(1995). A prostagland<strong>in</strong> J2 metabolite b<strong>in</strong>ds peroxisome proliferator-activated receptor<br />

gamma and promotes adipocyte differentiation. Cell 83, 813–819.<br />

Knopp, R. H. (1999). <strong>Drug</strong> treatment of lipid disorders. N. Engl. J. Med. 341, 498–511.<br />

Langenbach, R., Morham, S. G., Tiano, H. F., Loft<strong>in</strong>, C. D., Ghanayem, B. I., Chulada,<br />

P. C., Mahler, J. F., et al. (1995). Prostagland<strong>in</strong> synthase 1 gene disruption <strong>in</strong> mice<br />

reduces arachidonic acid-<strong>in</strong>duced <strong>in</strong>flammation and <strong>in</strong>domethac<strong>in</strong>-<strong>in</strong>duced gastric<br />

ulceration. Cell 83, 483–492.<br />

Liu, Y. W. and Chan, W. K. (2002). Thyroid hormones are important for embryonic to<br />

larval transitory phase <strong>in</strong> zebrafish. Differentiation 70, 36–45.<br />

MacPhee, M., Chepenik, K. P., Liddell, R. A., Nelson, K. K., Siracusa, L. D. and<br />

Buchberg, A. M. (1995). The secretory phospholipase A2 gene is a candidate for the<br />

Mom1 locus, a major modifier of ApcM<strong>in</strong>-<strong>in</strong>duced <strong>in</strong>test<strong>in</strong>al neoplasia. Cell 81, 957–966.<br />

Makishima, M., Lu, T. T., Xie, W., Whitfield, G. K., Domoto, H., Evans, R. M., Haussler,<br />

M. R., et al. (2002). Vitam<strong>in</strong> D receptor as an <strong>in</strong>test<strong>in</strong>al bile acid sensor. Science 296,<br />

1313–1316.<br />

Manc<strong>in</strong>i, J. A., Vickers, P. J., O’Neill, G. P., Boily, C., Falgueyret, J. P. and Riendeau, D.<br />

(1997). Altered sensitivity of aspir<strong>in</strong>-acetylated prostagland<strong>in</strong> G/H synthase-2 to<br />

<strong>in</strong>hibition by nonsteroidal anti-<strong>in</strong>flammatory drugs. Mol. Pharmacol. 51, 52–60.<br />

Masferrer, J. L., Leahy, K. M., Koki, A. T., Zweifel, B. S., Settle, S. L., Woerner, B. M.,<br />

Edwards, D. A., et al. (2000). Antiangiogenic and antitumor activities of cyclooxygenase-2<br />

<strong>in</strong>hibitors. Cancer Res. 60, 1306–1311.<br />

McCallum, C. M., Comai, L., Greene, E. A. and Henikoff, S. (2000). Target<strong>in</strong>g <strong>in</strong>duced<br />

local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol. 123,<br />

439–442.<br />

McNeely, M. J., Edwards, K. L., Marcov<strong>in</strong>a, S. M., Brunzell, J. D., Motulsky, A. G. and<br />

Aust<strong>in</strong>, M. A. (2001). Lipoprote<strong>in</strong> and apolipoprote<strong>in</strong> abnormalities <strong>in</strong> familial<br />

comb<strong>in</strong>ed hyperlipidemia: a 20-year prospective study. Atherosclerosis 159, 471–481.<br />

Morham, S. G., Langenbach, R., Loft<strong>in</strong>, C. D., Tiano, H. F., Vouloumanos, N., Jennette,<br />

J. C., Mahler, J. F., et al. (1995). Prostagland<strong>in</strong> synthase 2 gene disruption causes severe<br />

renal pathology <strong>in</strong> the mouse. Cell 83, 473–482.<br />

Narumiya, S. and FitzGerald, G. A. (2001). Genetic and pharmacological analysis of<br />

prostanoid receptor function. J. Cl<strong>in</strong>. Invest. 108, 25–30.<br />

Pajukanta, P. and Porkka, K. V. (1999). Genetics of familial comb<strong>in</strong>ed hyperlipidemia.<br />

Curr. Atheroscler. Rep. 1, 79–86.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!